Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Conflicts: drivers/net/caif/caif_hsi.c drivers/net/usb/qmi_wwan.c The qmi_wwan merge was trivial. The caif_hsi.c, on the other hand, was not. It's a conflict between1c385f1fdf
("caif-hsi: Replace platform device with ops structure.") in the net-next tree and commit39abbaef19
("caif-hsi: Postpone init of HIS until open()") in the net tree. I did my best with that one and will ask Sjur to check it out. Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
@@ -255,12 +255,17 @@ int cgroup_lock_is_held(void)
|
||||
|
||||
EXPORT_SYMBOL_GPL(cgroup_lock_is_held);
|
||||
|
||||
static int css_unbias_refcnt(int refcnt)
|
||||
{
|
||||
return refcnt >= 0 ? refcnt : refcnt - CSS_DEACT_BIAS;
|
||||
}
|
||||
|
||||
/* the current nr of refs, always >= 0 whether @css is deactivated or not */
|
||||
static int css_refcnt(struct cgroup_subsys_state *css)
|
||||
{
|
||||
int v = atomic_read(&css->refcnt);
|
||||
|
||||
return v >= 0 ? v : v - CSS_DEACT_BIAS;
|
||||
return css_unbias_refcnt(v);
|
||||
}
|
||||
|
||||
/* convenient tests for these bits */
|
||||
@@ -4982,10 +4987,12 @@ EXPORT_SYMBOL_GPL(__css_tryget);
|
||||
void __css_put(struct cgroup_subsys_state *css)
|
||||
{
|
||||
struct cgroup *cgrp = css->cgroup;
|
||||
int v;
|
||||
|
||||
rcu_read_lock();
|
||||
atomic_dec(&css->refcnt);
|
||||
switch (css_refcnt(css)) {
|
||||
v = css_unbias_refcnt(atomic_dec_return(&css->refcnt));
|
||||
|
||||
switch (v) {
|
||||
case 1:
|
||||
if (notify_on_release(cgrp)) {
|
||||
set_bit(CGRP_RELEASABLE, &cgrp->flags);
|
||||
|
@@ -253,9 +253,9 @@ perf_cgroup_match(struct perf_event *event)
|
||||
return !event->cgrp || event->cgrp == cpuctx->cgrp;
|
||||
}
|
||||
|
||||
static inline void perf_get_cgroup(struct perf_event *event)
|
||||
static inline bool perf_tryget_cgroup(struct perf_event *event)
|
||||
{
|
||||
css_get(&event->cgrp->css);
|
||||
return css_tryget(&event->cgrp->css);
|
||||
}
|
||||
|
||||
static inline void perf_put_cgroup(struct perf_event *event)
|
||||
@@ -484,7 +484,11 @@ static inline int perf_cgroup_connect(int fd, struct perf_event *event,
|
||||
event->cgrp = cgrp;
|
||||
|
||||
/* must be done before we fput() the file */
|
||||
perf_get_cgroup(event);
|
||||
if (!perf_tryget_cgroup(event)) {
|
||||
event->cgrp = NULL;
|
||||
ret = -ENOENT;
|
||||
goto out;
|
||||
}
|
||||
|
||||
/*
|
||||
* all events in a group must monitor
|
||||
|
@@ -72,6 +72,18 @@ static void __unhash_process(struct task_struct *p, bool group_dead)
|
||||
list_del_rcu(&p->tasks);
|
||||
list_del_init(&p->sibling);
|
||||
__this_cpu_dec(process_counts);
|
||||
/*
|
||||
* If we are the last child process in a pid namespace to be
|
||||
* reaped, notify the reaper sleeping zap_pid_ns_processes().
|
||||
*/
|
||||
if (IS_ENABLED(CONFIG_PID_NS)) {
|
||||
struct task_struct *parent = p->real_parent;
|
||||
|
||||
if ((task_active_pid_ns(parent)->child_reaper == parent) &&
|
||||
list_empty(&parent->children) &&
|
||||
(parent->flags & PF_EXITING))
|
||||
wake_up_process(parent);
|
||||
}
|
||||
}
|
||||
list_del_rcu(&p->thread_group);
|
||||
}
|
||||
@@ -643,6 +655,7 @@ static void exit_mm(struct task_struct * tsk)
|
||||
mm_release(tsk, mm);
|
||||
if (!mm)
|
||||
return;
|
||||
sync_mm_rss(mm);
|
||||
/*
|
||||
* Serialize with any possible pending coredump.
|
||||
* We must hold mmap_sem around checking core_state
|
||||
@@ -719,12 +732,6 @@ static struct task_struct *find_new_reaper(struct task_struct *father)
|
||||
|
||||
zap_pid_ns_processes(pid_ns);
|
||||
write_lock_irq(&tasklist_lock);
|
||||
/*
|
||||
* We can not clear ->child_reaper or leave it alone.
|
||||
* There may by stealth EXIT_DEAD tasks on ->children,
|
||||
* forget_original_parent() must move them somewhere.
|
||||
*/
|
||||
pid_ns->child_reaper = init_pid_ns.child_reaper;
|
||||
} else if (father->signal->has_child_subreaper) {
|
||||
struct task_struct *reaper;
|
||||
|
||||
|
@@ -27,7 +27,7 @@
|
||||
#define PANIC_TIMER_STEP 100
|
||||
#define PANIC_BLINK_SPD 18
|
||||
|
||||
int panic_on_oops;
|
||||
int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
|
||||
static unsigned long tainted_mask;
|
||||
static int pause_on_oops;
|
||||
static int pause_on_oops_flag;
|
||||
@@ -108,8 +108,6 @@ void panic(const char *fmt, ...)
