Merge tag 'v5.3-rc6' into x86/cpu, to pick up fixes

Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
Ingo Molnar
2019-08-26 11:20:55 +02:00
förälder 342061c53a a55aa89aab
incheckning b3e30c9884
1693 ändrade filer med 16350 tillägg och 11647 borttagningar

Visa fil

@@ -722,7 +722,7 @@ static __initdata unsigned long lapic_cal_pm1, lapic_cal_pm2;
static __initdata unsigned long lapic_cal_j1, lapic_cal_j2;
/*
* Temporary interrupt handler.
* Temporary interrupt handler and polled calibration function.
*/
static void __init lapic_cal_handler(struct clock_event_device *dev)
{
@@ -851,7 +851,8 @@ bool __init apic_needs_pit(void)
static int __init calibrate_APIC_clock(void)
{
struct clock_event_device *levt = this_cpu_ptr(&lapic_events);
void (*real_handler)(struct clock_event_device *dev);
u64 tsc_perj = 0, tsc_start = 0;
unsigned long jif_start;
unsigned long deltaj;
long delta, deltatsc;
int pm_referenced = 0;
@@ -878,29 +879,65 @@ static int __init calibrate_APIC_clock(void)
apic_printk(APIC_VERBOSE, "Using local APIC timer interrupts.\n"
"calibrating APIC timer ...\n");
/*
* There are platforms w/o global clockevent devices. Instead of
* making the calibration conditional on that, use a polling based
* approach everywhere.
*/
local_irq_disable();
/* Replace the global interrupt handler */
real_handler = global_clock_event->event_handler;
global_clock_event->event_handler = lapic_cal_handler;
/*
* Setup the APIC counter to maximum. There is no way the lapic
* can underflow in the 100ms detection time frame
*/
__setup_APIC_LVTT(0xffffffff, 0, 0);
/* Let the interrupts run */
/*
* Methods to terminate the calibration loop:
* 1) Global clockevent if available (jiffies)
* 2) TSC if available and frequency is known
*/
jif_start = READ_ONCE(jiffies);
if (tsc_khz) {
tsc_start = rdtsc();
tsc_perj = div_u64((u64)tsc_khz * 1000, HZ);
}
/*
* Enable interrupts so the tick can fire, if a global
* clockevent device is available
*/
local_irq_enable();
while (lapic_cal_loops <= LAPIC_CAL_LOOPS)
cpu_relax();
while (lapic_cal_loops <= LAPIC_CAL_LOOPS) {
/* Wait for a tick to elapse */
while (1) {
if (tsc_khz) {
u64 tsc_now = rdtsc();
if ((tsc_now - tsc_start) >= tsc_perj) {
tsc_start += tsc_perj;
break;
}
} else {
unsigned long jif_now = READ_ONCE(jiffies);
if (time_after(jif_now, jif_start)) {
jif_start = jif_now;
break;
}
}
cpu_relax();
}
/* Invoke the calibration routine */
local_irq_disable();
lapic_cal_handler(NULL);
local_irq_enable();
}
local_irq_disable();
/* Restore the real event handler */
global_clock_event->event_handler = real_handler;
/* Build delta t1-t2 as apic timer counts down */
delta = lapic_cal_t1 - lapic_cal_t2;
apic_printk(APIC_VERBOSE, "... lapic delta = %ld\n", delta);
@@ -943,10 +980,11 @@ static int __init calibrate_APIC_clock(void)
levt->features &= ~CLOCK_EVT_FEAT_DUMMY;
/*
* PM timer calibration failed or not turned on
* so lets try APIC timer based calibration
* PM timer calibration failed or not turned on so lets try APIC
* timer based calibration, if a global clockevent device is
* available.
*/
if (!pm_referenced) {
if (!pm_referenced && global_clock_event) {
apic_printk(APIC_VERBOSE, "... verify APIC timer\n");
/*

Visa fil

@@ -184,7 +184,8 @@ void __init default_setup_apic_routing(void)
def_to_bigsmp = 0;
break;
}
/* If P4 and above fall through */
/* P4 and above */
/* fall through */
case X86_VENDOR_HYGON:
case X86_VENDOR_AMD:
def_to_bigsmp = 1;

