Merge 6e4dc3d592 ("Merge tag 'for-linus-5.10-1' of git://github.com/cminyard/linux-ipmi") into android-mainline

Steps on the way to 5.10-rc1

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: Idbd0577a495237bf5628333110e2c98a77b39c77
This commit is contained in:
Greg Kroah-Hartman
2020-10-25 16:26:10 +01:00
114 changed files with 1894 additions and 1310 deletions

View File

@@ -1495,7 +1495,7 @@ Extended error information
# #
{ stacktrace: { stacktrace:
_do_fork+0x18e/0x330 kernel_clone+0x18e/0x330
kernel_thread+0x29/0x30 kernel_thread+0x29/0x30
kthreadd+0x154/0x1b0 kthreadd+0x154/0x1b0
ret_from_fork+0x3f/0x70 ret_from_fork+0x3f/0x70
@@ -1588,7 +1588,7 @@ Extended error information
SYSC_sendto+0xef/0x170 SYSC_sendto+0xef/0x170
} hitcount: 88 } hitcount: 88
{ stacktrace: { stacktrace:
_do_fork+0x18e/0x330 kernel_clone+0x18e/0x330
SyS_clone+0x19/0x20 SyS_clone+0x19/0x20
entry_SYSCALL_64_fastpath+0x12/0x6a entry_SYSCALL_64_fastpath+0x12/0x6a
} hitcount: 244 } hitcount: 244

View File

@@ -172,5 +172,5 @@ asmlinkage int sys_clone(unsigned long __user *args)
kargs.exit_signal = (lower_32_bits(clone_flags) & CSIGNAL); kargs.exit_signal = (lower_32_bits(clone_flags) & CSIGNAL);
kargs.stack = newsp; kargs.stack = newsp;
return _do_fork(&kargs); return kernel_clone(&kargs);
} }

View File

@@ -271,7 +271,7 @@ ia64_load_extra (struct task_struct *task)
* *
* <clone syscall> <some kernel call frames> * <clone syscall> <some kernel call frames>
* sys_clone : * sys_clone :
* _do_fork _do_fork * kernel_clone kernel_clone
* copy_thread copy_thread * copy_thread copy_thread
* *
* This means that the stack layout is as follows: * This means that the stack layout is as follows:
@@ -411,7 +411,7 @@ asmlinkage long ia64_clone(unsigned long clone_flags, unsigned long stack_start,
.tls = tls, .tls = tls,
}; };
return _do_fork(&args); return kernel_clone(&args);
} }
static void static void

View File

@@ -107,10 +107,10 @@ void flush_thread(void)
* on top of pt_regs, which means that sys_clone() arguments would be * on top of pt_regs, which means that sys_clone() arguments would be
* buried. We could, of course, copy them, but it's too costly for no * buried. We could, of course, copy them, but it's too costly for no
* good reason - generic clone() would have to copy them *again* for * good reason - generic clone() would have to copy them *again* for
* _do_fork() anyway. So in this case it's actually better to pass pt_regs * * kernel_clone() anyway. So in this case it's actually better to pass pt_regs *
* and extract arguments for _do_fork() from there. Eventually we might * and extract arguments for kernel_clone() from there. Eventually we might
* go for calling _do_fork() directly from the wrapper, but only after we * go for calling kernel_clone() directly from the wrapper, but only after we
* are finished with _do_fork() prototype conversion. * are finished with kernel_clone() prototype conversion.
*/ */
asmlinkage int m68k_clone(struct pt_regs *regs) asmlinkage int m68k_clone(struct pt_regs *regs)
{ {
@@ -125,7 +125,7 @@ asmlinkage int m68k_clone(struct pt_regs *regs)
.tls = regs->d5, .tls = regs->d5,
}; };
return _do_fork(&args); return kernel_clone(&args);
} }
/* /*

View File

@@ -266,5 +266,5 @@ asmlinkage int nios2_clone(unsigned long clone_flags, unsigned long newsp,
.tls = tls, .tls = tls,
}; };
return _do_fork(&args); return kernel_clone(&args);
} }

View File

@@ -25,7 +25,7 @@ asmlinkage long sparc_fork(struct pt_regs *regs)
.stack = regs->u_regs[UREG_FP], .stack = regs->u_regs[UREG_FP],
}; };
ret = _do_fork(&args); ret = kernel_clone(&args);
/* If we get an error and potentially restart the system /* If we get an error and potentially restart the system
* call, we're screwed because copy_thread() clobbered * call, we're screwed because copy_thread() clobbered
@@ -50,7 +50,7 @@ asmlinkage long sparc_vfork(struct pt_regs *regs)
.stack = regs->u_regs[UREG_FP], .stack = regs->u_regs[UREG_FP],
}; };
ret = _do_fork(&args); ret = kernel_clone(&args);
/* If we get an error and potentially restart the system /* If we get an error and potentially restart the system
* call, we're screwed because copy_thread() clobbered * call, we're screwed because copy_thread() clobbered
@@ -96,7 +96,7 @@ asmlinkage long sparc_clone(struct pt_regs *regs)
else else
args.stack = regs->u_regs[UREG_FP]; args.stack = regs->u_regs[UREG_FP];
ret = _do_fork(&args); ret = kernel_clone(&args);
/* If we get an error and potentially restart the system /* If we get an error and potentially restart the system
* call, we're screwed because copy_thread() clobbered * call, we're screwed because copy_thread() clobbered

View File

@@ -251,6 +251,6 @@ COMPAT_SYSCALL_DEFINE5(ia32_clone, unsigned long, clone_flags,
.tls = tls_val, .tls = tls_val,
}; };
return _do_fork(&args); return kernel_clone(&args);
} }
#endif /* CONFIG_IA32_EMULATION */ #endif /* CONFIG_IA32_EMULATION */

View File

@@ -213,8 +213,10 @@ static int bt_start_transaction(struct si_sm_data *bt,
if (bt->state == BT_STATE_LONG_BUSY) if (bt->state == BT_STATE_LONG_BUSY)
return IPMI_NODE_BUSY_ERR; return IPMI_NODE_BUSY_ERR;
if (bt->state != BT_STATE_IDLE) if (bt->state != BT_STATE_IDLE) {
dev_warn(bt->io->dev, "BT in invalid state %d\n", bt->state);
return IPMI_NOT_IN_MY_STATE_ERR; return IPMI_NOT_IN_MY_STATE_ERR;
}
if (bt_debug & BT_DEBUG_MSG) { if (bt_debug & BT_DEBUG_MSG) {
dev_dbg(bt->io->dev, "+++++++++++++++++ New command\n"); dev_dbg(bt->io->dev, "+++++++++++++++++ New command\n");

View File

@@ -17,6 +17,8 @@
* that document. * that document.
*/ */
#define DEBUG /* So dev_dbg() is always available. */
#include <linux/kernel.h> /* For printk. */ #include <linux/kernel.h> /* For printk. */
#include <linux/module.h> #include <linux/module.h>
#include <linux/moduleparam.h> #include <linux/moduleparam.h>
@@ -187,8 +189,8 @@ static inline void start_error_recovery(struct si_sm_data *kcs, char *reason)
(kcs->error_retries)++; (kcs->error_retries)++;
if (kcs->error_retries > MAX_ERROR_RETRIES) { if (kcs->error_retries > MAX_ERROR_RETRIES) {
if (kcs_debug & KCS_DEBUG_ENABLE) if (kcs_debug & KCS_DEBUG_ENABLE)
printk(KERN_DEBUG "ipmi_kcs_sm: kcs hosed: %s\n", dev_dbg(kcs->io->dev, "ipmi_kcs_sm: kcs hosed: %s\n",
reason); reason);
kcs->state = KCS_HOSED; kcs->state = KCS_HOSED;
} else { } else {
kcs->error0_timeout = jiffies + ERROR0_OBF_WAIT_JIFFIES; kcs->error0_timeout = jiffies + ERROR0_OBF_WAIT_JIFFIES;
@@ -268,11 +270,13 @@ static int start_kcs_transaction(struct si_sm_data *kcs, unsigned char *data,
if (size > MAX_KCS_WRITE_SIZE) if (size > MAX_KCS_WRITE_SIZE)
return IPMI_REQ_LEN_EXCEEDED_ERR; return IPMI_REQ_LEN_EXCEEDED_ERR;
if ((kcs->state != KCS_IDLE) && (kcs->state != KCS_HOSED)) if ((kcs->state != KCS_IDLE) && (kcs->state != KCS_HOSED)) {
dev_warn(kcs->io->dev, "KCS in invalid state %d\n", kcs->state);
return IPMI_NOT_IN_MY_STATE_ERR; return IPMI_NOT_IN_MY_STATE_ERR;
}
if (kcs_debug & KCS_DEBUG_MSG) { if (kcs_debug & KCS_DEBUG_MSG) {
printk(KERN_DEBUG "start_kcs_transaction -"); dev_dbg(kcs->io->dev, "%s -", __func__);
for (i = 0; i < size; i++) for (i = 0; i < size; i++)
pr_cont(" %02x", data[i]); pr_cont(" %02x", data[i]);
pr_cont("\n"); pr_cont("\n");
@@ -331,7 +335,8 @@ static enum si_sm_result kcs_event(struct si_sm_data *kcs, long time)
status = read_status(kcs); status = read_status(kcs);
if (kcs_debug & KCS_DEBUG_STATES) if (kcs_debug & KCS_DEBUG_STATES)
printk(KERN_DEBUG "KCS: State = %d, %x\n", kcs->state, status); dev_dbg(kcs->io->dev,
"KCS: State = %d, %x\n", kcs->state, status);
/* All states wait for ibf, so just do it here. */ /* All states wait for ibf, so just do it here. */
if (!check_ibf(kcs, status, time)) if (!check_ibf(kcs, status, time))

View File

@@ -34,12 +34,13 @@
#include <linux/uuid.h> #include <linux/uuid.h>
#include <linux/nospec.h> #include <linux/nospec.h>
#include <linux/vmalloc.h> #include <linux/vmalloc.h>
#include <linux/delay.h>
#define IPMI_DRIVER_VERSION "39.2" #define IPMI_DRIVER_VERSION "39.2"
static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void); static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
static int ipmi_init_msghandler(void); static int ipmi_init_msghandler(void);
static void smi_recv_tasklet(unsigned long); static void smi_recv_tasklet(struct tasklet_struct *t);
static void handle_new_recv_msgs(struct ipmi_smi *intf); static void handle_new_recv_msgs(struct ipmi_smi *intf);
static void need_waiter(struct ipmi_smi *intf); static void need_waiter(struct ipmi_smi *intf);
static int handle_one_recv_msg(struct ipmi_smi *intf, static int handle_one_recv_msg(struct ipmi_smi *intf,
@@ -60,6 +61,7 @@ enum ipmi_panic_event_op {
#else #else
#define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE #define IPMI_PANIC_DEFAULT IPMI_SEND_PANIC_EVENT_NONE
#endif #endif
static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT; static enum ipmi_panic_event_op ipmi_send_panic_event = IPMI_PANIC_DEFAULT;
static int panic_op_write_handler(const char *val, static int panic_op_write_handler(const char *val,
@@ -89,19 +91,19 @@ static int panic_op_read_handler(char *buffer, const struct kernel_param *kp)
{ {
switch (ipmi_send_panic_event) { switch (ipmi_send_panic_event) {
case IPMI_SEND_PANIC_EVENT_NONE: case IPMI_SEND_PANIC_EVENT_NONE:
strcpy(buffer, "none"); strcpy(buffer, "none\n");
break; break;
case IPMI_SEND_PANIC_EVENT: case IPMI_SEND_PANIC_EVENT:
strcpy(buffer, "event"); strcpy(buffer, "event\n");
break; break;
case IPMI_SEND_PANIC_EVENT_STRING: case IPMI_SEND_PANIC_EVENT_STRING:
strcpy(buffer, "string"); strcpy(buffer, "string\n");
break; break;
default: default:
strcpy(buffer, "???"); strcpy(buffer, "???\n");
break; break;
} }
@@ -317,6 +319,7 @@ struct bmc_device {
int dyn_guid_set; int dyn_guid_set;
struct kref usecount; struct kref usecount;
struct work_struct remove_work; struct work_struct remove_work;
unsigned char cc; /* completion code */
}; };
#define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev) #define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
@@ -2381,6 +2384,8 @@ static void bmc_device_id_handler(struct ipmi_smi *intf,
msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id); msg->msg.data, msg->msg.data_len, &intf->bmc->fetch_id);
if (rv) { if (rv) {
dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv); dev_warn(intf->si_dev, "device id demangle failed: %d\n", rv);
/* record completion code when error */
intf->bmc->cc = msg->msg.data[0];
intf->bmc->dyn_id_set = 0; intf->bmc->dyn_id_set = 0;
} else { } else {
/* /*
@@ -2426,23 +2431,39 @@ send_get_device_id_cmd(struct ipmi_smi *intf)
static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc) static int __get_device_id(struct ipmi_smi *intf, struct bmc_device *bmc)
{ {
int rv; int rv;
unsigned int retry_count = 0;
bmc->dyn_id_set = 2;
intf->null_user_handler = bmc_device_id_handler; intf->null_user_handler = bmc_device_id_handler;
retry:
bmc->cc = 0;
bmc->dyn_id_set = 2;
rv = send_get_device_id_cmd(intf); rv = send_get_device_id_cmd(intf);
if (rv) if (rv)
return rv; goto out_reset_handler;
wait_event(intf->waitq, bmc->dyn_id_set != 2); wait_event(intf->waitq, bmc->dyn_id_set != 2);
if (!bmc->dyn_id_set) if (!bmc->dyn_id_set) {
if ((bmc->cc == IPMI_DEVICE_IN_FW_UPDATE_ERR
|| bmc->cc == IPMI_DEVICE_IN_INIT_ERR
|| bmc->cc == IPMI_NOT_IN_MY_STATE_ERR)
&& ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
msleep(500);
dev_warn(intf->si_dev,
"BMC returned 0x%2.2x, retry get bmc device id\n",
bmc->cc);
goto retry;
}
rv = -EIO; /* Something went wrong in the fetch. */ rv = -EIO; /* Something went wrong in the fetch. */
}
/* dyn_id_set makes the id data available. */ /* dyn_id_set makes the id data available. */
smp_rmb(); smp_rmb();
out_reset_handler:
intf->null_user_handler = NULL; intf->null_user_handler = NULL;
return rv; return rv;
@@ -3245,7 +3266,6 @@ channel_handler(struct ipmi_smi *intf, struct ipmi_recv_msg *msg)
/* It's the one we want */ /* It's the one we want */
if (msg->msg.data[0] != 0) { if (msg->msg.data[0] != 0) {
/* Got an error from the channel, just go on. */ /* Got an error from the channel, just go on. */
if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) { if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
/* /*
* If the MC does not support this * If the MC does not support this
@@ -3329,6 +3349,7 @@ static int __scan_channels(struct ipmi_smi *intf, struct ipmi_device_id *id)
dev_warn(intf->si_dev, dev_warn(intf->si_dev,
"Error sending channel information for channel 0, %d\n", "Error sending channel information for channel 0, %d\n",
rv); rv);
intf->null_user_handler = NULL;
return -EIO; return -EIO;
} }
@@ -3430,9 +3451,8 @@ int ipmi_add_smi(struct module *owner,
intf->curr_seq = 0; intf->curr_seq = 0;
spin_lock_init(&intf->waiting_rcv_msgs_lock); spin_lock_init(&intf->waiting_rcv_msgs_lock);
INIT_LIST_HEAD(&intf->waiting_rcv_msgs); INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
tasklet_init(&intf->recv_tasklet, tasklet_setup(&intf->recv_tasklet,
smi_recv_tasklet, smi_recv_tasklet);
(unsigned long) intf);
atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0); atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
spin_lock_init(&intf->xmit_msgs_lock); spin_lock_init(&intf->xmit_msgs_lock);
INIT_LIST_HEAD(&intf->xmit_msgs); INIT_LIST_HEAD(&intf->xmit_msgs);
@@ -4467,10 +4487,10 @@ static void handle_new_recv_msgs(struct ipmi_smi *intf)
} }
} }
static void smi_recv_tasklet(unsigned long val) static void smi_recv_tasklet(struct tasklet_struct *t)
{ {
unsigned long flags = 0; /* keep us warning-free. */ unsigned long flags = 0; /* keep us warning-free. */
struct ipmi_smi *intf = (struct ipmi_smi *) val; struct ipmi_smi *intf = from_tasklet(intf, t, recv_tasklet);
int run_to_completion = intf->run_to_completion; int run_to_completion = intf->run_to_completion;
struct ipmi_smi_msg *newmsg = NULL; struct ipmi_smi_msg *newmsg = NULL;
@@ -4542,7 +4562,7 @@ void ipmi_smi_msg_received(struct ipmi_smi *intf,
spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags); spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
if (run_to_completion) if (run_to_completion)
smi_recv_tasklet((unsigned long) intf); smi_recv_tasklet(&intf->recv_tasklet);
else else
tasklet_schedule(&intf->recv_tasklet); tasklet_schedule(&intf->recv_tasklet);
} }