|
||||
*/
|
||||
crash_kexec(NULL);
|
||||
|
||||
kmsg_dump(KMSG_DUMP_PANIC);
|
||||
|
||||
/*
|
||||
* Note smp_send_stop is the usual smp shutdown function, which
|
||||
* unfortunately means it may not be hardened to work in a panic
|
||||
@@ -117,6 +115,8 @@ void panic(const char *fmt, ...)
|
||||
*/
|
||||
smp_send_stop();
|
||||
|
||||
kmsg_dump(KMSG_DUMP_PANIC);
|
||||
|
||||
atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
|
||||
|
||||
bust_spinlocks(0);
|
||||
|
@@ -184,11 +184,31 @@ void zap_pid_ns_processes(struct pid_namespace *pid_ns)
|
||||
}
|
||||
read_unlock(&tasklist_lock);
|
||||
|
||||
/* Firstly reap the EXIT_ZOMBIE children we may have. */
|
||||
do {
|
||||
clear_thread_flag(TIF_SIGPENDING);
|
||||
rc = sys_wait4(-1, NULL, __WALL, NULL);
|
||||
} while (rc != -ECHILD);
|
||||
|
||||
/*
|
||||
* sys_wait4() above can't reap the TASK_DEAD children.
|
||||
* Make sure they all go away, see __unhash_process().
|
||||
*/
|
||||
for (;;) {
|
||||
bool need_wait = false;
|
||||
|
||||
read_lock(&tasklist_lock);
|
||||
if (!list_empty(¤t->children)) {
|
||||
__set_current_state(TASK_UNINTERRUPTIBLE);
|
||||
need_wait = true;
|
||||
}
|
||||
read_unlock(&tasklist_lock);
|
||||
|
||||
if (!need_wait)
|
||||
break;
|
||||
schedule();
|
||||
}
|
||||
|
||||
if (pid_ns->reboot)
|
||||
current->signal->group_exit_code = pid_ns->reboot;
|
||||
|
||||
|
255
kernel/printk.c
255
kernel/printk.c
@@ -227,10 +227,10 @@ static u32 clear_idx;
|
||||
#define LOG_LINE_MAX 1024
|
||||
|
||||
/* record buffer */
|
||||
#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
|
||||
#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
|
||||
#define LOG_ALIGN 4
|
||||
#else
|
||||
#define LOG_ALIGN 8
|
||||
#define LOG_ALIGN __alignof__(struct log)
|
||||
#endif
|
||||
#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
|
||||
static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
|
||||
@@ -414,7 +414,9 @@ static ssize_t devkmsg_read(struct file *file, char __user *buf,
|
||||
if (!user)
|
||||
return -EBADF;
|
||||
|
||||
mutex_lock(&user->lock);
|
||||
ret = mutex_lock_interruptible(&user->lock);
|
||||
if (ret)
|
||||
return ret;
|
||||
raw_spin_lock(&logbuf_lock);
|
||||
while (user->seq == log_next_seq) {
|
||||
if (file->f_flags & O_NONBLOCK) {
|
||||
@@ -878,7 +880,9 @@ static int syslog_print(char __user *buf, int size)
|
||||
syslog_seq++;
|
||||
raw_spin_unlock_irq(&logbuf_lock);
|
||||
|
||||
if (len > 0 && copy_to_user(buf, text, len))
|
||||
if (len > size)
|
||||
len = -EINVAL;
|
||||
else if (len > 0 && copy_to_user(buf, text, len))
|
||||
len = -EFAULT;
|
||||
|
||||
kfree(text);
|
||||
@@ -909,7 +913,7 @@ static int syslog_print_all(char __user *buf, int size, bool clear)
|
||||
/*
|
||||
* Find first record that fits, including all following records,
|
||||
* into the user-provided buffer for this dump.
|
||||
*/
|
||||
*/
|
||||
seq = clear_seq;
|
||||
idx = clear_idx;
|
||||
while (seq < log_next_seq) {
|
||||
@@ -919,6 +923,8 @@ static int syslog_print_all(char __user *buf, int size, bool clear)
|
||||
idx = log_next(idx);
|
||||
seq++;
|
||||
}
|
||||
|
||||
/* move first record forward until length fits into the buffer */
|
||||
seq = clear_seq;
|
||||
idx = clear_idx;
|
||||
while (len > size && seq < log_next_seq) {
|
||||
@@ -929,7 +935,7 @@ static int syslog_print_all(char __user *buf, int size, bool clear)
|
||||
seq++;
|
||||
}
|
||||
|
||||
/* last message in this dump */
|
||||
/* last message fitting into this dump */
|
||||
next_seq = log_next_seq;
|
||||
|
||||
len = 0;
|
||||
@@ -974,6 +980,7 @@ int do_syslog(int type, char __user *buf, int len, bool from_file)
|
||||
{
|
||||
bool clear = false;
|
||||
static int saved_console_loglevel = -1;
|
||||
static DEFINE_MUTEX(syslog_mutex);
|
||||
int error;
|
||||
|
||||
error = check_syslog_permissions(type, from_file);
|
||||
@@ -1000,11 +1007,17 @@ int do_syslog(int type, char __user *buf, int len, bool from_file)
|
||||
error = -EFAULT;
|
||||
goto out;
|
||||
}
|
||||
error = wait_event_interruptible(log_wait,
|
||||
syslog_seq != log_next_seq);
|
||||
error = mutex_lock_interruptible(&syslog_mutex);
|
||||
if (error)
|
||||
goto out;
|
||||
error = wait_event_interruptible(log_wait,
|
||||
syslog_seq != log_next_seq);
|
||||
if (error) {
|
||||
mutex_unlock(&syslog_mutex);
|
||||
goto out;
|
||||
}
|
||||
error = syslog_print(buf, len);
|
||||
mutex_unlock(&syslog_mutex);
|
||||
break;
|
||||
/* Read/clear last kernel messages */
|
||||
case SYSLOG_ACTION_READ_CLEAR:
|
||||
@@ -2300,48 +2313,210 @@ module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
|
||||
* kmsg_dump - dump kernel log to kernel message dumpers.
