sh: Generic kgdb stub support.
This migrates from the old bitrotted kgdb stub implementation and moves to the generic stub. In the process support for SH-2/SH-2A is also added, which the old stub never provided. Signed-off-by: Paul Mundt <lethal@linux-sh.org>
Esse commit está contido em:
285
arch/sh/kernel/kgdb.c
Arquivo normal
285
arch/sh/kernel/kgdb.c
Arquivo normal
@@ -0,0 +1,285 @@
|
||||
/*
|
||||
* SuperH KGDB support
|
||||
*
|
||||
* Copyright (C) 2008 Paul Mundt
|
||||
*
|
||||
* Single stepping taken from the old stub by Henry Bell and Jeremy Siegel.
|
||||
*
|
||||
* This file is subject to the terms and conditions of the GNU General Public
|
||||
* License. See the file "COPYING" in the main directory of this archive
|
||||
* for more details.
|
||||
*/
|
||||
#include <linux/kgdb.h>
|
||||
#include <linux/kdebug.h>
|
||||
#include <linux/irq.h>
|
||||
#include <linux/io.h>
|
||||
#include <asm/cacheflush.h>
|
||||
|
||||
char in_nmi = 0; /* Set during NMI to prevent re-entry */
|
||||
|
||||
/* Macros for single step instruction identification */
|
||||
#define OPCODE_BT(op) (((op) & 0xff00) == 0x8900)
|
||||
#define OPCODE_BF(op) (((op) & 0xff00) == 0x8b00)
|
||||
#define OPCODE_BTF_DISP(op) (((op) & 0x80) ? (((op) | 0xffffff80) << 1) : \
|
||||
(((op) & 0x7f ) << 1))
|
||||
#define OPCODE_BFS(op) (((op) & 0xff00) == 0x8f00)
|
||||
#define OPCODE_BTS(op) (((op) & 0xff00) == 0x8d00)
|
||||
#define OPCODE_BRA(op) (((op) & 0xf000) == 0xa000)
|
||||
#define OPCODE_BRA_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
|
||||
(((op) & 0x7ff) << 1))
|
||||
#define OPCODE_BRAF(op) (((op) & 0xf0ff) == 0x0023)
|
||||
#define OPCODE_BRAF_REG(op) (((op) & 0x0f00) >> 8)
|
||||
#define OPCODE_BSR(op) (((op) & 0xf000) == 0xb000)
|
||||
#define OPCODE_BSR_DISP(op) (((op) & 0x800) ? (((op) | 0xfffff800) << 1) : \
|
||||
(((op) & 0x7ff) << 1))
|
||||
#define OPCODE_BSRF(op) (((op) & 0xf0ff) == 0x0003)
|
||||
#define OPCODE_BSRF_REG(op) (((op) >> 8) & 0xf)
|
||||
#define OPCODE_JMP(op) (((op) & 0xf0ff) == 0x402b)
|
||||
#define OPCODE_JMP_REG(op) (((op) >> 8) & 0xf)
|
||||
#define OPCODE_JSR(op) (((op) & 0xf0ff) == 0x400b)
|
||||
#define OPCODE_JSR_REG(op) (((op) >> 8) & 0xf)
|
||||
#define OPCODE_RTS(op) ((op) == 0xb)
|
||||
#define OPCODE_RTE(op) ((op) == 0x2b)
|
||||
|
||||
#define SR_T_BIT_MASK 0x1
|
||||
#define STEP_OPCODE 0xc33d
|
||||
|
||||
/* Calculate the new address for after a step */
|
||||
static short *get_step_address(struct pt_regs *linux_regs)
|
||||
{
|
||||
opcode_t op = __raw_readw(linux_regs->pc);
|
||||
long addr;
|
||||
|
||||
/* BT */
|
||||
if (OPCODE_BT(op)) {
|
||||
if (linux_regs->sr & SR_T_BIT_MASK)
|
||||
addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
|
||||
else
|
||||
addr = linux_regs->pc + 2;
|
||||
}
|
||||
|
||||
/* BTS */
|
||||
else if (OPCODE_BTS(op)) {
|
||||
if (linux_regs->sr & SR_T_BIT_MASK)
|
||||
addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
|
||||
else
|
||||
addr = linux_regs->pc + 4; /* Not in delay slot */
|
||||
}
|
||||
|
||||
/* BF */
|
||||