View File

@@ -1316,6 +1316,7 @@ static int try_get_dev_id(struct smi_info *smi_info)
unsigned char *resp; unsigned char *resp;
unsigned long resp_len; unsigned long resp_len;
int rv = 0; int rv = 0;
unsigned int retry_count = 0;
resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL); resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
if (!resp) if (!resp)
@@ -1327,6 +1328,8 @@ static int try_get_dev_id(struct smi_info *smi_info)
*/ */
msg[0] = IPMI_NETFN_APP_REQUEST << 2; msg[0] = IPMI_NETFN_APP_REQUEST << 2;
msg[1] = IPMI_GET_DEVICE_ID_CMD; msg[1] = IPMI_GET_DEVICE_ID_CMD;
retry:
smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2); smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
rv = wait_for_msg_done(smi_info); rv = wait_for_msg_done(smi_info);
@@ -1339,6 +1342,20 @@ static int try_get_dev_id(struct smi_info *smi_info)
/* Check and record info from the get device id, in case we need it. */ /* Check and record info from the get device id, in case we need it. */
rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1], rv = ipmi_demangle_device_id(resp[0] >> 2, resp[1],
resp + 2, resp_len - 2, &smi_info->device_id); resp + 2, resp_len - 2, &smi_info->device_id);
if (rv) {
/* record completion code */
unsigned char cc = *(resp + 2);
if ((cc == IPMI_DEVICE_IN_FW_UPDATE_ERR
|| cc == IPMI_DEVICE_IN_INIT_ERR
|| cc == IPMI_NOT_IN_MY_STATE_ERR)
&& ++retry_count <= GET_DEVICE_ID_MAX_RETRY) {
dev_warn(smi_info->io.dev,
"BMC returned 0x%2.2x, retry get bmc device id\n",
cc);
goto retry;
}
}
out: out:
kfree(resp); kfree(resp);
@@ -1963,7 +1980,7 @@ static int try_smi_init(struct smi_info *new_smi)
/* Do this early so it's available for logs. */ /* Do this early so it's available for logs. */
if (!new_smi->io.dev) { if (!new_smi->io.dev) {
pr_err("IPMI interface added with no device\n"); pr_err("IPMI interface added with no device\n");
rv = EIO; rv = -EIO;
goto out_err; goto out_err;
} }

View File

@@ -21,6 +21,8 @@
* 2001 Hewlett-Packard Company * 2001 Hewlett-Packard Company
*/ */
#define DEBUG /* So dev_dbg() is always available. */
#include <linux/kernel.h> /* For printk. */ #include <linux/kernel.h> /* For printk. */
#include <linux/string.h> #include <linux/string.h>
#include <linux/module.h> #include <linux/module.h>
@@ -126,11 +128,14 @@ static int start_smic_transaction(struct si_sm_data *smic,
if (size > MAX_SMIC_WRITE_SIZE) if (size > MAX_SMIC_WRITE_SIZE)
return IPMI_REQ_LEN_EXCEEDED_ERR; return IPMI_REQ_LEN_EXCEEDED_ERR;
if ((smic->state != SMIC_IDLE) && (smic->state != SMIC_HOSED)) if ((smic->state != SMIC_IDLE) && (smic->state != SMIC_HOSED)) {
dev_warn(smic->io->dev,
"SMIC in invalid state %d\n", smic->state);
return IPMI_NOT_IN_MY_STATE_ERR; return IPMI_NOT_IN_MY_STATE_ERR;
}
if (smic_debug & SMIC_DEBUG_MSG) { if (smic_debug & SMIC_DEBUG_MSG) {
printk(KERN_DEBUG "start_smic_transaction -"); dev_dbg(smic->io->dev, "%s -", __func__);
for (i = 0; i < size; i++) for (i = 0; i < size; i++)
pr_cont(" %02x", data[i]); pr_cont(" %02x", data[i]);
pr_cont("\n"); pr_cont("\n");
@@ -152,7 +157,7 @@ static int smic_get_result(struct si_sm_data *smic,
int i; int i;
if (smic_debug & SMIC_DEBUG_MSG) { if (smic_debug & SMIC_DEBUG_MSG) {
printk(KERN_DEBUG "smic_get result -"); dev_dbg(smic->io->dev, "smic_get result -");
for (i = 0; i < smic->read_pos; i++) for (i = 0; i < smic->read_pos; i++)
pr_cont(" %02x", smic->read_data[i]); pr_cont(" %02x", smic->read_data[i]);
pr_cont("\n"); pr_cont("\n");
@@ -324,9 +329,9 @@ static enum si_sm_result smic_event(struct si_sm_data *smic, long time)
} }
if (smic->state != SMIC_IDLE) { if (smic->state != SMIC_IDLE) {
if (smic_debug & SMIC_DEBUG_STATES) if (smic_debug & SMIC_DEBUG_STATES)
printk(KERN_DEBUG dev_dbg(smic->io->dev,
"smic_event - smic->smic_timeout = %ld, time = %ld\n", "%s - smic->smic_timeout = %ld, time = %ld\n",
smic->smic_timeout, time); __func__, smic->smic_timeout, time);
/* /*
* FIXME: smic_event is sometimes called with time > * FIXME: smic_event is sometimes called with time >
* SMIC_RETRY_TIMEOUT * SMIC_RETRY_TIMEOUT
@@ -345,8 +350,9 @@ static enum si_sm_result smic_event(struct si_sm_data *smic, long time)
status = read_smic_status(smic); status = read_smic_status(smic);
if (smic_debug & SMIC_DEBUG_STATES) if (smic_debug & SMIC_DEBUG_STATES)
printk(KERN_DEBUG "smic_event - state = %d, flags = 0x%02x, status = 0x%02x\n", dev_dbg(smic->io->dev,
smic->state, flags, status); "%s - state = %d, flags = 0x%02x, status = 0x%02x\n",
__func__, smic->state, flags, status);
switch (smic->state) { switch (smic->state) {
case SMIC_IDLE: case SMIC_IDLE:
@@ -436,8 +442,9 @@ static enum si_sm_result smic_event(struct si_sm_data *smic, long time)
data = read_smic_data(smic); data = read_smic_data(smic);
if (data != 0) { if (data != 0) {
if (smic_debug & SMIC_DEBUG_ENABLE) if (smic_debug & SMIC_DEBUG_ENABLE)
printk(KERN_DEBUG "SMIC_WRITE_END: data = %02x\n", dev_dbg(smic->io->dev,
data); "SMIC_WRITE_END: data = %02x\n",
data);
start_error_recovery(smic, start_error_recovery(smic,
"state = SMIC_WRITE_END, " "state = SMIC_WRITE_END, "
"data != SUCCESS"); "data != SUCCESS");
@@ -516,8 +523,9 @@ static enum si_sm_result smic_event(struct si_sm_data *smic, long time)
/* data register holds an error code */ /* data register holds an error code */
if (data != 0) { if (data != 0) {
if (smic_debug & SMIC_DEBUG_ENABLE) if (smic_debug & SMIC_DEBUG_ENABLE)
printk(KERN_DEBUG "SMIC_READ_END: data = %02x\n", dev_dbg(smic->io->dev,
data); "SMIC_READ_END: data = %02x\n",
data);
start_error_recovery(smic, start_error_recovery(smic,
"state = SMIC_READ_END, " "state = SMIC_READ_END, "
"data != SUCCESS"); "data != SUCCESS");
@@ -533,7 +541,8 @@ static enum si_sm_result smic_event(struct si_sm_data *smic, long time)
default: default:
if (smic_debug & SMIC_DEBUG_ENABLE) { if (smic_debug & SMIC_DEBUG_ENABLE) {
printk(KERN_DEBUG "smic->state = %d\n", smic->state); dev_dbg(smic->io->dev,
"smic->state = %d\n", smic->state);
start_error_recovery(smic, "state = UNKNOWN"); start_error_recovery(smic, "state = UNKNOWN");
return SI_SM_CALL_WITH_DELAY; return SI_SM_CALL_WITH_DELAY;
} }

