Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu: "API: - Removed CRYPTO_TFM_RES flags - Extended spawn grabbing to all algorithm types - Moved hash descsize verification into API code Algorithms: - Fixed recursive pcrypt dead-lock - Added new 32 and 64-bit generic versions of poly1305 - Added cryptogams implementation of x86/poly1305 Drivers: - Added support for i.MX8M Mini in caam - Added support for i.MX8M Nano in caam - Added support for i.MX8M Plus in caam - Added support for A33 variant of SS in sun4i-ss - Added TEE support for Raven Ridge in ccp - Added in-kernel API to submit TEE commands in ccp - Added AMD-TEE driver - Added support for BCM2711 in iproc-rng200 - Added support for AES256-GCM based ciphers for chtls - Added aead support on SEC2 in hisilicon" * 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (244 commits) crypto: arm/chacha - fix build failured when kernel mode NEON is disabled crypto: caam - add support for i.MX8M Plus crypto: x86/poly1305 - emit does base conversion itself crypto: hisilicon - fix spelling mistake "disgest" -> "digest" crypto: chacha20poly1305 - add back missing test vectors and test chunking crypto: x86/poly1305 - fix .gitignore typo tee: fix memory allocation failure checks on drv_data and amdtee crypto: ccree - erase unneeded inline funcs crypto: ccree - make cc_pm_put_suspend() void crypto: ccree - split overloaded usage of irq field crypto: ccree - fix PM race condition crypto: ccree - fix FDE descriptor sequence crypto: ccree - cc_do_send_request() is void func crypto: ccree - fix pm wrongful error reporting crypto: ccree - turn errors to debug msgs crypto: ccree - fix AEAD decrypt auth fail crypto: ccree - fix typo in comment crypto: ccree - fix typos in error msgs crypto: atmel-{aes,sha,tdes} - Retire crypto_platform_data crypto: x86/sha - Eliminate casts on asm implementations ...
This commit is contained in:
@@ -39,6 +39,7 @@ Core utilities
|
||||
../RCU/index
|
||||
gcc-plugins
|
||||
symbol-namespaces
|
||||
padata
|
||||
|
||||
|
||||
Interfaces for kernel debugging
|
||||
|
169
Documentation/core-api/padata.rst
Normal file
169
Documentation/core-api/padata.rst
Normal file
@@ -0,0 +1,169 @@
|
||||
.. SPDX-License-Identifier: GPL-2.0
|
||||
|
||||
=======================================
|
||||
The padata parallel execution mechanism
|
||||
=======================================
|
||||
|
||||
:Date: December 2019
|
||||
|
||||
Padata is a mechanism by which the kernel can farm jobs out to be done in
|
||||
parallel on multiple CPUs while retaining their ordering. It was developed for
|
||||
use with the IPsec code, which needs to be able to perform encryption and
|
||||
decryption on large numbers of packets without reordering those packets. The
|
||||
crypto developers made a point of writing padata in a sufficiently general
|
||||
fashion that it could be put to other uses as well.
|
||||
|
||||
Usage
|
||||
=====
|
||||
|
||||
Initializing
|
||||
------------
|
||||
|
||||
The first step in using padata is to set up a padata_instance structure for
|
||||
overall control of how jobs are to be run::
|
||||
|
||||
#include <linux/padata.h>
|
||||
|
||||
struct padata_instance *padata_alloc_possible(const char *name);
|
||||
|
||||
'name' simply identifies the instance.
|
||||
|
||||
There are functions for enabling and disabling the instance::
|
||||
|
||||
int padata_start(struct padata_instance *pinst);
|
||||
void padata_stop(struct padata_instance *pinst);
|
||||
|
||||
These functions are setting or clearing the "PADATA_INIT" flag; if that flag is
|
||||
not set, other functions will refuse to work. padata_start() returns zero on
|
||||
success (flag set) or -EINVAL if the padata cpumask contains no active CPU
|
||||
(flag not set). padata_stop() clears the flag and blocks until the padata
|
||||
instance is unused.
|
||||
|
||||
Finally, complete padata initialization by allocating a padata_shell::
|
||||
|
||||
struct padata_shell *padata_alloc_shell(struct padata_instance *pinst);
|
||||
|
||||
A padata_shell is used to submit a job to padata and allows a series of such
|
||||
jobs to be serialized independently. A padata_instance may have one or more
|
||||
padata_shells associated with it, each allowing a separate series of jobs.
|
||||
|
||||
Modifying cpumasks
|
||||
------------------
|
||||
|
||||
The CPUs used to run jobs can be changed in two ways, programatically with
|
||||
padata_set_cpumask() or via sysfs. The former is defined::
|
||||
|
||||
int padata_set_cpumask(struct padata_instance *pinst, int cpumask_type,
|
||||
cpumask_var_t cpumask);
|
||||
|
||||
Here cpumask_type is one of PADATA_CPU_PARALLEL or PADATA_CPU_SERIAL, where a
|
||||
parallel cpumask describes which processors will be used to execute jobs
|
||||
submitted to this instance in parallel and a serial cpumask defines which
|
||||
processors are allowed to be used as the serialization callback processor.
|
||||
cpumask specifies the new cpumask to use.
