f2fs: refactor bio-related operations

This patch integrates redundant bio operations on read and write IOs.

1. Move bio-related codes to the top of data.c.
2. Replace f2fs_submit_bio with f2fs_submit_merged_bio, which handles read
   bios additionally.
3. Introduce __submit_merged_bio to submit the merged bio.
4. Change f2fs_readpage to f2fs_submit_page_bio.
5. Introduce f2fs_submit_page_mbio to integrate previous submit_read_page and
   submit_write_page.

Reviewed-by: Gu Zheng <guz.fnst@cn.fujitsu.com>
Reviewed-by: Chao Yu <chao2.yu@samsung.com >
Signed-off-by: Jaegeuk Kim <jaegeuk.kim@samsung.com>
This commit is contained in:
Jaegeuk Kim
2013-11-30 12:51:14 +09:00
parent 187b5b8b3d
commit 93dfe2ac51
8 changed files with 257 additions and 299 deletions

View File

@@ -24,6 +24,204 @@
#include "segment.h"
#include <trace/events/f2fs.h>
/*
* Low-level block read/write IO operations.
*/
static struct bio *__bio_alloc(struct block_device *bdev, int npages)
{
struct bio *bio;
/* No failure on bio allocation */
bio = bio_alloc(GFP_NOIO, npages);
bio->bi_bdev = bdev;
bio->bi_private = NULL;
return bio;
}
static void f2fs_read_end_io(struct bio *bio, int err)
{
const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
do {
struct page *page = bvec->bv_page;
if (--bvec >= bio->bi_io_vec)
prefetchw(&bvec->bv_page->flags);
if (uptodate) {
SetPageUptodate(page);
} else {
ClearPageUptodate(page);
SetPageError(page);
}
unlock_page(page);
} while (bvec >= bio->bi_io_vec);
bio_put(bio);
}
static void f2fs_write_end_io(struct bio *bio, int err)
{
const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
struct f2fs_sb_info *sbi = F2FS_SB(bvec->bv_page->mapping->host->i_sb);
do {
struct page *page = bvec->bv_page;
if (--bvec >= bio->bi_io_vec)
prefetchw(&bvec->bv_page->flags);
if (!uptodate) {
SetPageError(page);
set_bit(AS_EIO, &page->mapping->flags);
set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
sbi->sb->s_flags |= MS_RDONLY;
}
end_page_writeback(page);
dec_page_count(sbi, F2FS_WRITEBACK);
} while (bvec >= bio->bi_io_vec);
if (bio->bi_private)
complete(bio->bi_private);
if (!get_pages(sbi, F2FS_WRITEBACK) &&
!list_empty(&sbi->cp_wait.task_list))
wake_up(&sbi->cp_wait);
bio_put(bio);
}
static void __submit_merged_bio(struct f2fs_sb_info *sbi,
struct f2fs_bio_info *io,
enum page_type type, bool sync, int rw)
{
enum page_type btype = PAGE_TYPE_OF_BIO(type);
if (!io->bio)
return;
if (btype == META)
rw |= REQ_META;
if (is_read_io(rw)) {
if (sync)
rw |= READ_SYNC;
submit_bio(rw, io->bio);
trace_f2fs_submit_read_bio(sbi->sb, rw, type, io->bio);
io->bio = NULL;
return;
}
if (sync)
rw |= WRITE_SYNC;
if (type >= META_FLUSH)
rw |= WRITE_FLUSH_FUA;
/*
* META_FLUSH is only from the checkpoint procedure, and we should wait
* this metadata bio for FS consistency.
*/
if (type == META_FLUSH) {
DECLARE_COMPLETION_ONSTACK(wait);
io->bio->bi_private = &wait;
submit_bio(rw, io->bio);
wait_for_completion(&wait);
} else {
submit_bio(rw, io->bio);
}
trace_f2fs_submit_write_bio(sbi->sb, rw, btype, io->bio);
io->bio = NULL;
}
void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
enum page_type type, bool sync, int rw)
{
enum page_type btype = PAGE_TYPE_OF_BIO(type);
struct f2fs_bio_info *io;
io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
mutex_lock(&io->io_mutex);
__submit_merged_bio(sbi, io, type, sync, rw);
mutex_unlock(&io->io_mutex);
}
/*
* Fill the locked page with data located in the block address.
* Return unlocked page.
*/
int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
block_t blk_addr, int rw)
{
struct block_device *bdev = sbi->sb->s_bdev;
struct bio *bio;
trace_f2fs_submit_page_bio(page, blk_addr, rw);
/* Allocate a new bio */
bio = __bio_alloc(bdev, 1);
/* Initialize the bio */
bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
bio->bi_end_io = is_read_io(rw) ? f2fs_read_end_io : f2fs_write_end_io;
if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
bio_put(bio);
f2fs_put_page(page, 1);
return -EFAULT;
}
submit_bio(rw, bio);
return 0;
}
void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
block_t blk_addr, enum page_type type, int rw)
{
enum page_type btype = PAGE_TYPE_OF_BIO(type);
struct block_device *bdev = sbi->sb->s_bdev;
struct f2fs_bio_info *io;
int bio_blocks;
io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
verify_block_addr(sbi, blk_addr);
mutex_lock(&io->io_mutex);
if (!is_read_io(rw))
inc_page_count(sbi, F2FS_WRITEBACK);
if (io->bio && io->last_block_in_bio != blk_addr - 1)