View File

@@ -33,16 +33,16 @@
* You can also specify optional tests: * You can also specify optional tests:
* N## = Go to sleep with interrupts of for ## seconds * N## = Go to sleep with interrupts of for ## seconds
* to test the HW NMI watchdog * to test the HW NMI watchdog
* F## = Break at do_fork for ## iterations * F## = Break at kernel_clone for ## iterations
* S## = Break at sys_open for ## iterations * S## = Break at sys_open for ## iterations
* I## = Run the single step test ## iterations * I## = Run the single step test ## iterations
* *
* NOTE: that the do_fork and sys_open tests are mutually exclusive. * NOTE: that the kernel_clone and sys_open tests are mutually exclusive.
* *
* To invoke the kgdb test suite from boot you use a kernel start * To invoke the kgdb test suite from boot you use a kernel start
* argument as follows: * argument as follows:
* kgdbts=V1 kgdbwait * kgdbts=V1 kgdbwait
* Or if you wanted to perform the NMI test for 6 seconds and do_fork * Or if you wanted to perform the NMI test for 6 seconds and kernel_clone
* test for 100 forks, you could use: * test for 100 forks, you could use:
* kgdbts=V1N6F100 kgdbwait * kgdbts=V1N6F100 kgdbwait
* *
@@ -74,7 +74,7 @@
* echo kgdbts=V1S10000 > /sys/module/kgdbts/parameters/kgdbts * echo kgdbts=V1S10000 > /sys/module/kgdbts/parameters/kgdbts
* fg # and hit control-c * fg # and hit control-c
* fg # and hit control-c * fg # and hit control-c
* ## This tests break points on do_fork * ## This tests break points on kernel_clone
* while [ 1 ] ; do date > /dev/null ; done & * while [ 1 ] ; do date > /dev/null ; done &
* while [ 1 ] ; do date > /dev/null ; done & * while [ 1 ] ; do date > /dev/null ; done &
* echo kgdbts=V1F1000 > /sys/module/kgdbts/parameters/kgdbts * echo kgdbts=V1F1000 > /sys/module/kgdbts/parameters/kgdbts
@@ -209,8 +209,8 @@ static unsigned long lookup_addr(char *arg)
addr = (unsigned long)kgdbts_break_test; addr = (unsigned long)kgdbts_break_test;
else if (!strcmp(arg, "sys_open")) else if (!strcmp(arg, "sys_open"))
addr = (unsigned long)do_sys_open; addr = (unsigned long)do_sys_open;
else if (!strcmp(arg, "do_fork")) else if (!strcmp(arg, "kernel_clone"))
addr = (unsigned long)_do_fork; addr = (unsigned long)kernel_clone;
else if (!strcmp(arg, "hw_break_val")) else if (!strcmp(arg, "hw_break_val"))
addr = (unsigned long)&hw_break_val; addr = (unsigned long)&hw_break_val;
addr = (unsigned long) dereference_function_descriptor((void *)addr); addr = (unsigned long) dereference_function_descriptor((void *)addr);
@@ -310,7 +310,7 @@ static int check_and_rewind_pc(char *put_str, char *arg)
if (arch_needs_sstep_emulation && sstep_addr && if (arch_needs_sstep_emulation && sstep_addr &&
ip + offset == sstep_addr && ip + offset == sstep_addr &&
((!strcmp(arg, "sys_open") || !strcmp(arg, "do_fork")))) { ((!strcmp(arg, "sys_open") || !strcmp(arg, "kernel_clone")))) {
/* This is special case for emulated single step */ /* This is special case for emulated single step */
v2printk("Emul: rewind hit single step bp\n"); v2printk("Emul: rewind hit single step bp\n");
restart_from_top_after_write = 1; restart_from_top_after_write = 1;
@@ -596,19 +596,19 @@ static struct test_struct singlestep_break_test[] = {
}; };
/* /*
* Test for hitting a breakpoint at do_fork for what ever the number * Test for hitting a breakpoint at kernel_clone for what ever the number
* of iterations required by the variable repeat_test. * of iterations required by the variable repeat_test.
*/ */
static struct test_struct do_fork_test[] = { static struct test_struct do_kernel_clone_test[] = {
{ "?", "S0*" }, /* Clear break points */ { "?", "S0*" }, /* Clear break points */
{ "do_fork", "OK", sw_break, }, /* set sw breakpoint */ { "kernel_clone", "OK", sw_break, }, /* set sw breakpoint */
{ "c", "T0*", NULL, get_thread_id_continue }, /* Continue */ { "c", "T0*", NULL, get_thread_id_continue }, /* Continue */
{ "do_fork", "OK", sw_rem_break }, /*remove breakpoint */ { "kernel_clone", "OK", sw_rem_break }, /*remove breakpoint */
{ "g", "do_fork", NULL, check_and_rewind_pc }, /* check location */ { "g", "kernel_clone", NULL, check_and_rewind_pc }, /* check location */
{ "write", "OK", write_regs, emul_reset }, /* Write registers */ { "write", "OK", write_regs, emul_reset }, /* Write registers */
{ "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */ { "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */
{ "g", "do_fork", NULL, check_single_step }, { "g", "kernel_clone", NULL, check_single_step },
{ "do_fork", "OK", sw_break, }, /* set sw breakpoint */ { "kernel_clone", "OK", sw_break, }, /* set sw breakpoint */
{ "7", "T0*", skip_back_repeat_test }, /* Loop based on repeat_test */ { "7", "T0*", skip_back_repeat_test }, /* Loop based on repeat_test */
{ "D", "OK", NULL, final_ack_set }, /* detach and unregister I/O */ { "D", "OK", NULL, final_ack_set }, /* detach and unregister I/O */
{ "", "", get_cont_catch, put_cont_catch }, { "", "", get_cont_catch, put_cont_catch },
@@ -935,11 +935,11 @@ static void run_bad_read_test(void)
kgdb_breakpoint(); kgdb_breakpoint();
} }
static void run_do_fork_test(void) static void run_kernel_clone_test(void)
{ {
init_simple_test(); init_simple_test();
ts.tst = do_fork_test; ts.tst = do_kernel_clone_test;
ts.name = "do_fork_test"; ts.name = "do_kernel_clone_test";
/* Activate test with initial breakpoint */ /* Activate test with initial breakpoint */
kgdb_breakpoint(); kgdb_breakpoint();
} }
@@ -967,7 +967,7 @@ static void run_singlestep_break_test(void)
static void kgdbts_run_tests(void) static void kgdbts_run_tests(void)
{ {
char *ptr; char *ptr;
int fork_test = 0; int clone_test = 0;
int do_sys_open_test = 0; int do_sys_open_test = 0;
int sstep_test = 1000; int sstep_test = 1000;
int nmi_sleep = 0; int nmi_sleep = 0;
@@ -981,7 +981,7 @@ static void kgdbts_run_tests(void)
ptr = strchr(config, 'F'); ptr = strchr(config, 'F');
if (ptr) if (ptr)
fork_test = simple_strtol(ptr + 1, NULL, 10); clone_test = simple_strtol(ptr + 1, NULL, 10);
ptr = strchr(config, 'S'); ptr = strchr(config, 'S');
if (ptr) if (ptr)
do_sys_open_test = simple_strtol(ptr + 1, NULL, 10); do_sys_open_test = simple_strtol(ptr + 1, NULL, 10);
@@ -1025,16 +1025,16 @@ static void kgdbts_run_tests(void)
run_nmi_sleep_test(nmi_sleep); run_nmi_sleep_test(nmi_sleep);
} }
/* If the do_fork test is run it will be the last test that is /* If the kernel_clone test is run it will be the last test that is
* executed because a kernel thread will be spawned at the very * executed because a kernel thread will be spawned at the very
* end to unregister the debug hooks. * end to unregister the debug hooks.
*/ */
if (fork_test) { if (clone_test) {
repeat_test = fork_test; repeat_test = clone_test;
printk(KERN_INFO "kgdbts:RUN do_fork for %i breakpoints\n", printk(KERN_INFO "kgdbts:RUN kernel_clone for %i breakpoints\n",
repeat_test); repeat_test);
kthread_run(kgdbts_unreg_thread, NULL, "kgdbts_unreg"); kthread_run(kgdbts_unreg_thread, NULL, "kgdbts_unreg");
run_do_fork_test(); run_kernel_clone_test();
return; return;
} }

View File

@@ -102,6 +102,8 @@ restart:
if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
struct mount *parent = READ_ONCE(mnt->mnt_parent); struct mount *parent = READ_ONCE(mnt->mnt_parent);
struct mnt_namespace *mnt_ns;
/* Escaped? */ /* Escaped? */
if (dentry != vfsmnt->mnt_root) { if (dentry != vfsmnt->mnt_root) {
bptr = *buffer; bptr = *buffer;
@@ -116,7 +118,9 @@ restart:
vfsmnt = &mnt->mnt; vfsmnt = &mnt->mnt;
continue; continue;
} }
if (is_mounted(vfsmnt) && !is_anon_ns(mnt->mnt_ns)) mnt_ns = READ_ONCE(mnt->mnt_ns);
/* open-coded is_mounted() to use local mnt_ns */
if (!IS_ERR_OR_NULL(mnt_ns) && !is_anon_ns(mnt_ns))
error = 1; // absolute root error = 1; // absolute root
else else
error = 2; // detached or not attached yet error = 2; // detached or not attached yet

View File

@@ -1037,18 +1037,18 @@ static vm_fault_t dax_load_hole(struct xa_state *xas,
return ret; return ret;
} }
int dax_iomap_zero(loff_t pos, unsigned offset, unsigned size, s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap)
struct iomap *iomap)
{ {
sector_t sector = iomap_sector(iomap, pos & PAGE_MASK); sector_t sector = iomap_sector(iomap, pos & PAGE_MASK);
pgoff_t pgoff; pgoff_t pgoff;
long rc, id; long rc, id;
void *kaddr; void *kaddr;
bool page_aligned = false; bool page_aligned = false;
unsigned offset = offset_in_page(pos);
unsigned size = min_t(u64, PAGE_SIZE - offset, length);
if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) && if (IS_ALIGNED(sector << SECTOR_SHIFT, PAGE_SIZE) &&
IS_ALIGNED(size, PAGE_SIZE)) (size == PAGE_SIZE))
page_aligned = true; page_aligned = true;
rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff); rc = bdev_dax_pgoff(iomap->bdev, sector, PAGE_SIZE, &pgoff);
@@ -1058,8 +1058,7 @@ int dax_iomap_zero(loff_t pos, unsigned offset, unsigned size,
id = dax_read_lock(); id = dax_read_lock();
if (page_aligned) if (page_aligned)
rc = dax_zero_page_range(iomap->dax_dev, pgoff, rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
size >> PAGE_SHIFT);
else else
rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL); rc = dax_direct_access(iomap->dax_dev, pgoff, 1, &kaddr, NULL);
if (rc < 0) { if (rc < 0) {
@@ -1072,7 +1071,7 @@ int dax_iomap_zero(loff_t pos, unsigned offset, unsigned size,
dax_flush(iomap->dax_dev, kaddr + offset, size); dax_flush(iomap->dax_dev, kaddr + offset, size);
} }
dax_read_unlock(id); dax_read_unlock(id);
return 0; return size;
} }
static loff_t static loff_t