|
||||
* @reason: the reason (oops, panic etc) for dumping
|
||||
*
|
||||
* Iterate through each of the dump devices and call the oops/panic
|
||||
* callbacks with the log buffer.
|
||||
* Call each of the registered dumper's dump() callback, which can
|
||||
* retrieve the kmsg records with kmsg_dump_get_line() or
|
||||
* kmsg_dump_get_buffer().
|
||||
*/
|
||||
void kmsg_dump(enum kmsg_dump_reason reason)
|
||||
{
|
||||
u64 idx;
|
||||
struct kmsg_dumper *dumper;
|
||||
const char *s1, *s2;
|
||||
unsigned long l1, l2;
|
||||
unsigned long flags;
|
||||
|
||||
if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
|
||||
return;
|
||||
|
||||
/* Theoretically, the log could move on after we do this, but
|
||||
there's not a lot we can do about that. The new messages
|
||||
will overwrite the start of what we dump. */
|
||||
|
||||
raw_spin_lock_irqsave(&logbuf_lock, flags);
|
||||
if (syslog_seq < log_first_seq)
|
||||
idx = syslog_idx;
|
||||
else
|
||||
idx = log_first_idx;
|
||||
|
||||
if (idx > log_next_idx) {
|
||||
s1 = log_buf;
|
||||
l1 = log_next_idx;
|
||||
|
||||
s2 = log_buf + idx;
|
||||
l2 = log_buf_len - idx;
|
||||
} else {
|
||||
s1 = "";
|
||||
l1 = 0;
|
||||
|
||||
s2 = log_buf + idx;
|
||||
l2 = log_next_idx - idx;
|
||||
}
|
||||
raw_spin_unlock_irqrestore(&logbuf_lock, flags);
|
||||
|
||||
rcu_read_lock();
|
||||
list_for_each_entry_rcu(dumper, &dump_list, list)
|
||||
dumper->dump(dumper, reason, s1, l1, s2, l2);
|
||||
list_for_each_entry_rcu(dumper, &dump_list, list) {
|
||||
if (dumper->max_reason && reason > dumper->max_reason)
|
||||
continue;
|
||||
|
||||
/* initialize iterator with data about the stored records */
|
||||
dumper->active = true;
|
||||
|
||||
raw_spin_lock_irqsave(&logbuf_lock, flags);
|
||||
dumper->cur_seq = clear_seq;
|
||||
dumper->cur_idx = clear_idx;
|
||||
dumper->next_seq = log_next_seq;
|
||||
dumper->next_idx = log_next_idx;
|
||||
raw_spin_unlock_irqrestore(&logbuf_lock, flags);
|
||||
|
||||
/* invoke dumper which will iterate over records */
|
||||
dumper->dump(dumper, reason);
|
||||
|
||||
/* reset iterator */
|
||||
dumper->active = false;
|
||||
}
|
||||
rcu_read_unlock();
|
||||
}
|
||||
|
||||
/**
|
||||
* kmsg_dump_get_line - retrieve one kmsg log line
|
||||
* @dumper: registered kmsg dumper
|
||||
* @syslog: include the "<4>" prefixes
|
||||
* @line: buffer to copy the line to
|
||||
* @size: maximum size of the buffer
|
||||
* @len: length of line placed into buffer
|
||||
*
|
||||
* Start at the beginning of the kmsg buffer, with the oldest kmsg
|
||||
* record, and copy one record into the provided buffer.
|
||||
*
|
||||
* Consecutive calls will return the next available record moving
|
||||
* towards the end of the buffer with the youngest messages.
|
||||
*
|
||||
* A return value of FALSE indicates that there are no more records to
|
||||
* read.