Visa fil

@@ -804,6 +804,64 @@ static void init_amd_ln(struct cpuinfo_x86 *c)
msr_set_bit(MSR_AMD64_DE_CFG, 31);
}
static bool rdrand_force;
static int __init rdrand_cmdline(char *str)
{
if (!str)
return -EINVAL;
if (!strcmp(str, "force"))
rdrand_force = true;
else
return -EINVAL;
return 0;
}
early_param("rdrand", rdrand_cmdline);
static void clear_rdrand_cpuid_bit(struct cpuinfo_x86 *c)
{
/*
* Saving of the MSR used to hide the RDRAND support during
* suspend/resume is done by arch/x86/power/cpu.c, which is
* dependent on CONFIG_PM_SLEEP.
*/
if (!IS_ENABLED(CONFIG_PM_SLEEP))
return;
/*
* The nordrand option can clear X86_FEATURE_RDRAND, so check for
* RDRAND support using the CPUID function directly.
*/
if (!(cpuid_ecx(1) & BIT(30)) || rdrand_force)
return;
msr_clear_bit(MSR_AMD64_CPUID_FN_1, 62);
/*
* Verify that the CPUID change has occurred in case the kernel is
* running virtualized and the hypervisor doesn't support the MSR.
*/
if (cpuid_ecx(1) & BIT(30)) {
pr_info_once("BIOS may not properly restore RDRAND after suspend, but hypervisor does not support hiding RDRAND via CPUID.\n");
return;
}
clear_cpu_cap(c, X86_FEATURE_RDRAND);
pr_info_once("BIOS may not properly restore RDRAND after suspend, hiding RDRAND via CPUID. Use rdrand=force to reenable.\n");
}
static void init_amd_jg(struct cpuinfo_x86 *c)
{
/*
* Some BIOS implementations do not restore proper RDRAND support
* across suspend and resume. Check on whether to hide the RDRAND
* instruction support via CPUID.
*/
clear_rdrand_cpuid_bit(c);
}
static void init_amd_bd(struct cpuinfo_x86 *c)
{
u64 value;
@@ -818,6 +876,13 @@ static void init_amd_bd(struct cpuinfo_x86 *c)
wrmsrl_safe(MSR_F15H_IC_CFG, value);
}
}
/*
* Some BIOS implementations do not restore proper RDRAND support
* across suspend and resume. Check on whether to hide the RDRAND
* instruction support via CPUID.
*/
clear_rdrand_cpuid_bit(c);
}
static void init_amd_zn(struct cpuinfo_x86 *c)
@@ -860,6 +925,7 @@ static void init_amd(struct cpuinfo_x86 *c)
case 0x10: init_amd_gh(c); break;
case 0x12: init_amd_ln(c); break;
case 0x15: init_amd_bd(c); break;
case 0x16: init_amd_jg(c); break;
case 0x17: init_amd_zn(c); break;
}