View File

@@ -22,18 +22,25 @@
#include "../internal.h" #include "../internal.h"
/* /*
* Structure allocated for each page when block size < PAGE_SIZE to track * Structure allocated for each page or THP when block size < page size
* sub-page uptodate status and I/O completions. * to track sub-page uptodate status and I/O completions.
*/ */
struct iomap_page { struct iomap_page {
atomic_t read_count; atomic_t read_bytes_pending;
atomic_t write_count; atomic_t write_bytes_pending;
spinlock_t uptodate_lock; spinlock_t uptodate_lock;
DECLARE_BITMAP(uptodate, PAGE_SIZE / 512); unsigned long uptodate[];
}; };
static inline struct iomap_page *to_iomap_page(struct page *page) static inline struct iomap_page *to_iomap_page(struct page *page)
{ {
/*
* per-block data is stored in the head page. Callers should
* not be dealing with tail pages (and if they are, they can
* call thp_head() first.
*/
VM_BUG_ON_PGFLAGS(PageTail(page), page);
if (page_has_private(page)) if (page_has_private(page))
return (struct iomap_page *)page_private(page); return (struct iomap_page *)page_private(page);
return NULL; return NULL;
@@ -45,20 +52,16 @@ static struct iomap_page *
iomap_page_create(struct inode *inode, struct page *page) iomap_page_create(struct inode *inode, struct page *page)
{ {
struct iomap_page *iop = to_iomap_page(page); struct iomap_page *iop = to_iomap_page(page);
unsigned int nr_blocks = i_blocks_per_page(inode, page);
if (iop || i_blocksize(inode) == PAGE_SIZE) if (iop || nr_blocks <= 1)
return iop; return iop;
iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL); iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
atomic_set(&iop->read_count, 0); GFP_NOFS | __GFP_NOFAIL);
atomic_set(&iop->write_count, 0);
spin_lock_init(&iop->uptodate_lock); spin_lock_init(&iop->uptodate_lock);
bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE); if (PageUptodate(page))
bitmap_fill(iop->uptodate, nr_blocks);
/*
* migrate_page_move_mapping() assumes that pages with private data have
* their count elevated by 1.
*/
attach_page_private(page, iop); attach_page_private(page, iop);
return iop; return iop;
} }
@@ -67,11 +70,14 @@ static void
iomap_page_release(struct page *page) iomap_page_release(struct page *page)
{ {
struct iomap_page *iop = detach_page_private(page); struct iomap_page *iop = detach_page_private(page);
unsigned int nr_blocks = i_blocks_per_page(page->mapping->host, page);
if (!iop) if (!iop)
return; return;
WARN_ON_ONCE(atomic_read(&iop->read_count)); WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
WARN_ON_ONCE(atomic_read(&iop->write_count)); WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
PageUptodate(page));
kfree(iop); kfree(iop);
} }
@@ -142,19 +148,11 @@ iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
struct inode *inode = page->mapping->host; struct inode *inode = page->mapping->host;
unsigned first = off >> inode->i_blkbits; unsigned first = off >> inode->i_blkbits;
unsigned last = (off + len - 1) >> inode->i_blkbits; unsigned last = (off + len - 1) >> inode->i_blkbits;
bool uptodate = true;
unsigned long flags; unsigned long flags;
unsigned int i;
spin_lock_irqsave(&iop->uptodate_lock, flags); spin_lock_irqsave(&iop->uptodate_lock, flags);
for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) { bitmap_set(iop->uptodate, first, last - first + 1);
if (i >= first && i <= last) if (bitmap_full(iop->uptodate, i_blocks_per_page(inode, page)))
set_bit(i, iop->uptodate);
else if (!test_bit(i, iop->uptodate))
uptodate = false;
}
if (uptodate)
SetPageUptodate(page); SetPageUptodate(page);
spin_unlock_irqrestore(&iop->uptodate_lock, flags); spin_unlock_irqrestore(&iop->uptodate_lock, flags);
} }
@@ -171,13 +169,6 @@ iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
SetPageUptodate(page); SetPageUptodate(page);
} }
static void
iomap_read_finish(struct iomap_page *iop, struct page *page)
{
if (!iop || atomic_dec_and_test(&iop->read_count))
unlock_page(page);
}
static void static void
iomap_read_page_end_io(struct bio_vec *bvec, int error) iomap_read_page_end_io(struct bio_vec *bvec, int error)
{ {
@@ -191,7 +182,8 @@ iomap_read_page_end_io(struct bio_vec *bvec, int error)
iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len); iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
} }
iomap_read_finish(iop, page); if (!iop || atomic_sub_and_test(bvec->bv_len, &iop->read_bytes_pending))
unlock_page(page);
} }
static void static void
@@ -271,30 +263,19 @@ iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
} }
ctx->cur_page_in_bio = true; ctx->cur_page_in_bio = true;
if (iop)
atomic_add(plen, &iop->read_bytes_pending);
/* /* Try to merge into a previous segment if we can */
* Try to merge into a previous segment if we can.
*/
sector = iomap_sector(iomap, pos); sector = iomap_sector(iomap, pos);
if (ctx->bio && bio_end_sector(ctx->bio) == sector) if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
if (__bio_try_merge_page(ctx->bio, page, plen, poff,
&same_page))
goto done;
is_contig = true; is_contig = true;
if (is_contig &&
__bio_try_merge_page(ctx->bio, page, plen, poff, &same_page)) {
if (!same_page && iop)
atomic_inc(&iop->read_count);
goto done;
} }
/* if (!is_contig || bio_full(ctx->bio, plen)) {
* If we start a new segment we need to increase the read count, and we
* need to do so before submitting any previous full bio to make sure
* that we don't prematurely unlock the page.
*/
if (iop)
atomic_inc(&iop->read_count);
if (!ctx->bio || !is_contig || bio_full(ctx->bio, plen)) {
gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL); gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
gfp_t orig_gfp = gfp; gfp_t orig_gfp = gfp;
int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT; int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
@@ -571,13 +552,13 @@ __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags,
{ {
struct iomap_page *iop = iomap_page_create(inode, page); struct iomap_page *iop = iomap_page_create(inode, page);
loff_t block_size = i_blocksize(inode); loff_t block_size = i_blocksize(inode);
loff_t block_start = pos & ~(block_size - 1); loff_t block_start = round_down(pos, block_size);
loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1); loff_t block_end = round_up(pos + len, block_size);
unsigned from = offset_in_page(pos), to = from + len, poff, plen; unsigned from = offset_in_page(pos), to = from + len, poff, plen;
int status;
if (PageUptodate(page)) if (PageUptodate(page))
return 0; return 0;
ClearPageError(page);
do { do {
iomap_adjust_read_range(inode, iop, &block_start, iomap_adjust_read_range(inode, iop, &block_start,
@@ -594,14 +575,13 @@ __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags,
if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE)) if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE))
return -EIO; return -EIO;
zero_user_segments(page, poff, from, to, poff + plen); zero_user_segments(page, poff, from, to, poff + plen);
iomap_set_range_uptodate(page, poff, plen); } else {
continue; int status = iomap_read_page_sync(block_start, page,
poff, plen, srcmap);
if (status)
return status;
} }
iomap_set_range_uptodate(page, poff, plen);
status = iomap_read_page_sync(block_start, page, poff, plen,
srcmap);
if (status)
return status;
} while ((block_start += plen) < block_end); } while ((block_start += plen) < block_end);
return 0; return 0;
@@ -685,9 +665,8 @@ iomap_set_page_dirty(struct page *page)
} }
EXPORT_SYMBOL_GPL(iomap_set_page_dirty); EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
static int static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
__iomap_write_end(struct inode *inode, loff_t pos, unsigned len, size_t copied, struct page *page)
unsigned copied, struct page *page)
{ {
flush_dcache_page(page); flush_dcache_page(page);
@@ -709,15 +688,15 @@ __iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
return copied; return copied;
} }
static int static size_t iomap_write_end_inline(struct inode *inode, struct page *page,
iomap_write_end_inline(struct inode *inode, struct page *page, struct iomap *iomap, loff_t pos, size_t copied)
struct iomap *iomap, loff_t pos, unsigned copied)
{ {
void *addr; void *addr;
WARN_ON_ONCE(!PageUptodate(page)); WARN_ON_ONCE(!PageUptodate(page));
BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data)); BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
flush_dcache_page(page);
addr = kmap_atomic(page); addr = kmap_atomic(page);
memcpy(iomap->inline_data + pos, addr + pos, copied); memcpy(iomap->inline_data + pos, addr + pos, copied);
kunmap_atomic(addr); kunmap_atomic(addr);
@@ -726,13 +705,14 @@ iomap_write_end_inline(struct inode *inode, struct page *page,
return copied; return copied;
} }
static int /* Returns the number of bytes copied. May be 0. Cannot be an errno. */
iomap_write_end(struct inode *inode, loff_t pos, unsigned len, unsigned copied, static size_t iomap_write_end(struct inode *inode, loff_t pos, size_t len,
struct page *page, struct iomap *iomap, struct iomap *srcmap) size_t copied, struct page *page, struct iomap *iomap,
struct iomap *srcmap)
{ {
const struct iomap_page_ops *page_ops = iomap->page_ops; const struct iomap_page_ops *page_ops = iomap->page_ops;
loff_t old_size = inode->i_size; loff_t old_size = inode->i_size;
int ret; size_t ret;
if (srcmap->type == IOMAP_INLINE) { if (srcmap->type == IOMAP_INLINE) {
ret = iomap_write_end_inline(inode, page, iomap, pos, copied); ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
@@ -811,13 +791,8 @@ again:
copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
flush_dcache_page(page); copied = iomap_write_end(inode, pos, bytes, copied, page, iomap,
status = iomap_write_end(inode, pos, bytes, copied, page, iomap,
srcmap); srcmap);
if (unlikely(status < 0))
break;
copied = status;
cond_resched(); cond_resched();
@@ -891,11 +866,8 @@ iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
status = iomap_write_end(inode, pos, bytes, bytes, page, iomap, status = iomap_write_end(inode, pos, bytes, bytes, page, iomap,
srcmap); srcmap);
if (unlikely(status <= 0)) { if (WARN_ON_ONCE(status == 0))
if (WARN_ON_ONCE(status == 0)) return -EIO;
return -EIO;
return status;
}
cond_resched(); cond_resched();
@@ -928,11 +900,13 @@ iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
} }
EXPORT_SYMBOL_GPL(iomap_file_unshare); EXPORT_SYMBOL_GPL(iomap_file_unshare);
static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset, static s64 iomap_zero(struct inode *inode, loff_t pos, u64 length,
unsigned bytes, struct iomap *iomap, struct iomap *srcmap) struct iomap *iomap, struct iomap *srcmap)
{ {
struct page *page; struct page *page;
int status; int status;
unsigned offset = offset_in_page(pos);
unsigned bytes = min_t(u64, PAGE_SIZE - offset, length);
status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap); status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap);
if (status) if (status)
@@ -944,38 +918,33 @@ static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap); return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap);
} }
static loff_t static loff_t iomap_zero_range_actor(struct inode *inode, loff_t pos,
iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count, loff_t length, void *data, struct iomap *iomap,
void *data, struct iomap *iomap, struct iomap *srcmap) struct iomap *srcmap)
{ {
bool *did_zero = data; bool *did_zero = data;
loff_t written = 0; loff_t written = 0;
int status;
/* already zeroed? we're done. */ /* already zeroed? we're done. */
if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
return count; return length;
do { do {
unsigned offset, bytes; s64 bytes;
offset = offset_in_page(pos);
bytes = min_t(loff_t, PAGE_SIZE - offset, count);
if (IS_DAX(inode)) if (IS_DAX(inode))
status = dax_iomap_zero(pos, offset, bytes, iomap); bytes = dax_iomap_zero(pos, length, iomap);
else else
status = iomap_zero(inode, pos, offset, bytes, iomap, bytes = iomap_zero(inode, pos, length, iomap, srcmap);
srcmap); if (bytes < 0)
if (status < 0) return bytes;
return status;
pos += bytes; pos += bytes;
count -= bytes; length -= bytes;
written += bytes; written += bytes;
if (did_zero) if (did_zero)
*did_zero = true; *did_zero = true;
} while (count > 0); } while (length > 0);
return written; return written;
} }
@@ -1070,7 +1039,7 @@ EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
static void static void
iomap_finish_page_writeback(struct inode *inode, struct page *page, iomap_finish_page_writeback(struct inode *inode, struct page *page,
int error) int error, unsigned int len)
{ {
struct iomap_page *iop = to_iomap_page(page); struct iomap_page *iop = to_iomap_page(page);
@@ -1079,10 +1048,10 @@ iomap_finish_page_writeback(struct inode *inode, struct page *page,
mapping_set_error(inode->i_mapping, -EIO); mapping_set_error(inode->i_mapping, -EIO);
} }
WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop); WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop);
WARN_ON_ONCE(iop && atomic_read(&iop->write_count) <= 0); WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
if (!iop || atomic_dec_and_test(&iop->write_count)) if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
end_page_writeback(page); end_page_writeback(page);
} }
@@ -1116,7 +1085,8 @@ iomap_finish_ioend(struct iomap_ioend *ioend, int error)
/* walk each page on bio, ending page IO on them */ /* walk each page on bio, ending page IO on them */
bio_for_each_segment_all(bv, bio, iter_all) bio_for_each_segment_all(bv, bio, iter_all)
iomap_finish_page_writeback(inode, bv->bv_page, error); iomap_finish_page_writeback(inode, bv->bv_page, error,
bv->bv_len);
bio_put(bio); bio_put(bio);
} }
/* The ioend has been freed by bio_put() */ /* The ioend has been freed by bio_put() */
@@ -1332,8 +1302,8 @@ iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff, merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
&same_page); &same_page);
if (iop && !same_page) if (iop)
atomic_inc(&iop->write_count); atomic_add(len, &iop->write_bytes_pending);
if (!merged) { if (!merged) {
if (bio_full(wpc->ioend->io_bio, len)) { if (bio_full(wpc->ioend->io_bio, len)) {
@@ -1375,8 +1345,8 @@ iomap_writepage_map(struct iomap_writepage_ctx *wpc,
int error = 0, count = 0, i; int error = 0, count = 0, i;
LIST_HEAD(submit_list); LIST_HEAD(submit_list);
WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop); WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop);
WARN_ON_ONCE(iop && atomic_read(&iop->write_count) != 0); WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
/* /*
* Walk through the page to find areas to write back. If we run off the * Walk through the page to find areas to write back. If we run off the

View File

@@ -77,7 +77,7 @@ static void iomap_dio_submit_bio(struct iomap_dio *dio, struct iomap *iomap,
dio->submit.cookie = submit_bio(bio); dio->submit.cookie = submit_bio(bio);
} }
static ssize_t iomap_dio_complete(struct iomap_dio *dio) ssize_t iomap_dio_complete(struct iomap_dio *dio)
{ {
const struct iomap_dio_ops *dops = dio->dops; const struct iomap_dio_ops *dops = dio->dops;
struct kiocb *iocb = dio->iocb; struct kiocb *iocb = dio->iocb;
@@ -109,7 +109,7 @@ static ssize_t iomap_dio_complete(struct iomap_dio *dio)
* ->end_io() when necessary, otherwise a racing buffer read would cache * ->end_io() when necessary, otherwise a racing buffer read would cache
* zeros from unwritten extents. * zeros from unwritten extents.
*/ */
if (!dio->error && if (!dio->error && dio->size &&
(dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) { (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
int err; int err;
err = invalidate_inode_pages2_range(inode->i_mapping, err = invalidate_inode_pages2_range(inode->i_mapping,
@@ -119,6 +119,7 @@ static ssize_t iomap_dio_complete(struct iomap_dio *dio)
dio_warn_stale_pagecache(iocb->ki_filp); dio_warn_stale_pagecache(iocb->ki_filp);
} }
inode_dio_end(file_inode(iocb->ki_filp));
/* /*
* If this is a DSYNC write, make sure we push it to stable storage now * If this is a DSYNC write, make sure we push it to stable storage now
* that we've written data. * that we've written data.
@@ -126,11 +127,11 @@ static ssize_t iomap_dio_complete(struct iomap_dio *dio)
if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC)) if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
ret = generic_write_sync(iocb, ret); ret = generic_write_sync(iocb, ret);
inode_dio_end(file_inode(iocb->ki_filp));
kfree(dio); kfree(dio);
return ret; return ret;
} }
EXPORT_SYMBOL_GPL(iomap_dio_complete);
static void iomap_dio_complete_work(struct work_struct *work) static void iomap_dio_complete_work(struct work_struct *work)
{ {
@@ -396,6 +397,16 @@ iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
return iomap_dio_bio_actor(inode, pos, length, dio, iomap); return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
case IOMAP_INLINE: case IOMAP_INLINE:
return iomap_dio_inline_actor(inode, pos, length, dio, iomap); return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
case IOMAP_DELALLOC:
/*
* DIO is not serialised against mmap() access at all, and so
* if the page_mkwrite occurs between the writeback and the
* iomap_apply() call in the DIO path, then it will see the
* DELALLOC block that the page-mkwrite allocated.
*/
pr_warn_ratelimited("Direct I/O collision with buffered writes! File: %pD4 Comm: %.20s\n",
dio->iocb->ki_filp, current->comm);
return -EIO;
default: default:
WARN_ON_ONCE(1); WARN_ON_ONCE(1);
return -EIO; return -EIO;
@@ -414,8 +425,8 @@ iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
* Returns -ENOTBLK In case of a page invalidation invalidation failure for * Returns -ENOTBLK In case of a page invalidation invalidation failure for
* writes. The callers needs to fall back to buffered I/O in this case. * writes. The callers needs to fall back to buffered I/O in this case.
*/ */
ssize_t struct iomap_dio *
iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, __iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
const struct iomap_ops *ops, const struct iomap_dio_ops *dops, const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
bool wait_for_completion) bool wait_for_completion)
{ {
@@ -429,14 +440,14 @@ iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
struct iomap_dio *dio; struct iomap_dio *dio;
if (!count) if (!count)
return 0; return NULL;
if (WARN_ON(is_sync_kiocb(iocb) && !wait_for_completion)) if (WARN_ON(is_sync_kiocb(iocb) && !wait_for_completion))
return -EIO; return ERR_PTR(-EIO);
dio = kmalloc(sizeof(*dio), GFP_KERNEL); dio = kmalloc(sizeof(*dio), GFP_KERNEL);
if (!dio) if (!dio)
return -ENOMEM; return ERR_PTR(-ENOMEM);
dio->iocb = iocb; dio->iocb = iocb;
atomic_set(&dio->ref, 1); atomic_set(&dio->ref, 1);
@@ -566,7 +577,7 @@ iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
dio->wait_for_completion = wait_for_completion; dio->wait_for_completion = wait_for_completion;
if (!atomic_dec_and_test(&dio->ref)) { if (!atomic_dec_and_test(&dio->ref)) {
if (!wait_for_completion) if (!wait_for_completion)
return -EIOCBQUEUED; return ERR_PTR(-EIOCBQUEUED);
for (;;) { for (;;) {
set_current_state(TASK_UNINTERRUPTIBLE); set_current_state(TASK_UNINTERRUPTIBLE);
@@ -582,10 +593,26 @@ iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
__set_current_state(TASK_RUNNING); __set_current_state(TASK_RUNNING);
} }
return iomap_dio_complete(dio); return dio;
out_free_dio: out_free_dio:
kfree(dio); kfree(dio);
return ret; if (ret)
return ERR_PTR(ret);
return NULL;
}
EXPORT_SYMBOL_GPL(__iomap_dio_rw);
ssize_t
iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
bool wait_for_completion)
{
struct iomap_dio *dio;
dio = __iomap_dio_rw(iocb, iter, ops, dops, wait_for_completion);
if (IS_ERR_OR_NULL(dio))
return PTR_ERR_OR_ZERO(dio);
return iomap_dio_complete(dio);
} }
EXPORT_SYMBOL_GPL(iomap_dio_rw); EXPORT_SYMBOL_GPL(iomap_dio_rw);

