Merge tag 'v3.9' into efi-for-tip2

Resolve conflicts for Ingo.

Conflicts:
	drivers/firmware/Kconfig
	drivers/firmware/efivars.c

Signed-off-by: Matt Fleming <matt.fleming@intel.com>
This commit is contained in:
Matt Fleming
2013-04-30 11:30:24 +01:00
615 changed files with 6471 additions and 4063 deletions

View File

@@ -41,6 +41,7 @@
#include <linux/io.h>
#include <linux/reboot.h>
#include <linux/bcd.h>
#include <linux/ucs2_string.h>
#include <asm/setup.h>
#include <asm/efi.h>
@@ -51,6 +52,13 @@
#define EFI_DEBUG 1
/*
* There's some additional metadata associated with each
* variable. Intel's reference implementation is 60 bytes - bump that
* to account for potential alignment constraints
*/
#define VAR_METADATA_SIZE 64
struct efi __read_mostly efi = {
.mps = EFI_INVALID_TABLE_ADDR,
.acpi = EFI_INVALID_TABLE_ADDR,
@@ -69,6 +77,13 @@ struct efi_memory_map memmap;
static struct efi efi_phys __initdata;
static efi_system_table_t efi_systab __initdata;
static u64 efi_var_store_size;
static u64 efi_var_remaining_size;
static u64 efi_var_max_var_size;
static u64 boot_used_size;
static u64 boot_var_size;
static u64 active_size;
unsigned long x86_efi_facility;
/*
@@ -98,6 +113,15 @@ static int __init setup_add_efi_memmap(char *arg)
}
early_param("add_efi_memmap", setup_add_efi_memmap);
static bool efi_no_storage_paranoia;
static int __init setup_storage_paranoia(char *arg)
{
efi_no_storage_paranoia = true;
return 0;
}
early_param("efi_no_storage_paranoia", setup_storage_paranoia);
static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
{
@@ -162,8 +186,53 @@ static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
efi_char16_t *name,
efi_guid_t *vendor)
{
return efi_call_virt3(get_next_variable,
name_size, name, vendor);
efi_status_t status;
static bool finished = false;
static u64 var_size;
status = efi_call_virt3(get_next_variable,
name_size, name, vendor);
if (status == EFI_NOT_FOUND) {
finished = true;
if (var_size < boot_used_size) {
boot_var_size = boot_used_size - var_size;
active_size += boot_var_size;
} else {
printk(KERN_WARNING FW_BUG "efi: Inconsistent initial sizes\n");
}
}
if (boot_used_size && !finished) {
unsigned long size;
u32 attr;
efi_status_t s;
void *tmp;
s = virt_efi_get_variable(name, vendor, &attr, &size, NULL);
if (s != EFI_BUFFER_TOO_SMALL || !size)
return status;
tmp = kmalloc(size, GFP_ATOMIC);
if (!tmp)
return status;
s = virt_efi_get_variable(name, vendor, &attr, &size, tmp);
if (s == EFI_SUCCESS && (attr & EFI_VARIABLE_NON_VOLATILE)) {
var_size += size;
var_size += ucs2_strsize(name, 1024);
active_size += size;
active_size += VAR_METADATA_SIZE;
active_size += ucs2_strsize(name, 1024);
}
kfree(tmp);
}
return status;
}
static efi_status_t virt_efi_set_variable(efi_char16_t *name,
@@ -172,9 +241,34 @@ static efi_status_t virt_efi_set_variable(efi_char16_t *name,
unsigned long data_size,
void *data)
{
return efi_call_virt5(set_variable,
name, vendor, attr,
data_size, data);
efi_status_t status;
u32 orig_attr = 0;
unsigned long orig_size = 0;
status = virt_efi_get_variable(name, vendor, &orig_attr, &orig_size,
NULL);
if (status != EFI_BUFFER_TOO_SMALL)
orig_size = 0;
status = efi_call_virt5(set_variable,
name, vendor, attr,
data_size, data);
if (status == EFI_SUCCESS) {
if (orig_size) {
active_size -= orig_size;
active_size -= ucs2_strsize(name, 1024);
active_size -= VAR_METADATA_SIZE;
}
if (data_size) {
active_size += data_size;
active_size += ucs2_strsize(name, 1024);
active_size += VAR_METADATA_SIZE;
}
}
return status;
}
static efi_status_t virt_efi_query_variable_info(u32 attr,
@@ -683,6 +777,9 @@ void __init efi_init(void)
char vendor[100] = "unknown";
int i = 0;
void *tmp;
struct setup_data *data;
struct efi_var_bootdata *efi_var_data;
u64 pa_data;
#ifdef CONFIG_X86_32
if (boot_params.efi_info.efi_systab_hi ||
@@ -700,6 +797,22 @@ void __init efi_init(void)
if (efi_systab_init(efi_phys.systab))
return;
pa_data = boot_params.hdr.setup_data;
while (pa_data) {
data = early_ioremap(pa_data, sizeof(*efi_var_data));
if (data->type == SETUP_EFI_VARS) {
efi_var_data = (struct efi_var_bootdata *)data;
efi_var_store_size = efi_var_data->store_size;
efi_var_remaining_size = efi_var_data->remaining_size;
efi_var_max_var_size = efi_var_data->max_var_size;
}
pa_data = data->next;
early_iounmap(data, sizeof(*efi_var_data));
}
boot_used_size = efi_var_store_size - efi_var_remaining_size;
set_bit(EFI_SYSTEM_TABLES, &x86_efi_facility);
/*
@@ -1000,3 +1113,48 @@ u64 efi_mem_attributes(unsigned long phys_addr)
}
return 0;
}
/*
* Some firmware has serious problems when using more than 50% of the EFI
* variable store, i.e. it triggers bugs that can brick machines. Ensure that
* we never use more than this safe limit.
*
* Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
* store.
*/
efi_status_t efi_query_variable_store(u32 attributes, unsigned long size)
{
efi_status_t status;
u64 storage_size, remaining_size, max_size;
status = efi.query_variable_info(attributes, &storage_size,
&remaining_size, &max_size);
if (status != EFI_SUCCESS)
return status;
if (!max_size && remaining_size > size)
printk_once(KERN_ERR FW_BUG "Broken EFI implementation"
" is returning MaxVariableSize=0\n");
/*
* Some firmware implementations refuse to boot if there's insufficient
* space in the variable store. We account for that by refusing the
* write if permitting it would reduce the available space to under
* 50%. However, some firmware won't reclaim variable space until
* after the used (not merely the actively used) space drops below
* a threshold. We can approximate that case with the value calculated
* above. If both the firmware and our calculations indicate that the
* available space would drop below 50%, refuse the write.
*/
if (!storage_size || size > remaining_size ||
(max_size && size > max_size))
return EFI_OUT_OF_RESOURCES;
if (!efi_no_storage_paranoia &&
((active_size + size + VAR_METADATA_SIZE > storage_size / 2) &&
(remaining_size - size < storage_size / 2)))
return EFI_OUT_OF_RESOURCES;
return EFI_SUCCESS;
}
EXPORT_SYMBOL_GPL(efi_query_variable_store);