|
||||
*/
|
||||
bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
|
||||
char *line, size_t size, size_t *len)
|
||||
{
|
||||
unsigned long flags;
|
||||
struct log *msg;
|
||||
size_t l = 0;
|
||||
bool ret = false;
|
||||
|
||||
if (!dumper->active)
|
||||
goto out;
|
||||
|
||||
raw_spin_lock_irqsave(&logbuf_lock, flags);
|
||||
if (dumper->cur_seq < log_first_seq) {
|
||||
/* messages are gone, move to first available one */
|
||||
dumper->cur_seq = log_first_seq;
|
||||
dumper->cur_idx = log_first_idx;
|
||||
}
|
||||
|
||||
/* last entry */
|
||||
if (dumper->cur_seq >= log_next_seq) {
|
||||
raw_spin_unlock_irqrestore(&logbuf_lock, flags);
|
||||
goto out;
|
||||
}
|
||||
|
||||
msg = log_from_idx(dumper->cur_idx);
|
||||
l = msg_print_text(msg, syslog,
|
||||
line, size);
|
||||
|
||||
dumper->cur_idx = log_next(dumper->cur_idx);
|
||||
dumper->cur_seq++;
|
||||
ret = true;
|
||||
raw_spin_unlock_irqrestore(&logbuf_lock, flags);
|
||||
out:
|
||||
if (len)
|
||||
*len = l;
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
|
||||
|
||||
/**
|
||||
* kmsg_dump_get_buffer - copy kmsg log lines
|
||||
* @dumper: registered kmsg dumper
|
||||
* @syslog: include the "<4>" prefixes
|
||||
* @line: buffer to copy the line to
|
||||
* @size: maximum size of the buffer
|
||||
* @len: length of line placed into buffer
|
||||
*
|
||||
* Start at the end of the kmsg buffer and fill the provided buffer
|
||||
* with as many of the the *youngest* kmsg records that fit into it.
|
||||
* If the buffer is large enough, all available kmsg records will be
|
||||
* copied with a single call.
|
||||
*
|
||||
* Consecutive calls will fill the buffer with the next block of
|
||||
* available older records, not including the earlier retrieved ones.
|
||||
*
|
||||
* A return value of FALSE indicates that there are no more records to
|
||||
* read.
|
||||
*/
|
||||
bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
|
||||
char *buf, size_t size, size_t *len)
|
||||
{
|
||||
unsigned long flags;
|
||||
u64 seq;
|
||||
u32 idx;
|
||||
u64 next_seq;
|
||||
u32 next_idx;
|
||||
size_t l = 0;
|
||||
bool ret = false;
|
||||
|
||||
if (!dumper->active)
|
||||
goto out;
|
||||
|
||||
raw_spin_lock_irqsave(&logbuf_lock, flags);
|
||||
if (dumper->cur_seq < log_first_seq) {
|
||||
/* messages are gone, move to first available one */
|
||||
dumper->cur_seq = log_first_seq;
|
||||
dumper->cur_idx = log_first_idx;
|
||||
}
|
||||
|
||||
/* last entry */
|
||||
if (dumper->cur_seq >= dumper->next_seq) {
|
||||
raw_spin_unlock_irqrestore(&logbuf_lock, flags);
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* calculate length of entire buffer */
|
||||
seq = dumper->cur_seq;
|
||||
idx = dumper->cur_idx;
|
||||
while (seq < dumper->next_seq) {
|
||||
struct log *msg = log_from_idx(idx);
|
||||
|
||||
l += msg_print_text(msg, true, NULL, 0);
|
||||
idx = log_next(idx);
|
||||
seq++;
|
||||
}
|
||||
|
||||
/* move first record forward until length fits into the buffer */
|
||||
seq = dumper->cur_seq;
|
||||
idx = dumper->cur_idx;
|
||||
while (l > size && seq < dumper->next_seq) {
|
||||
struct log *msg = log_from_idx(idx);
|
||||
|
||||
l -= msg_print_text(msg, true, NULL, 0);
|
||||
idx = log_next(idx);
|
||||
seq++;
|
||||
}
|
||||
|
||||
/* last message in next interation */
|
||||
next_seq = seq;
|
||||
next_idx = idx;
|
||||
|
||||
l = 0;
|
||||
while (seq < dumper->next_seq) {
|
||||
struct log *msg = log_from_idx(idx);
|
||||
|
||||
l += msg_print_text(msg, syslog,
|
||||
buf + l, size - l);
|
||||
|
||||
idx = log_next(idx);
|
||||
seq++;
|
||||
}
|
||||
|
||||
dumper->next_seq = next_seq;
|
||||
dumper->next_idx = next_idx;
|
||||
ret = true;
|
||||
raw_spin_unlock_irqrestore(&logbuf_lock, flags);
|
||||
out:
|
||||
if (len)
|
||||
*len = l;
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
|
||||
|
||||
/**
|
||||
* kmsg_dump_rewind - reset the interator
|
||||
* @dumper: registered kmsg dumper
|
||||
*
|
||||
* Reset the dumper's iterator so that kmsg_dump_get_line() and
|
||||
* kmsg_dump_get_buffer() can be called again and used multiple
|
||||
* times within the same dumper.dump() callback.