View File

@@ -473,7 +473,7 @@ static int metapage_readpage(struct file *fp, struct page *page)
struct inode *inode = page->mapping->host; struct inode *inode = page->mapping->host;
struct bio *bio = NULL; struct bio *bio = NULL;
int block_offset; int block_offset;
int blocks_per_page = PAGE_SIZE >> inode->i_blkbits; int blocks_per_page = i_blocks_per_page(inode, page);
sector_t page_start; /* address of page in fs blocks */ sector_t page_start; /* address of page in fs blocks */
sector_t pblock; sector_t pblock;
int xlen; int xlen;

View File

@@ -93,25 +93,3 @@ kmem_alloc_large(size_t size, xfs_km_flags_t flags)
return ptr; return ptr;
return __kmem_vmalloc(size, flags); return __kmem_vmalloc(size, flags);
} }
void *
kmem_realloc(const void *old, size_t newsize, xfs_km_flags_t flags)
{
int retries = 0;
gfp_t lflags = kmem_flags_convert(flags);
void *ptr;
trace_kmem_realloc(newsize, flags, _RET_IP_);
do {
ptr = krealloc(old, newsize, lflags);
if (ptr || (flags & KM_MAYFAIL))
return ptr;
if (!(++retries % 100))
xfs_err(NULL,
"%s(%u) possible memory allocation deadlock size %zu in %s (mode:0x%x)",
current->comm, current->pid,
newsize, __func__, lflags);
congestion_wait(BLK_RW_ASYNC, HZ/50);
} while (1);
}

View File

@@ -59,7 +59,6 @@ kmem_flags_convert(xfs_km_flags_t flags)
extern void *kmem_alloc(size_t, xfs_km_flags_t); extern void *kmem_alloc(size_t, xfs_km_flags_t);
extern void *kmem_alloc_io(size_t size, int align_mask, xfs_km_flags_t flags); extern void *kmem_alloc_io(size_t size, int align_mask, xfs_km_flags_t flags);
extern void *kmem_alloc_large(size_t size, xfs_km_flags_t); extern void *kmem_alloc_large(size_t size, xfs_km_flags_t);
extern void *kmem_realloc(const void *, size_t, xfs_km_flags_t);
static inline void kmem_free(const void *ptr) static inline void kmem_free(const void *ptr)
{ {
kvfree(ptr); kvfree(ptr);
@@ -72,12 +71,6 @@ kmem_zalloc(size_t size, xfs_km_flags_t flags)
return kmem_alloc(size, flags | KM_ZERO); return kmem_alloc(size, flags | KM_ZERO);
} }
static inline void *
kmem_zalloc_large(size_t size, xfs_km_flags_t flags)
{
return kmem_alloc_large(size, flags | KM_ZERO);
}
/* /*
* Zone interfaces * Zone interfaces
*/ */

View File

@@ -333,6 +333,11 @@ xfs_agiblock_init(
} }
for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++)
agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
if (xfs_sb_version_hasinobtcounts(&mp->m_sb)) {
agi->agi_iblocks = cpu_to_be32(1);
if (xfs_sb_version_hasfinobt(&mp->m_sb))
agi->agi_fblocks = cpu_to_be32(1);
}
} }
typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp, typedef void (*aghdr_init_work_f)(struct xfs_mount *mp, struct xfs_buf *bp,

View File

@@ -428,7 +428,7 @@ xfs_attr_set(
*/ */
if (XFS_IFORK_Q(dp) == 0) { if (XFS_IFORK_Q(dp) == 0) {
int sf_size = sizeof(struct xfs_attr_sf_hdr) + int sf_size = sizeof(struct xfs_attr_sf_hdr) +
XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, xfs_attr_sf_entsize_byname(args->namelen,
args->valuelen); args->valuelen);
error = xfs_bmap_add_attrfork(dp, sf_size, rsvd); error = xfs_bmap_add_attrfork(dp, sf_size, rsvd);
@@ -523,6 +523,14 @@ out_trans_cancel:
* External routines when attribute list is inside the inode * External routines when attribute list is inside the inode
*========================================================================*/ *========================================================================*/
static inline int xfs_attr_sf_totsize(struct xfs_inode *dp)
{
struct xfs_attr_shortform *sf;
sf = (struct xfs_attr_shortform *)dp->i_afp->if_u1.if_data;
return be16_to_cpu(sf->hdr.totsize);
}
/* /*
* Add a name to the shortform attribute list structure * Add a name to the shortform attribute list structure
* This is the external routine. * This is the external routine.
@@ -555,8 +563,8 @@ xfs_attr_shortform_addname(xfs_da_args_t *args)
args->valuelen >= XFS_ATTR_SF_ENTSIZE_MAX) args->valuelen >= XFS_ATTR_SF_ENTSIZE_MAX)
return -ENOSPC; return -ENOSPC;
newsize = XFS_ATTR_SF_TOTSIZE(args->dp); newsize = xfs_attr_sf_totsize(args->dp);
newsize += XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen); newsize += xfs_attr_sf_entsize_byname(args->namelen, args->valuelen);
forkoff = xfs_attr_shortform_bytesfit(args->dp, newsize); forkoff = xfs_attr_shortform_bytesfit(args->dp, newsize);
if (!forkoff) if (!forkoff)

View File

@@ -684,9 +684,9 @@ xfs_attr_sf_findname(
sf = (struct xfs_attr_shortform *)args->dp->i_afp->if_u1.if_data; sf = (struct xfs_attr_shortform *)args->dp->i_afp->if_u1.if_data;
sfe = &sf->list[0]; sfe = &sf->list[0];
end = sf->hdr.count; end = sf->hdr.count;
for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), for (i = 0; i < end; sfe = xfs_attr_sf_nextentry(sfe),
base += size, i++) { base += size, i++) {
size = XFS_ATTR_SF_ENTSIZE(sfe); size = xfs_attr_sf_entsize(sfe);
if (!xfs_attr_match(args, sfe->namelen, sfe->nameval, if (!xfs_attr_match(args, sfe->namelen, sfe->nameval,
sfe->flags)) sfe->flags))
continue; continue;
@@ -728,15 +728,15 @@ xfs_attr_shortform_add(
ifp = dp->i_afp; ifp = dp->i_afp;
ASSERT(ifp->if_flags & XFS_IFINLINE); ASSERT(ifp->if_flags & XFS_IFINLINE);
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
if (xfs_attr_sf_findname(args, &sfe, NULL) == -EEXIST) if (xfs_attr_sf_findname(args, &sfe, NULL) == -EEXIST)
ASSERT(0); ASSERT(0);
offset = (char *)sfe - (char *)sf; offset = (char *)sfe - (char *)sf;
size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen); size = xfs_attr_sf_entsize_byname(args->namelen, args->valuelen);
xfs_idata_realloc(dp, size, XFS_ATTR_FORK); xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset); sfe = (struct xfs_attr_sf_entry *)((char *)sf + offset);
sfe->namelen = args->namelen; sfe->namelen = args->namelen;
sfe->valuelen = args->valuelen; sfe->valuelen = args->valuelen;
@@ -787,12 +787,12 @@ xfs_attr_shortform_remove(
dp = args->dp; dp = args->dp;
mp = dp->i_mount; mp = dp->i_mount;
sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data; sf = (struct xfs_attr_shortform *)dp->i_afp->if_u1.if_data;
error = xfs_attr_sf_findname(args, &sfe, &base); error = xfs_attr_sf_findname(args, &sfe, &base);
if (error != -EEXIST) if (error != -EEXIST)
return error; return error;
size = XFS_ATTR_SF_ENTSIZE(sfe); size = xfs_attr_sf_entsize(sfe);
/* /*
* Fix up the attribute fork data, covering the hole * Fix up the attribute fork data, covering the hole
@@ -837,8 +837,8 @@ xfs_attr_shortform_remove(
int int
xfs_attr_shortform_lookup(xfs_da_args_t *args) xfs_attr_shortform_lookup(xfs_da_args_t *args)
{ {
xfs_attr_shortform_t *sf; struct xfs_attr_shortform *sf;
xfs_attr_sf_entry_t *sfe; struct xfs_attr_sf_entry *sfe;
int i; int i;
struct xfs_ifork *ifp; struct xfs_ifork *ifp;
@@ -846,10 +846,10 @@ xfs_attr_shortform_lookup(xfs_da_args_t *args)
ifp = args->dp->i_afp; ifp = args->dp->i_afp;
ASSERT(ifp->if_flags & XFS_IFINLINE); ASSERT(ifp->if_flags & XFS_IFINLINE);
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
sfe = &sf->list[0]; sfe = &sf->list[0];
for (i = 0; i < sf->hdr.count; for (i = 0; i < sf->hdr.count;
sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { sfe = xfs_attr_sf_nextentry(sfe), i++) {
if (xfs_attr_match(args, sfe->namelen, sfe->nameval, if (xfs_attr_match(args, sfe->namelen, sfe->nameval,
sfe->flags)) sfe->flags))
return -EEXIST; return -EEXIST;
@@ -873,10 +873,10 @@ xfs_attr_shortform_getvalue(
int i; int i;
ASSERT(args->dp->i_afp->if_flags == XFS_IFINLINE); ASSERT(args->dp->i_afp->if_flags == XFS_IFINLINE);
sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data; sf = (struct xfs_attr_shortform *)args->dp->i_afp->if_u1.if_data;
sfe = &sf->list[0]; sfe = &sf->list[0];
for (i = 0; i < sf->hdr.count; for (i = 0; i < sf->hdr.count;
sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { sfe = xfs_attr_sf_nextentry(sfe), i++) {
if (xfs_attr_match(args, sfe->namelen, sfe->nameval, if (xfs_attr_match(args, sfe->namelen, sfe->nameval,
sfe->flags)) sfe->flags))
return xfs_attr_copy_value(args, return xfs_attr_copy_value(args,
@@ -908,12 +908,12 @@ xfs_attr_shortform_to_leaf(
dp = args->dp; dp = args->dp;
ifp = dp->i_afp; ifp = dp->i_afp;
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
size = be16_to_cpu(sf->hdr.totsize); size = be16_to_cpu(sf->hdr.totsize);
tmpbuffer = kmem_alloc(size, 0); tmpbuffer = kmem_alloc(size, 0);
ASSERT(tmpbuffer != NULL); ASSERT(tmpbuffer != NULL);
memcpy(tmpbuffer, ifp->if_u1.if_data, size); memcpy(tmpbuffer, ifp->if_u1.if_data, size);
sf = (xfs_attr_shortform_t *)tmpbuffer; sf = (struct xfs_attr_shortform *)tmpbuffer;
xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK); xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK);
@@ -951,7 +951,7 @@ xfs_attr_shortform_to_leaf(
ASSERT(error != -ENOSPC); ASSERT(error != -ENOSPC);
if (error) if (error)
goto out; goto out;
sfe = XFS_ATTR_SF_NEXTENTRY(sfe); sfe = xfs_attr_sf_nextentry(sfe);
} }
error = 0; error = 0;
*leaf_bp = bp; *leaf_bp = bp;
@@ -992,9 +992,8 @@ xfs_attr_shortform_allfit(
return 0; return 0;
if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX) if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
return 0; return 0;
bytes += sizeof(struct xfs_attr_sf_entry) - 1 bytes += xfs_attr_sf_entsize_byname(name_loc->namelen,
+ name_loc->namelen be16_to_cpu(name_loc->valuelen));
+ be16_to_cpu(name_loc->valuelen);
} }
if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) && if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) &&
(dp->i_df.if_format != XFS_DINODE_FMT_BTREE) && (dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
@@ -1039,7 +1038,7 @@ xfs_attr_shortform_verify(
* xfs_attr_sf_entry is defined with a 1-byte variable * xfs_attr_sf_entry is defined with a 1-byte variable
* array at the end, so we must subtract that off. * array at the end, so we must subtract that off.
*/ */
if (((char *)sfep + sizeof(*sfep) - 1) >= endp) if (((char *)sfep + sizeof(*sfep)) >= endp)
return __this_address; return __this_address;
/* Don't allow names with known bad length. */ /* Don't allow names with known bad length. */
@@ -1051,7 +1050,7 @@ xfs_attr_shortform_verify(
* within the data buffer. The next entry starts after the * within the data buffer. The next entry starts after the
* name component, so nextentry is an acceptable test. * name component, so nextentry is an acceptable test.
*/ */
next_sfep = XFS_ATTR_SF_NEXTENTRY(sfep); next_sfep = xfs_attr_sf_nextentry(sfep);
if ((char *)next_sfep > endp) if ((char *)next_sfep > endp)
return __this_address; return __this_address;

View File

@@ -13,7 +13,6 @@
* to fit into the literal area of the inode. * to fit into the literal area of the inode.
*/ */
typedef struct xfs_attr_sf_hdr xfs_attr_sf_hdr_t; typedef struct xfs_attr_sf_hdr xfs_attr_sf_hdr_t;
typedef struct xfs_attr_sf_entry xfs_attr_sf_entry_t;
/* /*
* We generate this then sort it, attr_list() must return things in hash-order. * We generate this then sort it, attr_list() must return things in hash-order.
@@ -27,16 +26,26 @@ typedef struct xfs_attr_sf_sort {
unsigned char *name; /* name value, pointer into buffer */ unsigned char *name; /* name value, pointer into buffer */
} xfs_attr_sf_sort_t; } xfs_attr_sf_sort_t;
#define XFS_ATTR_SF_ENTSIZE_BYNAME(nlen,vlen) /* space name/value uses */ \
(((int)sizeof(xfs_attr_sf_entry_t)-1 + (nlen)+(vlen)))
#define XFS_ATTR_SF_ENTSIZE_MAX /* max space for name&value */ \ #define XFS_ATTR_SF_ENTSIZE_MAX /* max space for name&value */ \
((1 << (NBBY*(int)sizeof(uint8_t))) - 1) ((1 << (NBBY*(int)sizeof(uint8_t))) - 1)
#define XFS_ATTR_SF_ENTSIZE(sfep) /* space an entry uses */ \
((int)sizeof(xfs_attr_sf_entry_t)-1 + (sfep)->namelen+(sfep)->valuelen) /* space name/value uses */
#define XFS_ATTR_SF_NEXTENTRY(sfep) /* next entry in struct */ \ static inline int xfs_attr_sf_entsize_byname(uint8_t nlen, uint8_t vlen)
((xfs_attr_sf_entry_t *)((char *)(sfep) + XFS_ATTR_SF_ENTSIZE(sfep))) {
#define XFS_ATTR_SF_TOTSIZE(dp) /* total space in use */ \ return sizeof(struct xfs_attr_sf_entry) + nlen + vlen;
(be16_to_cpu(((xfs_attr_shortform_t *) \ }
((dp)->i_afp->if_u1.if_data))->hdr.totsize))
/* space an entry uses */
static inline int xfs_attr_sf_entsize(struct xfs_attr_sf_entry *sfep)
{
return struct_size(sfep, nameval, sfep->namelen + sfep->valuelen);
}
/* next entry in struct */
static inline struct xfs_attr_sf_entry *
xfs_attr_sf_nextentry(struct xfs_attr_sf_entry *sfep)
{
return (void *)sfep + xfs_attr_sf_entsize(sfep);
}
#endif /* __XFS_ATTR_SF_H__ */ #endif /* __XFS_ATTR_SF_H__ */