Visa fil

@@ -34,6 +34,7 @@
#include "cpu.h"
static void __init spectre_v1_select_mitigation(void);
static void __init spectre_v2_select_mitigation(void);
static void __init ssb_select_mitigation(void);
static void __init l1tf_select_mitigation(void);
@@ -98,17 +99,11 @@ void __init check_bugs(void)
if (boot_cpu_has(X86_FEATURE_STIBP))
x86_spec_ctrl_mask |= SPEC_CTRL_STIBP;
/* Select the proper spectre mitigation before patching alternatives */
/* Select the proper CPU mitigations before patching alternatives: */
spectre_v1_select_mitigation();
spectre_v2_select_mitigation();
/*
* Select proper mitigation for any exposure to the Speculative Store
* Bypass vulnerability.
*/
ssb_select_mitigation();
l1tf_select_mitigation();
mds_select_mitigation();
arch_smt_update();
@@ -273,6 +268,98 @@ static int __init mds_cmdline(char *str)
}
early_param("mds", mds_cmdline);
#undef pr_fmt
#define pr_fmt(fmt) "Spectre V1 : " fmt
enum spectre_v1_mitigation {
SPECTRE_V1_MITIGATION_NONE,
SPECTRE_V1_MITIGATION_AUTO,
};
static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
SPECTRE_V1_MITIGATION_AUTO;
static const char * const spectre_v1_strings[] = {
[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
};
/*
* Does SMAP provide full mitigation against speculative kernel access to
* userspace?
*/
static bool smap_works_speculatively(void)
{
if (!boot_cpu_has(X86_FEATURE_SMAP))
return false;
/*
* On CPUs which are vulnerable to Meltdown, SMAP does not
* prevent speculative access to user data in the L1 cache.
* Consider SMAP to be non-functional as a mitigation on these
* CPUs.
*/
if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
return false;
return true;
}
static void __init spectre_v1_select_mitigation(void)
{
if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
return;
}
if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
/*
* With Spectre v1, a user can speculatively control either
* path of a conditional swapgs with a user-controlled GS
* value. The mitigation is to add lfences to both code paths.
*
* If FSGSBASE is enabled, the user can put a kernel address in
* GS, in which case SMAP provides no protection.
*
* [ NOTE: Don't check for X86_FEATURE_FSGSBASE until the
* FSGSBASE enablement patches have been merged. ]
*
* If FSGSBASE is disabled, the user can only put a user space
* address in GS. That makes an attack harder, but still
* possible if there's no SMAP protection.
*/
if (!smap_works_speculatively()) {
/*
* Mitigation can be provided from SWAPGS itself or
* PTI as the CR3 write in the Meltdown mitigation
* is serializing.
*
* If neither is there, mitigate with an LFENCE to
* stop speculation through swapgs.
*/
if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
!boot_cpu_has(X86_FEATURE_PTI))
setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
/*
* Enable lfences in the kernel entry (non-swapgs)
* paths, to prevent user entry from speculatively
* skipping swapgs.
*/
setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
}
}
pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
}
static int __init nospectre_v1_cmdline(char *str)
{
spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
return 0;
}
early_param("nospectre_v1", nospectre_v1_cmdline);
#undef pr_fmt
#define pr_fmt(fmt) "Spectre V2 : " fmt
@@ -1226,7 +1313,7 @@ static ssize_t l1tf_show_state(char *buf)
static ssize_t mds_show_state(char *buf)
{
if (!hypervisor_is_type(X86_HYPER_NATIVE)) {
if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
return sprintf(buf, "%s; SMT Host state unknown\n",
mds_strings[mds_mitigation]);
}
@@ -1290,7 +1377,7 @@ static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr
break;
case X86_BUG_SPECTRE_V1:
return sprintf(buf, "Mitigation: __user pointer sanitization\n");
return sprintf(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
case X86_BUG_SPECTRE_V2:
return sprintf(buf, "%s%s%s%s%s%s\n", spectre_v2_strings[spectre_v2_enabled],

Visa fil

@@ -1022,6 +1022,7 @@ static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
#define NO_L1TF BIT(3)
#define NO_MDS BIT(4)
#define MSBDS_ONLY BIT(5)
#define NO_SWAPGS BIT(6)
#define VULNWL(_vendor, _family, _model, _whitelist) \
{ X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
@@ -1048,30 +1049,38 @@ static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION),
VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION),
VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY),
VULNWL_INTEL(ATOM_SILVERMONT_X, NO_SSB | NO_L1TF | MSBDS_ONLY),
VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY),
VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY),
VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY),
VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY),
VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(ATOM_SILVERMONT_X, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(CORE_YONAH, NO_SSB),
VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY),
VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS),
VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF),
VULNWL_INTEL(ATOM_GOLDMONT_X, NO_MDS | NO_L1TF),
VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF),
VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS),
VULNWL_INTEL(ATOM_GOLDMONT_X, NO_MDS | NO_L1TF | NO_SWAPGS),
VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS),
/*
* Technically, swapgs isn't serializing on AMD (despite it previously
* being documented as such in the APM). But according to AMD, %gs is
* updated non-speculatively, and the issuing of %gs-relative memory
* operands will be blocked until the %gs update completes, which is
* good enough for our purposes.
*/
/* AMD Family 0xf - 0x12 */
VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS),
VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS),
/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS),
VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS),
VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS),
VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS),
{}
};
@@ -1108,6 +1117,9 @@ static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
}
if (!cpu_matches(NO_SWAPGS))
setup_force_cpu_bug(X86_BUG_SWAPGS);
if (cpu_matches(NO_MELTDOWN))
return;