__submit_merged_bio(sbi, io, type, true, rw);
alloc_new:
if (io->bio == NULL) {
bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
io->bio = __bio_alloc(bdev, bio_blocks);
io->bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
io->bio->bi_end_io = is_read_io(rw) ? f2fs_read_end_io :
f2fs_write_end_io;
/*
* The end_io will be assigned at the sumbission phase.
* Until then, let bio_add_page() merge consecutive IOs as much
* as possible.
*/
}
if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
PAGE_CACHE_SIZE) {
__submit_merged_bio(sbi, io, type, true, rw);
goto alloc_new;
}
io->last_block_in_bio = blk_addr;
mutex_unlock(&io->io_mutex);
trace_f2fs_submit_page_mbio(page, rw, type, blk_addr);
}
/*
* Lock ordering for the change of data block address:
* ->data_page
@@ -238,7 +436,7 @@ struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
return page;
}
err = f2fs_readpage(sbi, page, dn.data_blkaddr,
err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
sync ? READ_SYNC : READA);
if (err)
return ERR_PTR(err);
@@ -299,7 +497,7 @@ repeat:
return page;
}
err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr, READ_SYNC);
if (err)
return ERR_PTR(err);
@@ -349,7 +547,8 @@ repeat:
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
SetPageUptodate(page);
} else {
err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
READ_SYNC);
if (err)
return ERR_PTR(err);
lock_page(page);
@@ -373,110 +572,6 @@ repeat:
return page;
}
static void read_end_io(struct bio *bio, int err)
{
const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
do {
struct page *page = bvec->bv_page;
if (--bvec >= bio->bi_io_vec)
prefetchw(&bvec->bv_page->flags);
if (uptodate) {
SetPageUptodate(page);
} else {
ClearPageUptodate(page);
SetPageError(page);
}
unlock_page(page);
} while (bvec >= bio->bi_io_vec);
bio_put(bio);
}
/*
* Fill the locked page with data located in the block address.
* Return unlocked page.
*/
int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
block_t blk_addr, int type)
{
struct block_device *bdev = sbi->sb->s_bdev;
struct bio *bio;
trace_f2fs_readpage(page, blk_addr, type);
/* Allocate a new bio */
bio = f2fs_bio_alloc(bdev, 1);
/* Initialize the bio */
bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
bio->bi_end_io = read_end_io;
if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
bio_put(bio);
f2fs_put_page(page, 1);
return -EFAULT;
}
submit_bio(type, bio);
return 0;
}
void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, int rw)
{
struct f2fs_bio_info *io = &sbi->read_io;
if (!io->bio)
return;
trace_f2fs_submit_read_bio(sbi->sb, rw, META, io->bio);
mutex_lock(&io->io_mutex);
if (io->bio) {
submit_bio(rw, io->bio);
io->bio = NULL;
}
mutex_unlock(&io->io_mutex);
}
void submit_read_page(struct f2fs_sb_info *sbi, struct page *page,
block_t blk_addr, int rw)
{
struct block_device *bdev = sbi->sb->s_bdev;
struct f2fs_bio_info *io = &sbi->read_io;
int bio_blocks;
verify_block_addr(sbi, blk_addr);
mutex_lock(&io->io_mutex);
if (io->bio && io->last_block_in_bio != blk_addr - 1) {
submit_bio(rw, io->bio);
io->bio = NULL;
}
alloc_new:
if (io->bio == NULL) {
bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
io->bio = f2fs_bio_alloc(bdev, bio_blocks);
io->bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
io->bio->bi_end_io = read_end_io;
}
if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
PAGE_CACHE_SIZE) {
submit_bio(rw, io->bio);
io->bio = NULL;
goto alloc_new;
}
io->last_block_in_bio = blk_addr;
mutex_unlock(&io->io_mutex);
trace_f2fs_submit_read_page(page, rw, META, blk_addr);
}
/*
* This function should be used by the data read flow only where it
* does not check the "create" flag that indicates block allocation.
@@ -638,7 +733,7 @@ write:
goto redirty_out;
if (wbc->for_reclaim)
f2fs_submit_bio(sbi, DATA, true);
f2fs_submit_merged_bio(sbi, DATA, true, WRITE);
clear_cold_data(page);
out:
@@ -690,7 +785,7 @@ static int f2fs_write_data_pages(struct address_space *mapping,
ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
if (locked)
mutex_unlock(&sbi->writepages);
f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL));
f2fs_submit_merged_bio(sbi, DATA, wbc->sync_mode == WB_SYNC_ALL, WRITE);
remove_dirty_dir_inode(inode);
@@ -741,7 +836,8 @@ repeat:
if (dn.data_blkaddr == NEW_ADDR) {
zero_user_segment(page, 0, PAGE_CACHE_SIZE);
} else {
err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
READ_SYNC);
if (err)
return err;
lock_page(page);