|
||||
*/
|
||||
void kmsg_dump_rewind(struct kmsg_dumper *dumper)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
raw_spin_lock_irqsave(&logbuf_lock, flags);
|
||||
dumper->cur_seq = clear_seq;
|
||||
dumper->cur_idx = clear_idx;
|
||||
dumper->next_seq = log_next_seq;
|
||||
dumper->next_idx = log_next_idx;
|
||||
raw_spin_unlock_irqrestore(&logbuf_lock, flags);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
|
||||
#endif
|
||||
|
@@ -1397,6 +1397,8 @@ static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
|
||||
rdp->qlen_lazy += rsp->qlen_lazy;
|
||||
rdp->qlen += rsp->qlen;
|
||||
rdp->n_cbs_adopted += rsp->qlen;
|
||||
if (rsp->qlen_lazy != rsp->qlen)
|
||||
rcu_idle_count_callbacks_posted();
|
||||
rsp->qlen_lazy = 0;
|
||||
rsp->qlen = 0;
|
||||
|
||||
|
@@ -84,6 +84,20 @@ struct rcu_dynticks {
|
||||
/* Process level is worth LLONG_MAX/2. */
|
||||
int dynticks_nmi_nesting; /* Track NMI nesting level. */
|
||||
atomic_t dynticks; /* Even value for idle, else odd. */
|
||||
#ifdef CONFIG_RCU_FAST_NO_HZ
|
||||
int dyntick_drain; /* Prepare-for-idle state variable. */
|
||||
unsigned long dyntick_holdoff;
|
||||
/* No retries for the jiffy of failure. */
|
||||
struct timer_list idle_gp_timer;
|
||||
/* Wake up CPU sleeping with callbacks. */
|
||||
unsigned long idle_gp_timer_expires;
|
||||
/* When to wake up CPU (for repost). */
|
||||
bool idle_first_pass; /* First pass of attempt to go idle? */
|
||||
unsigned long nonlazy_posted;
|
||||
/* # times non-lazy CBs posted to CPU. */
|
||||
unsigned long nonlazy_posted_snap;
|
||||
/* idle-period nonlazy_posted snapshot. */
|
||||
#endif /* #ifdef CONFIG_RCU_FAST_NO_HZ */
|
||||
};
|
||||
|
||||
/* RCU's kthread states for tracing. */
|
||||
|
@@ -1886,8 +1886,9 @@ static void __cpuinit rcu_prepare_kthreads(int cpu)
|
||||
* Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
|
||||
* any flavor of RCU.
|
||||
*/
|
||||
int rcu_needs_cpu(int cpu)
|
||||
int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
|
||||
{
|
||||
*delta_jiffies = ULONG_MAX;
|
||||
return rcu_cpu_has_callbacks(cpu);
|
||||
}
|
||||
|
||||
@@ -1962,41 +1963,6 @@ static void rcu_idle_count_callbacks_posted(void)
|
||||
#define RCU_IDLE_GP_DELAY 6 /* Roughly one grace period. */
|
||||
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
|
||||
|
||||
/* Loop counter for rcu_prepare_for_idle(). */
|
||||
static DEFINE_PER_CPU(int, rcu_dyntick_drain);
|
||||
/* If rcu_dyntick_holdoff==jiffies, don't try to enter dyntick-idle mode. */
|
||||
static DEFINE_PER_CPU(unsigned long, rcu_dyntick_holdoff);
|
||||
/* Timer to awaken the CPU if it enters dyntick-idle mode with callbacks. */
|
||||
static DEFINE_PER_CPU(struct timer_list, rcu_idle_gp_timer);
|
||||
/* Scheduled expiry time for rcu_idle_gp_timer to allow reposting. */
|
||||
static DEFINE_PER_CPU(unsigned long, rcu_idle_gp_timer_expires);
|
||||
/* Enable special processing on first attempt to enter dyntick-idle mode. */
|
||||
static DEFINE_PER_CPU(bool, rcu_idle_first_pass);
|
||||
/* Running count of non-lazy callbacks posted, never decremented. */
|
||||
static DEFINE_PER_CPU(unsigned long, rcu_nonlazy_posted);
|
||||
/* Snapshot of rcu_nonlazy_posted to detect meaningful exits from idle. */
|
||||
static DEFINE_PER_CPU(unsigned long, rcu_nonlazy_posted_snap);
|
||||
|
||||
/*
|
||||
* Allow the CPU to enter dyntick-idle mode if either: (1) There are no
|
||||
* callbacks on this CPU, (2) this CPU has not yet attempted to enter
|
||||
* dyntick-idle mode, or (3) this CPU is in the process of attempting to
|
||||
* enter dyntick-idle mode. Otherwise, if we have recently tried and failed
|
||||
* to enter dyntick-idle mode, we refuse to try to enter it. After all,
|
||||
* it is better to incur scheduling-clock interrupts than to spin
|
||||
* continuously for the same time duration!
|
||||
*/
|
||||
int rcu_needs_cpu(int cpu)
|
||||
{
|
||||
/* Flag a new idle sojourn to the idle-entry state machine. */
|
||||
per_cpu(rcu_idle_first_pass, cpu) = 1;
|
||||
/* If no callbacks, RCU doesn't need the CPU. */
|
||||
if (!rcu_cpu_has_callbacks(cpu))
|
||||
return 0;
|
||||
/* Otherwise, RCU needs the CPU only if it recently tried and failed. */
|
||||
return per_cpu(rcu_dyntick_holdoff, cpu) == jiffies;
|
||||
}
|
||||
|
||||
/*
|
||||
* Does the specified flavor of RCU have non-lazy callbacks pending on
|
||||
* the specified CPU? Both RCU flavor and CPU are specified by the
|
||||
@@ -2039,6 +2005,47 @@ static bool rcu_cpu_has_nonlazy_callbacks(int cpu)
|
||||
rcu_preempt_cpu_has_nonlazy_callbacks(cpu);
|
||||
}
|
||||
|
||||
/*
|
||||
* Allow the CPU to enter dyntick-idle mode if either: (1) There are no
|
||||
* callbacks on this CPU, (2) this CPU has not yet attempted to enter
|
||||
* dyntick-idle mode, or (3) this CPU is in the process of attempting to
|
||||
* enter dyntick-idle mode. Otherwise, if we have recently tried and failed
|
||||
* to enter dyntick-idle mode, we refuse to try to enter it. After all,
|
||||
* it is better to incur scheduling-clock interrupts than to spin
|
||||
* continuously for the same time duration!