else if (OPCODE_BF(op)) {
|
||||
if (!(linux_regs->sr & SR_T_BIT_MASK))
|
||||
addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
|
||||
else
|
||||
addr = linux_regs->pc + 2;
|
||||
}
|
||||
|
||||
/* BFS */
|
||||
else if (OPCODE_BFS(op)) {
|
||||
if (!(linux_regs->sr & SR_T_BIT_MASK))
|
||||
addr = linux_regs->pc + 4 + OPCODE_BTF_DISP(op);
|
||||
else
|
||||
addr = linux_regs->pc + 4; /* Not in delay slot */
|
||||
}
|
||||
|
||||
/* BRA */
|
||||
else if (OPCODE_BRA(op))
|
||||
addr = linux_regs->pc + 4 + OPCODE_BRA_DISP(op);
|
||||
|
||||
/* BRAF */
|
||||
else if (OPCODE_BRAF(op))
|
||||
addr = linux_regs->pc + 4
|
||||
+ linux_regs->regs[OPCODE_BRAF_REG(op)];
|
||||
|
||||
/* BSR */
|
||||
else if (OPCODE_BSR(op))
|
||||
addr = linux_regs->pc + 4 + OPCODE_BSR_DISP(op);
|
||||
|
||||
/* BSRF */
|
||||
else if (OPCODE_BSRF(op))
|
||||
addr = linux_regs->pc + 4
|
||||
+ linux_regs->regs[OPCODE_BSRF_REG(op)];
|
||||
|
||||
/* JMP */
|
||||
else if (OPCODE_JMP(op))
|
||||
addr = linux_regs->regs[OPCODE_JMP_REG(op)];
|
||||
|
||||
/* JSR */
|
||||
else if (OPCODE_JSR(op))
|
||||
addr = linux_regs->regs[OPCODE_JSR_REG(op)];
|
||||
|
||||
/* RTS */
|
||||
else if (OPCODE_RTS(op))
|
||||
addr = linux_regs->pr;
|
||||
|
||||
/* RTE */
|
||||
else if (OPCODE_RTE(op))
|
||||
addr = linux_regs->regs[15];
|
||||
|
||||
/* Other */
|
||||
else
|
||||
addr = linux_regs->pc + instruction_size(op);
|
||||
|
||||
flush_icache_range(addr, addr + instruction_size(op));
|
||||
return (short *)addr;
|
||||
}
|
||||
|
||||
/*
|
||||
* Replace the instruction immediately after the current instruction
|
||||
* (i.e. next in the expected flow of control) with a trap instruction,
|
||||
* so that returning will cause only a single instruction to be executed.
|
||||
* Note that this model is slightly broken for instructions with delay
|
||||
* slots (e.g. B[TF]S, BSR, BRA etc), where both the branch and the
|
||||
* instruction in the delay slot will be executed.
|
||||
*/
|
||||
|
||||
static unsigned long stepped_address;
|
||||
static opcode_t stepped_opcode;
|
||||
|
||||
static void do_single_step(struct pt_regs *linux_regs)
|
||||
{
|
||||
/* Determine where the target instruction will send us to */
|
||||
unsigned short *addr = get_step_address(linux_regs);
|
||||
|
||||
stepped_address = (int)addr;
|
||||
|
||||
/* Replace it */
|
||||
stepped_opcode = __raw_readw((long)addr);
|
||||
*addr = STEP_OPCODE;
|
||||
|
||||
/* Flush and return */
|
||||
flush_icache_range((long)addr, (long)addr +
|
||||
instruction_size(stepped_opcode));
|
||||
}
|
||||
|
||||
/* Undo a single step */
|
||||
static void undo_single_step(struct pt_regs *linux_regs)
|
||||
{
|
||||
/* If we have stepped, put back the old instruction */
|
||||
/* Use stepped_address in case we stopped elsewhere */
|
||||
if (stepped_opcode != 0) {
|
||||
__raw_writew(stepped_opcode, stepped_address);
|
||||
flush_icache_range(stepped_address, stepped_address + 2);
|
||||
}
|
||||
|
||||
stepped_opcode = 0;
|
||||
}
|
||||
|
||||
void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 16; i++)
