cpufreq: imx6q: correct VDDSOC/PU voltage scaling when cpufreq is changed
on i.MX6Q, cpu freq change need to follow below flows: 1. each setpoint has different VDDARM, VDDSOC/PU voltage, get the setpoint table from dts; 2. when cpu freq is scaling up, need to increase VDDSOC/PU voltage before VDDARM, if VDDPU is off, no need to change it; 3. when cpu freq is scaling down, need to decrease VDDARM voltage before VDDSOC/PU, if VDDPU is off, no need to change it; normally dts will pass vddsoc/pu freq/volt info to kernel, if not, will use fixed value for vddsoc/pu voltage setting. Signed-off-by: Anson Huang <b20788@freescale.com> Acked-by: Shawn Guo <shawn.guo@linaro.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
This commit is contained in:

committed by
Rafael J. Wysocki

parent
ab1b1c4e82
commit
b4573d1d65
@@ -35,6 +35,9 @@ static struct device *cpu_dev;
|
|||||||
static struct cpufreq_frequency_table *freq_table;
|
static struct cpufreq_frequency_table *freq_table;
|
||||||
static unsigned int transition_latency;
|
static unsigned int transition_latency;
|
||||||
|
|
||||||
|
static u32 *imx6_soc_volt;
|
||||||
|
static u32 soc_opp_count;
|
||||||
|
|
||||||
static unsigned int imx6q_get_speed(unsigned int cpu)
|
static unsigned int imx6q_get_speed(unsigned int cpu)
|
||||||
{
|
{
|
||||||
return clk_get_rate(arm_clk) / 1000;
|
return clk_get_rate(arm_clk) / 1000;
|
||||||
@@ -69,23 +72,22 @@ static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
|
|||||||
|
|
||||||
/* scaling up? scale voltage before frequency */
|
/* scaling up? scale voltage before frequency */
|
||||||
if (new_freq > old_freq) {
|
if (new_freq > old_freq) {
|
||||||
|
ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
|
||||||
|
if (ret) {
|
||||||
|
dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
|
||||||
|
if (ret) {
|
||||||
|
dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
|
ret = regulator_set_voltage_tol(arm_reg, volt, 0);
|
||||||
if (ret) {
|
if (ret) {
|
||||||
dev_err(cpu_dev,
|
dev_err(cpu_dev,
|
||||||
"failed to scale vddarm up: %d\n", ret);
|
"failed to scale vddarm up: %d\n", ret);
|
||||||
return ret;
|
return ret;
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
|
||||||
* Need to increase vddpu and vddsoc for safety
|
|
||||||
* if we are about to run at 1.2 GHz.
|
|
||||||
*/
|
|
||||||
if (new_freq == FREQ_1P2_GHZ / 1000) {
|
|
||||||
regulator_set_voltage_tol(pu_reg,
|
|
||||||
PU_SOC_VOLTAGE_HIGH, 0);
|
|
||||||
regulator_set_voltage_tol(soc_reg,
|
|
||||||
PU_SOC_VOLTAGE_HIGH, 0);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/*
|
/*
|
||||||
@@ -120,12 +122,15 @@ static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
|
|||||||
"failed to scale vddarm down: %d\n", ret);
|
"failed to scale vddarm down: %d\n", ret);
|
||||||
ret = 0;
|
ret = 0;
|
||||||
}
|
}
|
||||||
|
ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
|
||||||
if (old_freq == FREQ_1P2_GHZ / 1000) {
|
if (ret) {
|
||||||
regulator_set_voltage_tol(pu_reg,
|
dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
|
||||||
PU_SOC_VOLTAGE_NORMAL, 0);
|
ret = 0;
|
||||||
regulator_set_voltage_tol(soc_reg,
|
}
|
||||||
PU_SOC_VOLTAGE_NORMAL, 0);
|
ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
|
||||||
|
if (ret) {
|
||||||
|
dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
|
||||||
|
ret = 0;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -153,6 +158,9 @@ static int imx6q_cpufreq_probe(struct platform_device *pdev)
|
|||||||
struct dev_pm_opp *opp;
|
struct dev_pm_opp *opp;
|
||||||
unsigned long min_volt, max_volt;
|
unsigned long min_volt, max_volt;
|
||||||
int num, ret;
|
int num, ret;
|
||||||
|
const struct property *prop;
|
||||||
|
const __be32 *val;
|
||||||
|
u32 nr, i, j;
|
||||||
|
|
||||||
cpu_dev = get_cpu_device(0);
|
cpu_dev = get_cpu_device(0);
|
||||||
if (!cpu_dev) {
|
if (!cpu_dev) {
|
||||||
@@ -201,9 +209,61 @@ static int imx6q_cpufreq_probe(struct platform_device *pdev)
|
|||||||
goto put_node;
|
goto put_node;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* Make imx6_soc_volt array's size same as arm opp number */
|
||||||
|
imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
|
||||||
|
if (imx6_soc_volt == NULL) {
|
||||||
|
ret = -ENOMEM;
|
||||||
|
goto free_freq_table;
|
||||||
|
}
|
||||||
|
|
||||||
|
prop = of_find_property(np, "fsl,soc-operating-points", NULL);
|
||||||
|
if (!prop || !prop->value)
|
||||||
|
goto soc_opp_out;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Each OPP is a set of tuples consisting of frequency and
|
||||||
|
* voltage like <freq-kHz vol-uV>.