View File

@@ -579,7 +579,7 @@ xfs_dir2_block_leaf_p(struct xfs_dir2_block_tail *btp)
/* /*
* Entries are packed toward the top as tight as possible. * Entries are packed toward the top as tight as possible.
*/ */
typedef struct xfs_attr_shortform { struct xfs_attr_shortform {
struct xfs_attr_sf_hdr { /* constant-structure header block */ struct xfs_attr_sf_hdr { /* constant-structure header block */
__be16 totsize; /* total bytes in shortform list */ __be16 totsize; /* total bytes in shortform list */
__u8 count; /* count of active entries */ __u8 count; /* count of active entries */
@@ -589,9 +589,9 @@ typedef struct xfs_attr_shortform {
uint8_t namelen; /* actual length of name (no NULL) */ uint8_t namelen; /* actual length of name (no NULL) */
uint8_t valuelen; /* actual length of value (no NULL) */ uint8_t valuelen; /* actual length of value (no NULL) */
uint8_t flags; /* flags bits (see xfs_attr_leaf.h) */ uint8_t flags; /* flags bits (see xfs_attr_leaf.h) */
uint8_t nameval[1]; /* name & value bytes concatenated */ uint8_t nameval[]; /* name & value bytes concatenated */
} list[1]; /* variable sized array */ } list[1]; /* variable sized array */
} xfs_attr_shortform_t; };
typedef struct xfs_attr_leaf_map { /* RLE map of free bytes */ typedef struct xfs_attr_leaf_map { /* RLE map of free bytes */
__be16 base; /* base of free region */ __be16 base; /* base of free region */

View File

@@ -69,6 +69,13 @@ xfs_dquot_verify(
ddq_type != XFS_DQTYPE_GROUP) ddq_type != XFS_DQTYPE_GROUP)
return __this_address; return __this_address;
if ((ddq->d_type & XFS_DQTYPE_BIGTIME) &&
!xfs_sb_version_hasbigtime(&mp->m_sb))
return __this_address;
if ((ddq->d_type & XFS_DQTYPE_BIGTIME) && !ddq->d_id)
return __this_address;
if (id != -1 && id != be32_to_cpu(ddq->d_id)) if (id != -1 && id != be32_to_cpu(ddq->d_id))
return __this_address; return __this_address;
@@ -288,3 +295,31 @@ const struct xfs_buf_ops xfs_dquot_buf_ra_ops = {
.verify_read = xfs_dquot_buf_readahead_verify, .verify_read = xfs_dquot_buf_readahead_verify,
.verify_write = xfs_dquot_buf_write_verify, .verify_write = xfs_dquot_buf_write_verify,
}; };
/* Convert an on-disk timer value into an incore timer value. */
time64_t
xfs_dquot_from_disk_ts(
struct xfs_disk_dquot *ddq,
__be32 dtimer)
{
uint32_t t = be32_to_cpu(dtimer);
if (t != 0 && (ddq->d_type & XFS_DQTYPE_BIGTIME))
return xfs_dq_bigtime_to_unix(t);
return t;
}
/* Convert an incore timer value into an on-disk timer value. */
__be32
xfs_dquot_to_disk_ts(
struct xfs_dquot *dqp,
time64_t timer)
{
uint32_t t = timer;
if (timer != 0 && (dqp->q_type & XFS_DQTYPE_BIGTIME))
t = xfs_dq_unix_to_bigtime(timer);
return cpu_to_be32(t);
}

View File

@@ -449,10 +449,12 @@ xfs_sb_has_compat_feature(
#define XFS_SB_FEAT_RO_COMPAT_FINOBT (1 << 0) /* free inode btree */ #define XFS_SB_FEAT_RO_COMPAT_FINOBT (1 << 0) /* free inode btree */
#define XFS_SB_FEAT_RO_COMPAT_RMAPBT (1 << 1) /* reverse map btree */ #define XFS_SB_FEAT_RO_COMPAT_RMAPBT (1 << 1) /* reverse map btree */
#define XFS_SB_FEAT_RO_COMPAT_REFLINK (1 << 2) /* reflinked files */ #define XFS_SB_FEAT_RO_COMPAT_REFLINK (1 << 2) /* reflinked files */
#define XFS_SB_FEAT_RO_COMPAT_INOBTCNT (1 << 3) /* inobt block counts */
#define XFS_SB_FEAT_RO_COMPAT_ALL \ #define XFS_SB_FEAT_RO_COMPAT_ALL \
(XFS_SB_FEAT_RO_COMPAT_FINOBT | \ (XFS_SB_FEAT_RO_COMPAT_FINOBT | \
XFS_SB_FEAT_RO_COMPAT_RMAPBT | \ XFS_SB_FEAT_RO_COMPAT_RMAPBT | \
XFS_SB_FEAT_RO_COMPAT_REFLINK) XFS_SB_FEAT_RO_COMPAT_REFLINK| \
XFS_SB_FEAT_RO_COMPAT_INOBTCNT)
#define XFS_SB_FEAT_RO_COMPAT_UNKNOWN ~XFS_SB_FEAT_RO_COMPAT_ALL #define XFS_SB_FEAT_RO_COMPAT_UNKNOWN ~XFS_SB_FEAT_RO_COMPAT_ALL
static inline bool static inline bool
xfs_sb_has_ro_compat_feature( xfs_sb_has_ro_compat_feature(
@@ -465,10 +467,12 @@ xfs_sb_has_ro_compat_feature(
#define XFS_SB_FEAT_INCOMPAT_FTYPE (1 << 0) /* filetype in dirent */ #define XFS_SB_FEAT_INCOMPAT_FTYPE (1 << 0) /* filetype in dirent */
#define XFS_SB_FEAT_INCOMPAT_SPINODES (1 << 1) /* sparse inode chunks */ #define XFS_SB_FEAT_INCOMPAT_SPINODES (1 << 1) /* sparse inode chunks */
#define XFS_SB_FEAT_INCOMPAT_META_UUID (1 << 2) /* metadata UUID */ #define XFS_SB_FEAT_INCOMPAT_META_UUID (1 << 2) /* metadata UUID */
#define XFS_SB_FEAT_INCOMPAT_BIGTIME (1 << 3) /* large timestamps */
#define XFS_SB_FEAT_INCOMPAT_ALL \ #define XFS_SB_FEAT_INCOMPAT_ALL \
(XFS_SB_FEAT_INCOMPAT_FTYPE| \ (XFS_SB_FEAT_INCOMPAT_FTYPE| \
XFS_SB_FEAT_INCOMPAT_SPINODES| \ XFS_SB_FEAT_INCOMPAT_SPINODES| \
XFS_SB_FEAT_INCOMPAT_META_UUID) XFS_SB_FEAT_INCOMPAT_META_UUID| \
XFS_SB_FEAT_INCOMPAT_BIGTIME)
#define XFS_SB_FEAT_INCOMPAT_UNKNOWN ~XFS_SB_FEAT_INCOMPAT_ALL #define XFS_SB_FEAT_INCOMPAT_UNKNOWN ~XFS_SB_FEAT_INCOMPAT_ALL
static inline bool static inline bool
@@ -563,6 +567,23 @@ static inline bool xfs_sb_version_hasreflink(struct xfs_sb *sbp)
(sbp->sb_features_ro_compat & XFS_SB_FEAT_RO_COMPAT_REFLINK); (sbp->sb_features_ro_compat & XFS_SB_FEAT_RO_COMPAT_REFLINK);
} }
static inline bool xfs_sb_version_hasbigtime(struct xfs_sb *sbp)
{
return XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5 &&
(sbp->sb_features_incompat & XFS_SB_FEAT_INCOMPAT_BIGTIME);
}
/*
* Inode btree block counter. We record the number of inobt and finobt blocks
* in the AGI header so that we can skip the finobt walk at mount time when
* setting up per-AG reservations.
*/
static inline bool xfs_sb_version_hasinobtcounts(struct xfs_sb *sbp)
{
return XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5 &&
(sbp->sb_features_ro_compat & XFS_SB_FEAT_RO_COMPAT_INOBTCNT);
}
/* /*
* end of superblock version macros * end of superblock version macros
*/ */
@@ -765,6 +786,9 @@ typedef struct xfs_agi {
__be32 agi_free_root; /* root of the free inode btree */ __be32 agi_free_root; /* root of the free inode btree */
__be32 agi_free_level;/* levels in free inode btree */ __be32 agi_free_level;/* levels in free inode btree */
__be32 agi_iblocks; /* inobt blocks used */
__be32 agi_fblocks; /* finobt blocks used */
/* structure must be padded to 64 bit alignment */ /* structure must be padded to 64 bit alignment */
} xfs_agi_t; } xfs_agi_t;
@@ -785,7 +809,8 @@ typedef struct xfs_agi {
#define XFS_AGI_ALL_BITS_R1 ((1 << XFS_AGI_NUM_BITS_R1) - 1) #define XFS_AGI_ALL_BITS_R1 ((1 << XFS_AGI_NUM_BITS_R1) - 1)
#define XFS_AGI_FREE_ROOT (1 << 11) #define XFS_AGI_FREE_ROOT (1 << 11)
#define XFS_AGI_FREE_LEVEL (1 << 12) #define XFS_AGI_FREE_LEVEL (1 << 12)
#define XFS_AGI_NUM_BITS_R2 13 #define XFS_AGI_IBLOCKS (1 << 13) /* both inobt/finobt block counters */
#define XFS_AGI_NUM_BITS_R2 14
/* disk block (xfs_daddr_t) in the AG */ /* disk block (xfs_daddr_t) in the AG */
#define XFS_AGI_DADDR(mp) ((xfs_daddr_t)(2 << (mp)->m_sectbb_log)) #define XFS_AGI_DADDR(mp) ((xfs_daddr_t)(2 << (mp)->m_sectbb_log))
@@ -831,10 +856,87 @@ struct xfs_agfl {
ASSERT(xfs_daddr_to_agno(mp, d) == \ ASSERT(xfs_daddr_to_agno(mp, d) == \
xfs_daddr_to_agno(mp, (d) + (len) - 1))) xfs_daddr_to_agno(mp, (d) + (len) - 1)))
typedef struct xfs_timestamp { /*
* XFS Timestamps
* ==============
*
* Traditional ondisk inode timestamps consist of signed 32-bit counters for
* seconds and nanoseconds; time zero is the Unix epoch, Jan 1 00:00:00 UTC
* 1970, which means that the timestamp epoch is the same as the Unix epoch.
* Therefore, the ondisk min and max defined here can be used directly to
* constrain the incore timestamps on a Unix system. Note that we actually
* encode a __be64 value on disk.
*
* When the bigtime feature is enabled, ondisk inode timestamps become an
* unsigned 64-bit nanoseconds counter. This means that the bigtime inode
* timestamp epoch is the start of the classic timestamp range, which is
* Dec 31 20:45:52 UTC 1901. Because the epochs are not the same, callers
* /must/ use the bigtime conversion functions when encoding and decoding raw
* timestamps.
*/
typedef __be64 xfs_timestamp_t;
/* Legacy timestamp encoding format. */
struct xfs_legacy_timestamp {
__be32 t_sec; /* timestamp seconds */ __be32 t_sec; /* timestamp seconds */
__be32 t_nsec; /* timestamp nanoseconds */ __be32 t_nsec; /* timestamp nanoseconds */
} xfs_timestamp_t; };
/*
* Smallest possible ondisk seconds value with traditional timestamps. This
* corresponds exactly with the incore timestamp Dec 13 20:45:52 UTC 1901.
*/
#define XFS_LEGACY_TIME_MIN ((int64_t)S32_MIN)
/*
* Largest possible ondisk seconds value with traditional timestamps. This
* corresponds exactly with the incore timestamp Jan 19 03:14:07 UTC 2038.
*/
#define XFS_LEGACY_TIME_MAX ((int64_t)S32_MAX)
/*
* Smallest possible ondisk seconds value with bigtime timestamps. This
* corresponds (after conversion to a Unix timestamp) with the traditional
* minimum timestamp of Dec 13 20:45:52 UTC 1901.
*/
#define XFS_BIGTIME_TIME_MIN ((int64_t)0)
/*
* Largest supported ondisk seconds value with bigtime timestamps. This
* corresponds (after conversion to a Unix timestamp) with an incore timestamp
* of Jul 2 20:20:24 UTC 2486.
*
* We round down the ondisk limit so that the bigtime quota and inode max
* timestamps will be the same.
*/
#define XFS_BIGTIME_TIME_MAX ((int64_t)((-1ULL / NSEC_PER_SEC) & ~0x3ULL))
/*
* Bigtime epoch is set exactly to the minimum time value that a traditional
* 32-bit timestamp can represent when using the Unix epoch as a reference.
* Hence the Unix epoch is at a fixed offset into the supported bigtime
* timestamp range.
*
* The bigtime epoch also matches the minimum value an on-disk 32-bit XFS
* timestamp can represent so we will not lose any fidelity in converting
* to/from unix and bigtime timestamps.
*
* The following conversion factor converts a seconds counter from the Unix
* epoch to the bigtime epoch.
*/
#define XFS_BIGTIME_EPOCH_OFFSET (-(int64_t)S32_MIN)
/* Convert a timestamp from the Unix epoch to the bigtime epoch. */
static inline uint64_t xfs_unix_to_bigtime(time64_t unix_seconds)
{
return (uint64_t)unix_seconds + XFS_BIGTIME_EPOCH_OFFSET;
}
/* Convert a timestamp from the bigtime epoch to the Unix epoch. */
static inline time64_t xfs_bigtime_to_unix(uint64_t ondisk_seconds)
{
return (time64_t)ondisk_seconds - XFS_BIGTIME_EPOCH_OFFSET;
}
/* /*
* On-disk inode structure. * On-disk inode structure.
@@ -1061,12 +1163,22 @@ static inline void xfs_dinode_put_rdev(struct xfs_dinode *dip, xfs_dev_t rdev)
#define XFS_DIFLAG2_DAX_BIT 0 /* use DAX for this inode */ #define XFS_DIFLAG2_DAX_BIT 0 /* use DAX for this inode */
#define XFS_DIFLAG2_REFLINK_BIT 1 /* file's blocks may be shared */ #define XFS_DIFLAG2_REFLINK_BIT 1 /* file's blocks may be shared */
#define XFS_DIFLAG2_COWEXTSIZE_BIT 2 /* copy on write extent size hint */ #define XFS_DIFLAG2_COWEXTSIZE_BIT 2 /* copy on write extent size hint */
#define XFS_DIFLAG2_BIGTIME_BIT 3 /* big timestamps */
#define XFS_DIFLAG2_DAX (1 << XFS_DIFLAG2_DAX_BIT) #define XFS_DIFLAG2_DAX (1 << XFS_DIFLAG2_DAX_BIT)
#define XFS_DIFLAG2_REFLINK (1 << XFS_DIFLAG2_REFLINK_BIT) #define XFS_DIFLAG2_REFLINK (1 << XFS_DIFLAG2_REFLINK_BIT)
#define XFS_DIFLAG2_COWEXTSIZE (1 << XFS_DIFLAG2_COWEXTSIZE_BIT) #define XFS_DIFLAG2_COWEXTSIZE (1 << XFS_DIFLAG2_COWEXTSIZE_BIT)
#define XFS_DIFLAG2_BIGTIME (1 << XFS_DIFLAG2_BIGTIME_BIT)
#define XFS_DIFLAG2_ANY \ #define XFS_DIFLAG2_ANY \
(XFS_DIFLAG2_DAX | XFS_DIFLAG2_REFLINK | XFS_DIFLAG2_COWEXTSIZE) (XFS_DIFLAG2_DAX | XFS_DIFLAG2_REFLINK | XFS_DIFLAG2_COWEXTSIZE | \
XFS_DIFLAG2_BIGTIME)
static inline bool xfs_dinode_has_bigtime(const struct xfs_dinode *dip)
{
return dip->di_version >= 3 &&
(dip->di_flags2 & cpu_to_be64(XFS_DIFLAG2_BIGTIME));
}
/* /*
* Inode number format: * Inode number format:
@@ -1152,13 +1264,98 @@ static inline void xfs_dinode_put_rdev(struct xfs_dinode *dip, xfs_dev_t rdev)
#define XFS_DQTYPE_USER 0x01 /* user dquot record */ #define XFS_DQTYPE_USER 0x01 /* user dquot record */
#define XFS_DQTYPE_PROJ 0x02 /* project dquot record */ #define XFS_DQTYPE_PROJ 0x02 /* project dquot record */
#define XFS_DQTYPE_GROUP 0x04 /* group dquot record */ #define XFS_DQTYPE_GROUP 0x04 /* group dquot record */
#define XFS_DQTYPE_BIGTIME 0x80 /* large expiry timestamps */
/* bitmask to determine if this is a user/group/project dquot */ /* bitmask to determine if this is a user/group/project dquot */
#define XFS_DQTYPE_REC_MASK (XFS_DQTYPE_USER | \ #define XFS_DQTYPE_REC_MASK (XFS_DQTYPE_USER | \
XFS_DQTYPE_PROJ | \ XFS_DQTYPE_PROJ | \
XFS_DQTYPE_GROUP) XFS_DQTYPE_GROUP)
#define XFS_DQTYPE_ANY (XFS_DQTYPE_REC_MASK) #define XFS_DQTYPE_ANY (XFS_DQTYPE_REC_MASK | \
XFS_DQTYPE_BIGTIME)
/*
* XFS Quota Timers
* ================
*
* Traditional quota grace period expiration timers are an unsigned 32-bit
* seconds counter; time zero is the Unix epoch, Jan 1 00:00:01 UTC 1970.
* Note that an expiration value of zero means that the quota limit has not
* been reached, and therefore no expiration has been set. Therefore, the
* ondisk min and max defined here can be used directly to constrain the incore
* quota expiration timestamps on a Unix system.
*
* When bigtime is enabled, we trade two bits of precision to expand the
* expiration timeout range to match that of big inode timestamps. The min and
* max recorded here are the on-disk limits, not a Unix timestamp.
*
* The grace period for each quota type is stored in the root dquot (id = 0)
* and is applied to a non-root dquot when it exceeds the soft or hard limits.
* The length of quota grace periods are unsigned 32-bit quantities measured in
* units of seconds. A value of zero means to use the default period.
*/
/*
* Smallest possible ondisk quota expiration value with traditional timestamps.
* This corresponds exactly with the incore expiration Jan 1 00:00:01 UTC 1970.
*/
#define XFS_DQ_LEGACY_EXPIRY_MIN ((int64_t)1)
/*
* Largest possible ondisk quota expiration value with traditional timestamps.
* This corresponds exactly with the incore expiration Feb 7 06:28:15 UTC 2106.
*/
#define XFS_DQ_LEGACY_EXPIRY_MAX ((int64_t)U32_MAX)
/*
* Smallest possible ondisk quota expiration value with bigtime timestamps.
* This corresponds (after conversion to a Unix timestamp) with the incore
* expiration of Jan 1 00:00:04 UTC 1970.
*/
#define XFS_DQ_BIGTIME_EXPIRY_MIN (XFS_DQ_LEGACY_EXPIRY_MIN)
/*
* Largest supported ondisk quota expiration value with bigtime timestamps.
* This corresponds (after conversion to a Unix timestamp) with an incore
* expiration of Jul 2 20:20:24 UTC 2486.
*
* The ondisk field supports values up to -1U, which corresponds to an incore
* expiration in 2514. This is beyond the maximum the bigtime inode timestamp,
* so we cap the maximum bigtime quota expiration to the max inode timestamp.
*/
#define XFS_DQ_BIGTIME_EXPIRY_MAX ((int64_t)4074815106U)
/*
* The following conversion factors assist in converting a quota expiration
* timestamp between the incore and ondisk formats.
*/
#define XFS_DQ_BIGTIME_SHIFT (2)
#define XFS_DQ_BIGTIME_SLACK ((int64_t)(1ULL << XFS_DQ_BIGTIME_SHIFT) - 1)
/* Convert an incore quota expiration timestamp to an ondisk bigtime value. */
static inline uint32_t xfs_dq_unix_to_bigtime(time64_t unix_seconds)
{
/*
* Round the expiration timestamp up to the nearest bigtime timestamp
* that we can store, to give users the most time to fix problems.
*/
return ((uint64_t)unix_seconds + XFS_DQ_BIGTIME_SLACK) >>
XFS_DQ_BIGTIME_SHIFT;
}
/* Convert an ondisk bigtime quota expiration value to an incore timestamp. */
static inline time64_t xfs_dq_bigtime_to_unix(uint32_t ondisk_seconds)
{
return (time64_t)ondisk_seconds << XFS_DQ_BIGTIME_SHIFT;
}
/*
* Default quota grace periods, ranging from zero (use the compiled defaults)
* to ~136 years. These are applied to a non-root dquot that has exceeded
* either limit.
*/
#define XFS_DQ_GRACE_MIN ((int64_t)0)
#define XFS_DQ_GRACE_MAX ((int64_t)U32_MAX)
/* /*
* This is the main portion of the on-disk representation of quota information * This is the main portion of the on-disk representation of quota information