|
||||
*
|
||||
* The delta_jiffies argument is used to store the time when RCU is
|
||||
* going to need the CPU again if it still has callbacks. The reason
|
||||
* for this is that rcu_prepare_for_idle() might need to post a timer,
|
||||
* but if so, it will do so after tick_nohz_stop_sched_tick() has set
|
||||
* the wakeup time for this CPU. This means that RCU's timer can be
|
||||
* delayed until the wakeup time, which defeats the purpose of posting
|
||||
* a timer.
|
||||
*/
|
||||
int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
|
||||
{
|
||||
struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
|
||||
|
||||
/* Flag a new idle sojourn to the idle-entry state machine. */
|
||||
rdtp->idle_first_pass = 1;
|
||||
/* If no callbacks, RCU doesn't need the CPU. */
|
||||
if (!rcu_cpu_has_callbacks(cpu)) {
|
||||
*delta_jiffies = ULONG_MAX;
|
||||
return 0;
|
||||
}
|
||||
if (rdtp->dyntick_holdoff == jiffies) {
|
||||
/* RCU recently tried and failed, so don't try again. */
|
||||
*delta_jiffies = 1;
|
||||
return 1;
|
||||
}
|
||||
/* Set up for the possibility that RCU will post a timer. */
|
||||
if (rcu_cpu_has_nonlazy_callbacks(cpu))
|
||||
*delta_jiffies = RCU_IDLE_GP_DELAY;
|
||||
else
|
||||
*delta_jiffies = RCU_IDLE_LAZY_GP_DELAY;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Handler for smp_call_function_single(). The only point of this
|
||||
* handler is to wake the CPU up, so the handler does only tracing.
|
||||
@@ -2075,21 +2082,24 @@ static void rcu_idle_gp_timer_func(unsigned long cpu_in)
|
||||
*/
|
||||
static void rcu_prepare_for_idle_init(int cpu)
|
||||
{
|
||||
per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
|
||||
setup_timer(&per_cpu(rcu_idle_gp_timer, cpu),
|
||||
rcu_idle_gp_timer_func, cpu);
|
||||
per_cpu(rcu_idle_gp_timer_expires, cpu) = jiffies - 1;
|
||||
per_cpu(rcu_idle_first_pass, cpu) = 1;
|
||||
struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
|
||||
|
||||
rdtp->dyntick_holdoff = jiffies - 1;
|
||||
setup_timer(&rdtp->idle_gp_timer, rcu_idle_gp_timer_func, cpu);
|
||||
rdtp->idle_gp_timer_expires = jiffies - 1;
|
||||
rdtp->idle_first_pass = 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Clean up for exit from idle. Because we are exiting from idle, there
|
||||
* is no longer any point to rcu_idle_gp_timer, so cancel it. This will
|
||||
* is no longer any point to ->idle_gp_timer, so cancel it. This will
|
||||
* do nothing if this timer is not active, so just cancel it unconditionally.
|
||||
*/
|
||||
static void rcu_cleanup_after_idle(int cpu)
|
||||
{
|
||||
del_timer(&per_cpu(rcu_idle_gp_timer, cpu));
|
||||
struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
|
||||
|
||||
del_timer(&rdtp->idle_gp_timer);
|
||||
trace_rcu_prep_idle("Cleanup after idle");
|
||||
}
|
||||
|
||||
@@ -2108,42 +2118,41 @@ static void rcu_cleanup_after_idle(int cpu)
|
||||
* Because it is not legal to invoke rcu_process_callbacks() with irqs
|
||||
* disabled, we do one pass of force_quiescent_state(), then do a
|
||||
* invoke_rcu_core() to cause rcu_process_callbacks() to be invoked
|
||||
* later. The per-cpu rcu_dyntick_drain variable controls the sequencing.
|
||||
* later. The ->dyntick_drain field controls the sequencing.
|
||||
*
|
||||
* The caller must have disabled interrupts.
|
||||
*/
|
||||
static void rcu_prepare_for_idle(int cpu)
|
||||
{
|
||||
struct timer_list *tp;
|
||||
struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
|
||||
|
||||
/*
|
||||
* If this is an idle re-entry, for example, due to use of
|
||||
* RCU_NONIDLE() or the new idle-loop tracing API within the idle
|
||||
* loop, then don't take any state-machine actions, unless the
|
||||
* momentary exit from idle queued additional non-lazy callbacks.
|
||||
* Instead, repost the rcu_idle_gp_timer if this CPU has callbacks
|
||||
* Instead, repost the ->idle_gp_timer if this CPU has callbacks
|
||||
* pending.
|
||||
*/
|
||||
if (!per_cpu(rcu_idle_first_pass, cpu) &&
|
||||
(per_cpu(rcu_nonlazy_posted, cpu) ==
|
||||
per_cpu(rcu_nonlazy_posted_snap, cpu))) {
|
||||
if (!rdtp->idle_first_pass &&
|
||||
(rdtp->nonlazy_posted == rdtp->nonlazy_posted_snap)) {
|
||||
if (rcu_cpu_has_callbacks(cpu)) {
|
||||
tp = &per_cpu(rcu_idle_gp_timer, cpu);
|
||||
mod_timer_pinned(tp, per_cpu(rcu_idle_gp_timer_expires, cpu));
|
||||
tp = &rdtp->idle_gp_timer;
|
||||
mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
|
||||
}
|
||||
return;
|
||||
}
|
||||
per_cpu(rcu_idle_first_pass, cpu) = 0;
|
||||
per_cpu(rcu_nonlazy_posted_snap, cpu) =
|
||||
per_cpu(rcu_nonlazy_posted, cpu) - 1;
|
||||
rdtp->idle_first_pass = 0;
|
||||
rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted - 1;
|
||||
|
||||
/*
|
||||
* If there are no callbacks on this CPU, enter dyntick-idle mode.