Visa fil

@@ -98,6 +98,7 @@ cyrix_get_free_region(unsigned long base, unsigned long size, int replace_reg)
case 7:
if (size < 0x40)
break;
/* Else, fall through */
case 6:
case 5:
case 4:

Visa fil

@@ -17,6 +17,12 @@
*/
static u32 umwait_control_cached = UMWAIT_CTRL_VAL(100000, UMWAIT_C02_ENABLE);
/*
* Cache the original IA32_UMWAIT_CONTROL MSR value which is configured by
* hardware or BIOS before kernel boot.
*/
static u32 orig_umwait_control_cached __ro_after_init;
/*
* Serialize access to umwait_control_cached and IA32_UMWAIT_CONTROL MSR in
* the sysfs write functions.
@@ -52,6 +58,23 @@ static int umwait_cpu_online(unsigned int cpu)
return 0;
}
/*
* The CPU hotplug callback sets the control MSR to the original control
* value.
*/
static int umwait_cpu_offline(unsigned int cpu)
{
/*
* This code is protected by the CPU hotplug already and
* orig_umwait_control_cached is never changed after it caches
* the original control MSR value in umwait_init(). So there
* is no race condition here.
*/
wrmsr(MSR_IA32_UMWAIT_CONTROL, orig_umwait_control_cached, 0);
return 0;
}
/*
* On resume, restore IA32_UMWAIT_CONTROL MSR on the boot processor which
* is the only active CPU at this time. The MSR is set up on the APs via the
@@ -185,8 +208,22 @@ static int __init umwait_init(void)
if (!boot_cpu_has(X86_FEATURE_WAITPKG))
return -ENODEV;
/*
* Cache the original control MSR value before the control MSR is
* changed. This is the only place where orig_umwait_control_cached
* is modified.
*/
rdmsrl(MSR_IA32_UMWAIT_CONTROL, orig_umwait_control_cached);
ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "umwait:online",
umwait_cpu_online, NULL);
umwait_cpu_online, umwait_cpu_offline);
if (ret < 0) {
/*
* On failure, the control MSR on all CPUs has the
* original control value.
*/
return ret;
}
register_syscore_ops(&umwait_syscore_ops);

Visa fil

@@ -193,10 +193,10 @@ ENTRY(secondary_startup_64)
/* Set up %gs.
*
* The base of %gs always points to the bottom of the irqstack
* union. If the stack protector canary is enabled, it is
* located at %gs:40. Note that, on SMP, the boot cpu uses
* init data section till per cpu areas are set up.
* The base of %gs always points to fixed_percpu_data. If the
* stack protector canary is enabled, it is located at %gs:40.
* Note that, on SMP, the boot cpu uses init data section until
* the per cpu areas are set up.
*/
movl $MSR_GS_BASE,%ecx
movl initial_gs(%rip),%eax

Visa fil

@@ -827,10 +827,6 @@ int __init hpet_enable(void)
if (!hpet_cfg_working())
goto out_nohpet;
/* Validate that the counter is counting */
if (!hpet_counting())
goto out_nohpet;
/*
* Read the period and check for a sane value:
*/
@@ -896,6 +892,14 @@ int __init hpet_enable(void)
}
hpet_print_config();
/*
* Validate that the counter is counting. This needs to be done
* after sanitizing the config registers to properly deal with
* force enabled HPETs.
*/
if (!hpet_counting())
goto out_nohpet;
clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
if (id & HPET_ID_LEGSUP) {