View File

@@ -249,6 +249,7 @@ typedef struct xfs_fsop_resblks {
#define XFS_FSOP_GEOM_FLAGS_SPINODES (1 << 18) /* sparse inode chunks */ #define XFS_FSOP_GEOM_FLAGS_SPINODES (1 << 18) /* sparse inode chunks */
#define XFS_FSOP_GEOM_FLAGS_RMAPBT (1 << 19) /* reverse mapping btree */ #define XFS_FSOP_GEOM_FLAGS_RMAPBT (1 << 19) /* reverse mapping btree */
#define XFS_FSOP_GEOM_FLAGS_REFLINK (1 << 20) /* files can share blocks */ #define XFS_FSOP_GEOM_FLAGS_REFLINK (1 << 20) /* files can share blocks */
#define XFS_FSOP_GEOM_FLAGS_BIGTIME (1 << 21) /* 64-bit nsec timestamps */
/* /*
* Minimum and maximum sizes need for growth checks. * Minimum and maximum sizes need for growth checks.

View File

@@ -2473,6 +2473,7 @@ xfs_ialloc_log_agi(
offsetof(xfs_agi_t, agi_unlinked), offsetof(xfs_agi_t, agi_unlinked),
offsetof(xfs_agi_t, agi_free_root), offsetof(xfs_agi_t, agi_free_root),
offsetof(xfs_agi_t, agi_free_level), offsetof(xfs_agi_t, agi_free_level),
offsetof(xfs_agi_t, agi_iblocks),
sizeof(xfs_agi_t) sizeof(xfs_agi_t)
}; };
#ifdef DEBUG #ifdef DEBUG
@@ -2806,6 +2807,10 @@ xfs_ialloc_setup_geometry(
uint64_t icount; uint64_t icount;
uint inodes; uint inodes;
igeo->new_diflags2 = 0;
if (xfs_sb_version_hasbigtime(&mp->m_sb))
igeo->new_diflags2 |= XFS_DIFLAG2_BIGTIME;
/* Compute inode btree geometry. */ /* Compute inode btree geometry. */
igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog; igeo->agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1); igeo->inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);

View File

@@ -67,6 +67,25 @@ xfs_finobt_set_root(
XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL); XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL);
} }
/* Update the inode btree block counter for this btree. */
static inline void
xfs_inobt_mod_blockcount(
struct xfs_btree_cur *cur,
int howmuch)
{
struct xfs_buf *agbp = cur->bc_ag.agbp;
struct xfs_agi *agi = agbp->b_addr;
if (!xfs_sb_version_hasinobtcounts(&cur->bc_mp->m_sb))
return;
if (cur->bc_btnum == XFS_BTNUM_FINO)
be32_add_cpu(&agi->agi_fblocks, howmuch);
else if (cur->bc_btnum == XFS_BTNUM_INO)
be32_add_cpu(&agi->agi_iblocks, howmuch);
xfs_ialloc_log_agi(cur->bc_tp, agbp, XFS_AGI_IBLOCKS);
}
STATIC int STATIC int
__xfs_inobt_alloc_block( __xfs_inobt_alloc_block(
struct xfs_btree_cur *cur, struct xfs_btree_cur *cur,
@@ -102,6 +121,7 @@ __xfs_inobt_alloc_block(
new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno)); new->s = cpu_to_be32(XFS_FSB_TO_AGBNO(args.mp, args.fsbno));
*stat = 1; *stat = 1;
xfs_inobt_mod_blockcount(cur, 1);
return 0; return 0;
} }
@@ -134,6 +154,7 @@ __xfs_inobt_free_block(
struct xfs_buf *bp, struct xfs_buf *bp,
enum xfs_ag_resv_type resv) enum xfs_ag_resv_type resv)
{ {
xfs_inobt_mod_blockcount(cur, -1);
return xfs_free_extent(cur->bc_tp, return xfs_free_extent(cur->bc_tp,
XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)), 1, XFS_DADDR_TO_FSB(cur->bc_mp, XFS_BUF_ADDR(bp)), 1,
&XFS_RMAP_OINFO_INOBT, resv); &XFS_RMAP_OINFO_INOBT, resv);
@@ -480,19 +501,29 @@ xfs_inobt_commit_staged_btree(
{ {
struct xfs_agi *agi = agbp->b_addr; struct xfs_agi *agi = agbp->b_addr;
struct xbtree_afakeroot *afake = cur->bc_ag.afake; struct xbtree_afakeroot *afake = cur->bc_ag.afake;
int fields;
ASSERT(cur->bc_flags & XFS_BTREE_STAGING); ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
if (cur->bc_btnum == XFS_BTNUM_INO) { if (cur->bc_btnum == XFS_BTNUM_INO) {
fields = XFS_AGI_ROOT | XFS_AGI_LEVEL;
agi->agi_root = cpu_to_be32(afake->af_root); agi->agi_root = cpu_to_be32(afake->af_root);
agi->agi_level = cpu_to_be32(afake->af_levels); agi->agi_level = cpu_to_be32(afake->af_levels);
xfs_ialloc_log_agi(tp, agbp, XFS_AGI_ROOT | XFS_AGI_LEVEL); if (xfs_sb_version_hasinobtcounts(&cur->bc_mp->m_sb)) {
agi->agi_iblocks = cpu_to_be32(afake->af_blocks);
fields |= XFS_AGI_IBLOCKS;
}
xfs_ialloc_log_agi(tp, agbp, fields);
xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_inobt_ops); xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_inobt_ops);
} else { } else {
fields = XFS_AGI_FREE_ROOT | XFS_AGI_FREE_LEVEL;
agi->agi_free_root = cpu_to_be32(afake->af_root); agi->agi_free_root = cpu_to_be32(afake->af_root);
agi->agi_free_level = cpu_to_be32(afake->af_levels); agi->agi_free_level = cpu_to_be32(afake->af_levels);
xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREE_ROOT | if (xfs_sb_version_hasinobtcounts(&cur->bc_mp->m_sb)) {
XFS_AGI_FREE_LEVEL); agi->agi_fblocks = cpu_to_be32(afake->af_blocks);
fields |= XFS_AGI_IBLOCKS;
}
xfs_ialloc_log_agi(tp, agbp, fields);
xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_finobt_ops); xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_finobt_ops);
} }
} }
@@ -673,6 +704,28 @@ xfs_inobt_count_blocks(
return error; return error;
} }
/* Read finobt block count from AGI header. */
static int
xfs_finobt_read_blocks(
struct xfs_mount *mp,
struct xfs_trans *tp,
xfs_agnumber_t agno,
xfs_extlen_t *tree_blocks)
{
struct xfs_buf *agbp;
struct xfs_agi *agi;
int error;
error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
if (error)
return error;
agi = agbp->b_addr;
*tree_blocks = be32_to_cpu(agi->agi_fblocks);
xfs_trans_brelse(tp, agbp);
return 0;
}
/* /*
* Figure out how many blocks to reserve and how many are used by this btree. * Figure out how many blocks to reserve and how many are used by this btree.
*/ */
@@ -690,7 +743,11 @@ xfs_finobt_calc_reserves(
if (!xfs_sb_version_hasfinobt(&mp->m_sb)) if (!xfs_sb_version_hasfinobt(&mp->m_sb))
return 0; return 0;
error = xfs_inobt_count_blocks(mp, tp, agno, XFS_BTNUM_FINO, &tree_len); if (xfs_sb_version_hasinobtcounts(&mp->m_sb))
error = xfs_finobt_read_blocks(mp, tp, agno, &tree_len);
else
error = xfs_inobt_count_blocks(mp, tp, agno, XFS_BTNUM_FINO,
&tree_len);
if (error) if (error)
return error; return error;