|
||||
gdb_regs[GDB_R0 + i] = regs->regs[i];
|
||||
|
||||
gdb_regs[GDB_PC] = regs->pc;
|
||||
gdb_regs[GDB_PR] = regs->pr;
|
||||
gdb_regs[GDB_SR] = regs->sr;
|
||||
gdb_regs[GDB_GBR] = regs->gbr;
|
||||
gdb_regs[GDB_MACH] = regs->mach;
|
||||
gdb_regs[GDB_MACL] = regs->macl;
|
||||
|
||||
__asm__ __volatile__ ("stc vbr, %0" : "=r" (gdb_regs[GDB_VBR]));
|
||||
}
|
||||
|
||||
void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 16; i++)
|
||||
regs->regs[GDB_R0 + i] = gdb_regs[GDB_R0 + i];
|
||||
|
||||
regs->pc = gdb_regs[GDB_PC];
|
||||
regs->pr = gdb_regs[GDB_PR];
|
||||
regs->sr = gdb_regs[GDB_SR];
|
||||
regs->gbr = gdb_regs[GDB_GBR];
|
||||
regs->mach = gdb_regs[GDB_MACH];
|
||||
regs->macl = gdb_regs[GDB_MACL];
|
||||
|
||||
__asm__ __volatile__ ("ldc %0, vbr" : : "r" (gdb_regs[GDB_VBR]));
|
||||
}
|
||||
|
||||
void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
|
||||
{
|
||||
gdb_regs[GDB_R15] = p->thread.sp;
|
||||
gdb_regs[GDB_PC] = p->thread.pc;
|
||||
}
|
||||
|
||||
int kgdb_arch_handle_exception(int e_vector, int signo, int err_code,
|
||||
char *remcomInBuffer, char *remcomOutBuffer,
|
||||
struct pt_regs *linux_regs)
|
||||
{
|
||||
unsigned long addr;
|
||||
char *ptr;
|
||||
|
||||
/* Undo any stepping we may have done */
|
||||
undo_single_step(linux_regs);
|
||||
|
||||
switch (remcomInBuffer[0]) {
|
||||
case 'c':
|
||||
case 's':
|
||||
/* try to read optional parameter, pc unchanged if no parm */
|
||||
ptr = &remcomInBuffer[1];
|
||||
if (kgdb_hex2long(&ptr, &addr))
|
||||
linux_regs->pc = addr;
|
||||
case 'D':
|
||||
case 'k':
|
||||
atomic_set(&kgdb_cpu_doing_single_step, -1);
|
||||
|
||||
if (remcomInBuffer[0] == 's') {
|
||||
do_single_step(linux_regs);
|
||||
kgdb_single_step = 1;
|
||||
|
||||
atomic_set(&kgdb_cpu_doing_single_step,
|
||||
raw_smp_processor_id());
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* this means that we do not want to exit from the handler: */
|
||||
return -1;
|
||||
}
|
||||
|
||||
/*
|
||||
* The primary entry points for the kgdb debug trap table entries.
|
||||
*/
|
||||
BUILD_TRAP_HANDLER(singlestep)
|
||||
{
|
||||
unsigned long flags;
|
||||
TRAP_HANDLER_DECL;
|
||||
|
||||
local_irq_save(flags);
|
||||
regs->pc -= instruction_size(__raw_readw(regs->pc - 4));
|
||||
kgdb_handle_exception(vec >> 2, SIGTRAP, 0, regs);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
|
||||
BUILD_TRAP_HANDLER(breakpoint)
|
||||
{
|
||||
unsigned long flags;
|
||||
TRAP_HANDLER_DECL;
|
||||
|
||||
local_irq_save(flags);
|
||||
kgdb_handle_exception(vec >> 2, SIGTRAP, 0, regs);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
int kgdb_arch_init(void)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
void kgdb_arch_exit(void)
|
||||
{
|
||||
}
|
||||
|
||||
struct kgdb_arch arch_kgdb_ops = {
|
||||
/* Breakpoint instruction: trapa #0x3c */
|
||||
#ifdef CONFIG_CPU_LITTLE_ENDIAN
|
||||
.gdb_bpt_instr = { 0x3c, 0xc3 },
|
||||
#else
|
||||
.gdb_bpt_instr = { 0xc3, 0x3c },
|
||||
#endif
|
||||
};
|
Referência em uma nova issue
Block a user