|
||||||
|
*/
|
||||||
|
nr = prop->length / sizeof(u32);
|
||||||
|
if (nr % 2 || (nr / 2) < num)
|
||||||
|
goto soc_opp_out;
|
||||||
|
|
||||||
|
for (j = 0; j < num; j++) {
|
||||||
|
val = prop->value;
|
||||||
|
for (i = 0; i < nr / 2; i++) {
|
||||||
|
unsigned long freq = be32_to_cpup(val++);
|
||||||
|
unsigned long volt = be32_to_cpup(val++);
|
||||||
|
if (freq_table[j].frequency == freq) {
|
||||||
|
imx6_soc_volt[soc_opp_count++] = volt;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
soc_opp_out:
|
||||||
|
/* use fixed soc opp volt if no valid soc opp info found in dtb */
|
||||||
|
if (soc_opp_count != num) {
|
||||||
|
dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
|
||||||
|
for (j = 0; j < num; j++)
|
||||||
|
imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
|
||||||
|
if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
|
||||||
|
imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
|
||||||
|
}
|
||||||
|
|
||||||
if (of_property_read_u32(np, "clock-latency", &transition_latency))
|
if (of_property_read_u32(np, "clock-latency", &transition_latency))
|
||||||
transition_latency = CPUFREQ_ETERNAL;
|
transition_latency = CPUFREQ_ETERNAL;
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Calculate the ramp time for max voltage change in the
|
||||||
|
* VDDSOC and VDDPU regulators.
|
||||||
|
*/
|
||||||
|
ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
|
||||||
|
if (ret > 0)
|
||||||
|
transition_latency += ret * 1000;
|
||||||
|
ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
|
||||||
|
if (ret > 0)
|
||||||
|
transition_latency += ret * 1000;
|
||||||
|
|
||||||
/*
|
/*
|
||||||
* OPP is maintained in order of increasing frequency, and
|
* OPP is maintained in order of increasing frequency, and
|
||||||
* freq_table initialised from OPP is therefore sorted in the
|
* freq_table initialised from OPP is therefore sorted in the
|
||||||
@@ -221,18 +281,6 @@ static int imx6q_cpufreq_probe(struct platform_device *pdev)
|
|||||||
if (ret > 0)
|
if (ret > 0)
|
||||||
transition_latency += ret * 1000;
|
transition_latency += ret * 1000;
|
||||||
|
|
||||||
/* Count vddpu and vddsoc latency in for 1.2 GHz support */
|
|
||||||
if (freq_table[num].frequency == FREQ_1P2_GHZ / 1000) {
|
|
||||||
ret = regulator_set_voltage_time(pu_reg, PU_SOC_VOLTAGE_NORMAL,
|
|
||||||
PU_SOC_VOLTAGE_HIGH);
|
|
||||||
if (ret > 0)
|
|
||||||
transition_latency += ret * 1000;
|
|
||||||
ret = regulator_set_voltage_time(soc_reg, PU_SOC_VOLTAGE_NORMAL,
|
|
||||||
PU_SOC_VOLTAGE_HIGH);
|
|
||||||
if (ret > 0)
|
|
||||||
transition_latency += ret * 1000;
|
|
||||||
}
|
|
||||||
|
|
||||||
ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
|
ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
|
||||||
if (ret) {
|
if (ret) {
|
||||||
dev_err(cpu_dev, "failed register driver: %d\n", ret);
|
dev_err(cpu_dev, "failed register driver: %d\n", ret);
|
||||||
|
Reference in New Issue
Block a user