Visa fil

@@ -308,9 +308,6 @@ static notrace void kvm_guest_apic_eoi_write(u32 reg, u32 val)
static void kvm_guest_cpu_init(void)
{
if (!kvm_para_available())
return;
if (kvm_para_has_feature(KVM_FEATURE_ASYNC_PF) && kvmapf) {
u64 pa = slow_virt_to_phys(this_cpu_ptr(&apf_reason));
@@ -625,9 +622,6 @@ static void __init kvm_guest_init(void)
{
int i;
if (!kvm_para_available())
return;
paravirt_ops_setup();
register_reboot_notifier(&kvm_pv_reboot_nb);
for (i = 0; i < KVM_TASK_SLEEP_HASHSIZE; i++)
@@ -848,8 +842,6 @@ asm(
*/
void __init kvm_spinlock_init(void)
{
if (!kvm_para_available())
return;
/* Does host kernel support KVM_FEATURE_PV_UNHALT? */
if (!kvm_para_has_feature(KVM_FEATURE_PV_UNHALT))
return;

Visa fil

@@ -201,6 +201,7 @@ static int set_segment_reg(struct task_struct *task,
case offsetof(struct user_regs_struct, ss):
if (unlikely(value == 0))
return -EIO;
/* Else, fall through */
default:
*pt_regs_access(task_pt_regs(task), offset) = value;

Visa fil

@@ -100,7 +100,7 @@ copy_stack_frame(const void __user *fp, struct stack_frame_user *frame)
{
int ret;
if (!access_ok(fp, sizeof(*frame)))
if (__range_not_ok(fp, sizeof(*frame), TASK_SIZE))
return 0;
ret = 1;

Visa fil

@@ -230,9 +230,55 @@ static const struct dmi_system_id efifb_dmi_system_table[] __initconst = {
{},
};
/*
* Some devices have a portrait LCD but advertise a landscape resolution (and
* pitch). We simply swap width and height for these devices so that we can
* correctly deal with some of them coming with multiple resolutions.
*/
static const struct dmi_system_id efifb_dmi_swap_width_height[] __initconst = {
{
/*
* Lenovo MIIX310-10ICR, only some batches have the troublesome
* 800x1280 portrait screen. Luckily the portrait version has
* its own BIOS version, so we match on that.
*/
.matches = {
DMI_EXACT_MATCH(DMI_SYS_VENDOR, "LENOVO"),
DMI_EXACT_MATCH(DMI_PRODUCT_VERSION, "MIIX 310-10ICR"),
DMI_EXACT_MATCH(DMI_BIOS_VERSION, "1HCN44WW"),
},
},
{
/* Lenovo MIIX 320-10ICR with 800x1280 portrait screen */
.matches = {
DMI_EXACT_MATCH(DMI_SYS_VENDOR, "LENOVO"),
DMI_EXACT_MATCH(DMI_PRODUCT_VERSION,
"Lenovo MIIX 320-10ICR"),
},
},
{
/* Lenovo D330 with 800x1280 or 1200x1920 portrait screen */
.matches = {
DMI_EXACT_MATCH(DMI_SYS_VENDOR, "LENOVO"),
DMI_EXACT_MATCH(DMI_PRODUCT_VERSION,
"Lenovo ideapad D330-10IGM"),
},
},
{},
};
__init void sysfb_apply_efi_quirks(void)
{
if (screen_info.orig_video_isVGA != VIDEO_TYPE_EFI ||
!(screen_info.capabilities & VIDEO_CAPABILITY_SKIP_QUIRKS))
dmi_check_system(efifb_dmi_system_table);
if (screen_info.orig_video_isVGA == VIDEO_TYPE_EFI &&
dmi_check_system(efifb_dmi_swap_width_height)) {
u16 temp = screen_info.lfb_width;
screen_info.lfb_width = screen_info.lfb_height;
screen_info.lfb_height = temp;
screen_info.lfb_linelength = 4 * screen_info.lfb_width;
}
}