sparc64: Make PAGE_OFFSET variable.

Choose PAGE_OFFSET dynamically based upon cpu type.

Original UltraSPARC-I (spitfire) chips only supported a 44-bit
virtual address space.

Newer chips (T4 and later) support 52-bit virtual addresses
and up to 47-bits of physical memory space.

Therefore we have to adjust PAGE_SIZE dynamically based upon
the capabilities of the chip.

Note that this change alone does not allow us to support > 43-bit
physical memory, to do that we need to re-arrange our page table
support.  The current encodings of the pmd_t and pgd_t pointers
restricts us to "32 + 11" == 43 bits.

This change can waste quite a bit of memory for the various tables.
In particular, a future change should work to size and allocate
kern_linear_bitmap[] and sparc64_valid_addr_bitmap[] dynamically.
This isn't easy as we really cannot take a TLB miss when accessing
kern_linear_bitmap[].  We'd have to lock it into the TLB or similar.

Signed-off-by: David S. Miller <davem@davemloft.net>
Acked-by: Bob Picco <bob.picco@oracle.com>
This commit is contained in:
David S. Miller
2013-09-20 21:50:41 -07:00
parent f998c9c0d6
commit b2d4383480
7 changed files with 139 additions and 30 deletions

View File

@@ -1557,6 +1557,96 @@ unsigned long __init find_ecache_flush_span(unsigned long size)
return ~0UL;
}
unsigned long PAGE_OFFSET;
EXPORT_SYMBOL(PAGE_OFFSET);
static void __init page_offset_shift_patch_one(unsigned int *insn, unsigned long phys_bits)
{
unsigned long final_shift;
unsigned int val = *insn;
unsigned int cnt;
/* We are patching in ilog2(max_supported_phys_address), and
* we are doing so in a manner similar to a relocation addend.
* That is, we are adding the shift value to whatever value
* is in the shift instruction count field already.
*/
cnt = (val & 0x3f);
val &= ~0x3f;
/* If we are trying to shift >= 64 bits, clear the destination
* register. This can happen when phys_bits ends up being equal
* to MAX_PHYS_ADDRESS_BITS.
*/
final_shift = (cnt + (64 - phys_bits));
if (final_shift >= 64) {
unsigned int rd = (val >> 25) & 0x1f;
val = 0x80100000 | (rd << 25);
} else {
val |= final_shift;
}
*insn = val;
__asm__ __volatile__("flush %0"
: /* no outputs */
: "r" (insn));
}
static void __init page_offset_shift_patch(unsigned long phys_bits)
{
extern unsigned int __page_offset_shift_patch;
extern unsigned int __page_offset_shift_patch_end;
unsigned int *p;
p = &__page_offset_shift_patch;
while (p < &__page_offset_shift_patch_end) {
unsigned int *insn = (unsigned int *)(unsigned long)*p;
page_offset_shift_patch_one(insn, phys_bits);
p++;
}
}
static void __init setup_page_offset(void)
{
unsigned long max_phys_bits = 40;
if (tlb_type == cheetah || tlb_type == cheetah_plus) {
max_phys_bits = 42;
} else if (tlb_type == hypervisor) {
switch (sun4v_chip_type) {
case SUN4V_CHIP_NIAGARA1:
case SUN4V_CHIP_NIAGARA2:
max_phys_bits = 39;
break;
case SUN4V_CHIP_NIAGARA3:
max_phys_bits = 43;
break;
case SUN4V_CHIP_NIAGARA4:
case SUN4V_CHIP_NIAGARA5:
case SUN4V_CHIP_SPARC64X:
default:
max_phys_bits = 47;
break;
}
}
if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
max_phys_bits);
prom_halt();
}
PAGE_OFFSET = PAGE_OFFSET_BY_BITS(max_phys_bits);
pr_info("PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
PAGE_OFFSET, max_phys_bits);
page_offset_shift_patch(max_phys_bits);
}
static void __init tsb_phys_patch(void)
{
struct tsb_ldquad_phys_patch_entry *pquad;
@@ -1763,6 +1853,8 @@ void __init paging_init(void)
unsigned long real_end, i;
int node;
setup_page_offset();
/* These build time checkes make sure that the dcache_dirty_cpu()
* page->flags usage will work.
*