|
||||
|
||||
There may be sysfs files for an instance's cpumasks. For example, pcrypt's
|
||||
live in /sys/kernel/pcrypt/<instance-name>. Within an instance's directory
|
||||
there are two files, parallel_cpumask and serial_cpumask, and either cpumask
|
||||
may be changed by echoing a bitmask into the file, for example::
|
||||
|
||||
echo f > /sys/kernel/pcrypt/pencrypt/parallel_cpumask
|
||||
|
||||
Reading one of these files shows the user-supplied cpumask, which may be
|
||||
different from the 'usable' cpumask.
|
||||
|
||||
Padata maintains two pairs of cpumasks internally, the user-supplied cpumasks
|
||||
and the 'usable' cpumasks. (Each pair consists of a parallel and a serial
|
||||
cpumask.) The user-supplied cpumasks default to all possible CPUs on instance
|
||||
allocation and may be changed as above. The usable cpumasks are always a
|
||||
subset of the user-supplied cpumasks and contain only the online CPUs in the
|
||||
user-supplied masks; these are the cpumasks padata actually uses. So it is
|
||||
legal to supply a cpumask to padata that contains offline CPUs. Once an
|
||||
offline CPU in the user-supplied cpumask comes online, padata is going to use
|
||||
it.
|
||||
|
||||
Changing the CPU masks are expensive operations, so it should not be done with
|
||||
great frequency.
|
||||
|
||||
Running A Job
|
||||
-------------
|
||||
|
||||
Actually submitting work to the padata instance requires the creation of a
|
||||
padata_priv structure, which represents one job::
|
||||
|
||||
struct padata_priv {
|
||||
/* Other stuff here... */
|
||||
void (*parallel)(struct padata_priv *padata);
|
||||
void (*serial)(struct padata_priv *padata);
|
||||
};
|
||||
|
||||
This structure will almost certainly be embedded within some larger
|
||||
structure specific to the work to be done. Most of its fields are private to
|
||||
padata, but the structure should be zeroed at initialisation time, and the
|
||||
parallel() and serial() functions should be provided. Those functions will
|
||||
be called in the process of getting the work done as we will see
|
||||
momentarily.
|
||||
|
||||
The submission of the job is done with::
|
||||
|
||||
int padata_do_parallel(struct padata_shell *ps,
|
||||
struct padata_priv *padata, int *cb_cpu);
|
||||
|
||||
The ps and padata structures must be set up as described above; cb_cpu
|
||||
points to the preferred CPU to be used for the final callback when the job is
|
||||
done; it must be in the current instance's CPU mask (if not the cb_cpu pointer
|
||||
is updated to point to the CPU actually chosen). The return value from
|
||||
padata_do_parallel() is zero on success, indicating that the job is in
|
||||
progress. -EBUSY means that somebody, somewhere else is messing with the
|
||||
instance's CPU mask, while -EINVAL is a complaint about cb_cpu not being in the
|
||||
serial cpumask, no online CPUs in the parallel or serial cpumasks, or a stopped
|
||||
instance.
|
||||
|
||||
Each job submitted to padata_do_parallel() will, in turn, be passed to
|
||||
exactly one call to the above-mentioned parallel() function, on one CPU, so
|
||||
true parallelism is achieved by submitting multiple jobs. parallel() runs with
|
||||
software interrupts disabled and thus cannot sleep. The parallel()
|
||||
function gets the padata_priv structure pointer as its lone parameter;
|
||||
information about the actual work to be done is probably obtained by using
|
||||
container_of() to find the enclosing structure.
|
||||
|
||||
Note that parallel() has no return value; the padata subsystem assumes that
|
||||
parallel() will take responsibility for the job from this point. The job
|
||||
need not be completed during this call, but, if parallel() leaves work
|
||||
outstanding, it should be prepared to be called again with a new job before
|
||||
the previous one completes.
|
||||
|
||||
Serializing Jobs
|
||||
----------------
|
||||
|
||||
When a job does complete, parallel() (or whatever function actually finishes
|
||||
the work) should inform padata of the fact with a call to::
|
||||
|
||||
void padata_do_serial(struct padata_priv *padata);
|
||||
|
||||
At some point in the future, padata_do_serial() will trigger a call to the
|
||||
serial() function in the padata_priv structure. That call will happen on
|
||||
the CPU requested in the initial call to padata_do_parallel(); it, too, is
|
||||
run with local software interrupts disabled.
|
||||
Note that this call may be deferred for a while since the padata code takes
|
||||
pains to ensure that jobs are completed in the order in which they were
|
||||
submitted.
|
||||
|
||||
Destroying
|
||||
----------
|
||||
|
||||
Cleaning up a padata instance predictably involves calling the three free
|
||||
functions that correspond to the allocation in reverse::
|
||||
|
||||
void padata_free_shell(struct padata_shell *ps);
|
||||
void padata_stop(struct padata_instance *pinst);
|
||||
void padata_free(struct padata_instance *pinst);
|
||||
|
||||
It is the user's responsibility to ensure all outstanding jobs are complete
|
||||
before any of the above are called.
|
||||
|
||||
Interface
|
||||
=========
|
||||
|
||||
.. kernel-doc:: include/linux/padata.h
|
||||
.. kernel-doc:: kernel/padata.c
|
Reference in New Issue
Block a user