|
||||
* Also reset state to avoid prejudicing later attempts.
|
||||
*/
|
||||
if (!rcu_cpu_has_callbacks(cpu)) {
|
||||
per_cpu(rcu_dyntick_holdoff, cpu) = jiffies - 1;
|
||||
per_cpu(rcu_dyntick_drain, cpu) = 0;
|
||||
rdtp->dyntick_holdoff = jiffies - 1;
|
||||
rdtp->dyntick_drain = 0;
|
||||
trace_rcu_prep_idle("No callbacks");
|
||||
return;
|
||||
}
|
||||
@@ -2152,36 +2161,37 @@ static void rcu_prepare_for_idle(int cpu)
|
||||
* If in holdoff mode, just return. We will presumably have
|
||||
* refrained from disabling the scheduling-clock tick.
|
||||
*/
|
||||
if (per_cpu(rcu_dyntick_holdoff, cpu) == jiffies) {
|
||||
if (rdtp->dyntick_holdoff == jiffies) {
|
||||
trace_rcu_prep_idle("In holdoff");
|
||||
return;
|
||||
}
|
||||
|
||||
/* Check and update the rcu_dyntick_drain sequencing. */
|
||||
if (per_cpu(rcu_dyntick_drain, cpu) <= 0) {
|
||||
/* Check and update the ->dyntick_drain sequencing. */
|
||||
if (rdtp->dyntick_drain <= 0) {
|
||||
/* First time through, initialize the counter. */
|
||||
per_cpu(rcu_dyntick_drain, cpu) = RCU_IDLE_FLUSHES;
|
||||
} else if (per_cpu(rcu_dyntick_drain, cpu) <= RCU_IDLE_OPT_FLUSHES &&
|
||||
rdtp->dyntick_drain = RCU_IDLE_FLUSHES;
|
||||
} else if (rdtp->dyntick_drain <= RCU_IDLE_OPT_FLUSHES &&
|
||||
!rcu_pending(cpu) &&
|
||||
!local_softirq_pending()) {
|
||||
/* Can we go dyntick-idle despite still having callbacks? */
|
||||
trace_rcu_prep_idle("Dyntick with callbacks");
|
||||
per_cpu(rcu_dyntick_drain, cpu) = 0;
|
||||
per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
|
||||
if (rcu_cpu_has_nonlazy_callbacks(cpu))
|
||||
per_cpu(rcu_idle_gp_timer_expires, cpu) =
|
||||
rdtp->dyntick_drain = 0;
|
||||
rdtp->dyntick_holdoff = jiffies;
|
||||
if (rcu_cpu_has_nonlazy_callbacks(cpu)) {
|
||||
trace_rcu_prep_idle("Dyntick with callbacks");
|
||||
rdtp->idle_gp_timer_expires =
|
||||
jiffies + RCU_IDLE_GP_DELAY;
|
||||
else
|
||||
per_cpu(rcu_idle_gp_timer_expires, cpu) =
|
||||
} else {
|
||||
rdtp->idle_gp_timer_expires =
|
||||
jiffies + RCU_IDLE_LAZY_GP_DELAY;
|
||||
tp = &per_cpu(rcu_idle_gp_timer, cpu);
|
||||
mod_timer_pinned(tp, per_cpu(rcu_idle_gp_timer_expires, cpu));
|
||||
per_cpu(rcu_nonlazy_posted_snap, cpu) =
|
||||
per_cpu(rcu_nonlazy_posted, cpu);
|
||||
trace_rcu_prep_idle("Dyntick with lazy callbacks");
|
||||
}
|
||||
tp = &rdtp->idle_gp_timer;
|
||||
mod_timer_pinned(tp, rdtp->idle_gp_timer_expires);
|
||||
rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
|
||||
return; /* Nothing more to do immediately. */
|
||||
} else if (--per_cpu(rcu_dyntick_drain, cpu) <= 0) {
|
||||
} else if (--(rdtp->dyntick_drain) <= 0) {
|
||||
/* We have hit the limit, so time to give up. */
|
||||
per_cpu(rcu_dyntick_holdoff, cpu) = jiffies;
|
||||
rdtp->dyntick_holdoff = jiffies;
|
||||
trace_rcu_prep_idle("Begin holdoff");
|
||||
invoke_rcu_core(); /* Force the CPU out of dyntick-idle. */
|
||||
return;
|
||||
@@ -2227,7 +2237,7 @@ static void rcu_prepare_for_idle(int cpu)
|
||||
*/
|
||||
static void rcu_idle_count_callbacks_posted(void)
|
||||
{
|
||||
__this_cpu_add(rcu_nonlazy_posted, 1);
|
||||
__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
|
||||
}
|
||||
|
||||
#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
|
||||
@@ -2238,11 +2248,12 @@ static void rcu_idle_count_callbacks_posted(void)
|
||||
|
||||
static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
|
||||
{
|
||||
struct timer_list *tltp = &per_cpu(rcu_idle_gp_timer, cpu);
|
||||
struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
|
||||
struct timer_list *tltp = &rdtp->idle_gp_timer;
|
||||
|
||||
sprintf(cp, "drain=%d %c timer=%lu",
|
||||
per_cpu(rcu_dyntick_drain, cpu),
|
||||
per_cpu(rcu_dyntick_holdoff, cpu) == jiffies ? 'H' : '.',
|
||||
rdtp->dyntick_drain,
|
||||
rdtp->dyntick_holdoff == jiffies ? 'H' : '.',
|
||||
timer_pending(tltp) ? tltp->expires - jiffies : -1);
|
||||
}
|
||||
|
||||
|
@@ -2127,9 +2127,6 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
|
||||
else
|
||||
return -EINVAL;
|
||||
break;
|
||||
case PR_GET_TID_ADDRESS:
|
||||
error = prctl_get_tid_address(me, (int __user **)arg2);
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
@@ -2147,6 +2144,9 @@ SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
|
||||
case PR_SET_MM:
|
||||
error = prctl_set_mm(arg2, arg3, arg4, arg5);
|
||||
break;
|
||||
case PR_GET_TID_ADDRESS:
|
||||
error = prctl_get_tid_address(me, (int __user **)arg2);
|
||||
break;
|
||||
case PR_SET_CHILD_SUBREAPER:
|
||||
me->signal->is_child_subreaper = !!arg2;
|
||||
error = 0;
|
||||
|
@@ -274,6 +274,7 @@ EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
|
||||
static void tick_nohz_stop_sched_tick(struct tick_sched *ts)
|
||||
{
|
||||
unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
|
||||
unsigned long rcu_delta_jiffies;
|
||||
ktime_t last_update, expires, now;
|
||||
struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
|
||||
u64 time_delta;
|
||||
@@ -322,7 +323,7 @@ static void tick_nohz_stop_sched_tick(struct tick_sched *ts)
|
||||
time_delta = timekeeping_max_deferment();
|
||||
} while (read_seqretry(&xtime_lock, seq));
|
||||
|
||||
if (rcu_needs_cpu(cpu) || printk_needs_cpu(cpu) ||
|
||||
if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) || printk_needs_cpu(cpu) ||
|
||||
arch_needs_cpu(cpu)) {
|
||||
next_jiffies = last_jiffies + 1;
|
||||
delta_jiffies = 1;
|
||||
@@ -330,6 +331,10 @@ static void tick_nohz_stop_sched_tick(struct tick_sched *ts)
|
||||
/* Get the next timer wheel timer */
|
||||
next_jiffies = get_next_timer_interrupt(last_jiffies);
|
||||
delta_jiffies = next_jiffies - last_jiffies;
|
||||
if (rcu_delta_jiffies < delta_jiffies) {
|
||||
next_jiffies = last_jiffies + rcu_delta_jiffies;
|
||||
delta_jiffies = rcu_delta_jiffies;
|
||||
}
|
||||
}
|
||||
/*
|
||||
* Do not stop the tick, if we are only one off
|
||||
|
@@ -371,7 +371,7 @@ EXPORT_SYMBOL_GPL(tracing_on);
|
||||
void tracing_off(void)
|
||||
{
|
||||
if (global_trace.buffer)
|
||||
ring_buffer_record_on(global_trace.buffer);
|
||||
ring_buffer_record_off(global_trace.buffer);
|
||||
/*
|
||||
* This flag is only looked at when buffers haven't been
|
||||
* allocated yet. We don't really care about the race
|
||||
|
@@ -372,6 +372,13 @@ static int watchdog(void *unused)
|
||||
|
||||
|
||||
#ifdef CONFIG_HARDLOCKUP_DETECTOR
|
||||
/*
|
||||
* People like the simple clean cpu node info on boot.
|
||||
* Reduce the watchdog noise by only printing messages
|
||||
* that are different from what cpu0 displayed.
|
||||
*/
|
||||
static unsigned long cpu0_err;
|
||||
|
||||
static int watchdog_nmi_enable(int cpu)
|
||||
{
|
||||
struct perf_event_attr *wd_attr;
|
||||
@@ -390,11 +397,21 @@ static int watchdog_nmi_enable(int cpu)
|
||||
|
||||
/* Try to register using hardware perf events */
|
||||
event = perf_event_create_kernel_counter(wd_attr, cpu, NULL, watchdog_overflow_callback, NULL);
|
||||
|
||||
/* save cpu0 error for future comparision */
|
||||
if (cpu == 0 && IS_ERR(event))
|
||||
cpu0_err = PTR_ERR(event);
|
||||
|
||||
if (!IS_ERR(event)) {
|
||||
pr_info("enabled, takes one hw-pmu counter.\n");
|
||||
/* only print for cpu0 or different than cpu0 */
|
||||
if (cpu == 0 || cpu0_err)
|
||||
pr_info("enabled on all CPUs, permanently consumes one hw-PMU counter.\n");
|
||||
goto out_save;
|
||||
}
|
||||
|
||||
/* skip displaying the same error again */
|
||||
if (cpu > 0 && (PTR_ERR(event) == cpu0_err))
|
||||
return PTR_ERR(event);
|
||||
|
||||
/* vary the KERN level based on the returned errno */
|
||||
if (PTR_ERR(event) == -EOPNOTSUPP)
|
||||
|
Reference in New Issue
Block a user