View File

@@ -603,7 +603,7 @@ xfs_iext_realloc_root(
if (new_size / sizeof(struct xfs_iext_rec) == RECS_PER_LEAF) if (new_size / sizeof(struct xfs_iext_rec) == RECS_PER_LEAF)
new_size = NODE_SIZE; new_size = NODE_SIZE;
new = kmem_realloc(ifp->if_u1.if_root, new_size, KM_NOFS); new = krealloc(ifp->if_u1.if_root, new_size, GFP_NOFS | __GFP_NOFAIL);
memset(new + ifp->if_bytes, 0, new_size - ifp->if_bytes); memset(new + ifp->if_bytes, 0, new_size - ifp->if_bytes);
ifp->if_u1.if_root = new; ifp->if_u1.if_root = new;
cur->leaf = new; cur->leaf = new;

View File

@@ -157,6 +157,36 @@ xfs_imap_to_bp(
return 0; return 0;
} }
static inline struct timespec64 xfs_inode_decode_bigtime(uint64_t ts)
{
struct timespec64 tv;
uint32_t n;
tv.tv_sec = xfs_bigtime_to_unix(div_u64_rem(ts, NSEC_PER_SEC, &n));
tv.tv_nsec = n;
return tv;
}
/* Convert an ondisk timestamp to an incore timestamp. */
struct timespec64
xfs_inode_from_disk_ts(
struct xfs_dinode *dip,
const xfs_timestamp_t ts)
{
struct timespec64 tv;
struct xfs_legacy_timestamp *lts;
if (xfs_dinode_has_bigtime(dip))
return xfs_inode_decode_bigtime(be64_to_cpu(ts));
lts = (struct xfs_legacy_timestamp *)&ts;
tv.tv_sec = (int)be32_to_cpu(lts->t_sec);
tv.tv_nsec = (int)be32_to_cpu(lts->t_nsec);
return tv;
}
int int
xfs_inode_from_disk( xfs_inode_from_disk(
struct xfs_inode *ip, struct xfs_inode *ip,
@@ -211,12 +241,9 @@ xfs_inode_from_disk(
* a time before epoch is converted to a time long after epoch * a time before epoch is converted to a time long after epoch
* on 64 bit systems. * on 64 bit systems.
*/ */
inode->i_atime.tv_sec = (int)be32_to_cpu(from->di_atime.t_sec); inode->i_atime = xfs_inode_from_disk_ts(from, from->di_atime);
inode->i_atime.tv_nsec = (int)be32_to_cpu(from->di_atime.t_nsec); inode->i_mtime = xfs_inode_from_disk_ts(from, from->di_mtime);
inode->i_mtime.tv_sec = (int)be32_to_cpu(from->di_mtime.t_sec); inode->i_ctime = xfs_inode_from_disk_ts(from, from->di_ctime);
inode->i_mtime.tv_nsec = (int)be32_to_cpu(from->di_mtime.t_nsec);
inode->i_ctime.tv_sec = (int)be32_to_cpu(from->di_ctime.t_sec);
inode->i_ctime.tv_nsec = (int)be32_to_cpu(from->di_ctime.t_nsec);
to->di_size = be64_to_cpu(from->di_size); to->di_size = be64_to_cpu(from->di_size);
to->di_nblocks = be64_to_cpu(from->di_nblocks); to->di_nblocks = be64_to_cpu(from->di_nblocks);
@@ -229,8 +256,7 @@ xfs_inode_from_disk(
if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) { if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) {
inode_set_iversion_queried(inode, inode_set_iversion_queried(inode,
be64_to_cpu(from->di_changecount)); be64_to_cpu(from->di_changecount));
to->di_crtime.tv_sec = be32_to_cpu(from->di_crtime.t_sec); to->di_crtime = xfs_inode_from_disk_ts(from, from->di_crtime);
to->di_crtime.tv_nsec = be32_to_cpu(from->di_crtime.t_nsec);
to->di_flags2 = be64_to_cpu(from->di_flags2); to->di_flags2 = be64_to_cpu(from->di_flags2);
to->di_cowextsize = be32_to_cpu(from->di_cowextsize); to->di_cowextsize = be32_to_cpu(from->di_cowextsize);
} }
@@ -252,6 +278,25 @@ out_destroy_data_fork:
return error; return error;
} }
/* Convert an incore timestamp to an ondisk timestamp. */
static inline xfs_timestamp_t
xfs_inode_to_disk_ts(
struct xfs_inode *ip,
const struct timespec64 tv)
{
struct xfs_legacy_timestamp *lts;
xfs_timestamp_t ts;
if (xfs_inode_has_bigtime(ip))
return cpu_to_be64(xfs_inode_encode_bigtime(tv));
lts = (struct xfs_legacy_timestamp *)&ts;
lts->t_sec = cpu_to_be32(tv.tv_sec);
lts->t_nsec = cpu_to_be32(tv.tv_nsec);
return ts;
}
void void
xfs_inode_to_disk( xfs_inode_to_disk(
struct xfs_inode *ip, struct xfs_inode *ip,
@@ -271,12 +316,9 @@ xfs_inode_to_disk(
to->di_projid_hi = cpu_to_be16(from->di_projid >> 16); to->di_projid_hi = cpu_to_be16(from->di_projid >> 16);
memset(to->di_pad, 0, sizeof(to->di_pad)); memset(to->di_pad, 0, sizeof(to->di_pad));
to->di_atime.t_sec = cpu_to_be32(inode->i_atime.tv_sec); to->di_atime = xfs_inode_to_disk_ts(ip, inode->i_atime);
to->di_atime.t_nsec = cpu_to_be32(inode->i_atime.tv_nsec); to->di_mtime = xfs_inode_to_disk_ts(ip, inode->i_mtime);
to->di_mtime.t_sec = cpu_to_be32(inode->i_mtime.tv_sec); to->di_ctime = xfs_inode_to_disk_ts(ip, inode->i_ctime);
to->di_mtime.t_nsec = cpu_to_be32(inode->i_mtime.tv_nsec);
to->di_ctime.t_sec = cpu_to_be32(inode->i_ctime.tv_sec);
to->di_ctime.t_nsec = cpu_to_be32(inode->i_ctime.tv_nsec);
to->di_nlink = cpu_to_be32(inode->i_nlink); to->di_nlink = cpu_to_be32(inode->i_nlink);
to->di_gen = cpu_to_be32(inode->i_generation); to->di_gen = cpu_to_be32(inode->i_generation);
to->di_mode = cpu_to_be16(inode->i_mode); to->di_mode = cpu_to_be16(inode->i_mode);
@@ -295,8 +337,7 @@ xfs_inode_to_disk(
if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) { if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) {
to->di_version = 3; to->di_version = 3;
to->di_changecount = cpu_to_be64(inode_peek_iversion(inode)); to->di_changecount = cpu_to_be64(inode_peek_iversion(inode));
to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.tv_sec); to->di_crtime = xfs_inode_to_disk_ts(ip, from->di_crtime);
to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.tv_nsec);
to->di_flags2 = cpu_to_be64(from->di_flags2); to->di_flags2 = cpu_to_be64(from->di_flags2);
to->di_cowextsize = cpu_to_be32(from->di_cowextsize); to->di_cowextsize = cpu_to_be32(from->di_cowextsize);
to->di_ino = cpu_to_be64(ip->i_ino); to->di_ino = cpu_to_be64(ip->i_ino);
@@ -310,58 +351,6 @@ xfs_inode_to_disk(
} }
} }
void
xfs_log_dinode_to_disk(
struct xfs_log_dinode *from,
struct xfs_dinode *to)
{
to->di_magic = cpu_to_be16(from->di_magic);
to->di_mode = cpu_to_be16(from->di_mode);
to->di_version = from->di_version;
to->di_format = from->di_format;
to->di_onlink = 0;
to->di_uid = cpu_to_be32(from->di_uid);
to->di_gid = cpu_to_be32(from->di_gid);
to->di_nlink = cpu_to_be32(from->di_nlink);
to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
to->di_size = cpu_to_be64(from->di_size);
to->di_nblocks = cpu_to_be64(from->di_nblocks);
to->di_extsize = cpu_to_be32(from->di_extsize);
to->di_nextents = cpu_to_be32(from->di_nextents);
to->di_anextents = cpu_to_be16(from->di_anextents);
to->di_forkoff = from->di_forkoff;
to->di_aformat = from->di_aformat;
to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
to->di_dmstate = cpu_to_be16(from->di_dmstate);
to->di_flags = cpu_to_be16(from->di_flags);
to->di_gen = cpu_to_be32(from->di_gen);
if (from->di_version == 3) {
to->di_changecount = cpu_to_be64(from->di_changecount);
to->di_crtime.t_sec = cpu_to_be32(from->di_crtime.t_sec);
to->di_crtime.t_nsec = cpu_to_be32(from->di_crtime.t_nsec);
to->di_flags2 = cpu_to_be64(from->di_flags2);
to->di_cowextsize = cpu_to_be32(from->di_cowextsize);
to->di_ino = cpu_to_be64(from->di_ino);
to->di_lsn = cpu_to_be64(from->di_lsn);
memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
uuid_copy(&to->di_uuid, &from->di_uuid);
to->di_flushiter = 0;
} else {
to->di_flushiter = cpu_to_be16(from->di_flushiter);
}
}
static xfs_failaddr_t static xfs_failaddr_t
xfs_dinode_verify_fork( xfs_dinode_verify_fork(
struct xfs_dinode *dip, struct xfs_dinode *dip,
@@ -568,6 +557,11 @@ xfs_dinode_verify(
if (fa) if (fa)
return fa; return fa;
/* bigtime iflag can only happen on bigtime filesystems */
if (xfs_dinode_has_bigtime(dip) &&
!xfs_sb_version_hasbigtime(&mp->m_sb))
return __this_address;
return NULL; return NULL;
} }

View File

@@ -32,6 +32,11 @@ struct xfs_icdinode {
struct timespec64 di_crtime; /* time created */ struct timespec64 di_crtime; /* time created */
}; };
static inline bool xfs_icdinode_has_bigtime(const struct xfs_icdinode *icd)
{
return icd->di_flags2 & XFS_DIFLAG2_BIGTIME;
}
/* /*
* Inode location information. Stored in the inode and passed to * Inode location information. Stored in the inode and passed to
* xfs_imap_to_bp() to get a buffer and dinode for a given inode. * xfs_imap_to_bp() to get a buffer and dinode for a given inode.
@@ -49,8 +54,6 @@ void xfs_dinode_calc_crc(struct xfs_mount *, struct xfs_dinode *);
void xfs_inode_to_disk(struct xfs_inode *ip, struct xfs_dinode *to, void xfs_inode_to_disk(struct xfs_inode *ip, struct xfs_dinode *to,
xfs_lsn_t lsn); xfs_lsn_t lsn);
int xfs_inode_from_disk(struct xfs_inode *ip, struct xfs_dinode *from); int xfs_inode_from_disk(struct xfs_inode *ip, struct xfs_dinode *from);
void xfs_log_dinode_to_disk(struct xfs_log_dinode *from,
struct xfs_dinode *to);
xfs_failaddr_t xfs_dinode_verify(struct xfs_mount *mp, xfs_ino_t ino, xfs_failaddr_t xfs_dinode_verify(struct xfs_mount *mp, xfs_ino_t ino,
struct xfs_dinode *dip); struct xfs_dinode *dip);
@@ -60,4 +63,12 @@ xfs_failaddr_t xfs_inode_validate_cowextsize(struct xfs_mount *mp,
uint32_t cowextsize, uint16_t mode, uint16_t flags, uint32_t cowextsize, uint16_t mode, uint16_t flags,
uint64_t flags2); uint64_t flags2);
static inline uint64_t xfs_inode_encode_bigtime(struct timespec64 tv)
{
return xfs_unix_to_bigtime(tv.tv_sec) * NSEC_PER_SEC + tv.tv_nsec;
}
struct timespec64 xfs_inode_from_disk_ts(struct xfs_dinode *dip,
const xfs_timestamp_t ts);
#endif /* __XFS_INODE_BUF_H__ */ #endif /* __XFS_INODE_BUF_H__ */

View File

@@ -386,8 +386,8 @@ xfs_iroot_realloc(
cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0); cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
new_max = cur_max + rec_diff; new_max = cur_max + rec_diff;
new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max); new_size = XFS_BMAP_BROOT_SPACE_CALC(mp, new_max);
ifp->if_broot = kmem_realloc(ifp->if_broot, new_size, ifp->if_broot = krealloc(ifp->if_broot, new_size,
KM_NOFS); GFP_NOFS | __GFP_NOFAIL);
op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
ifp->if_broot_bytes); ifp->if_broot_bytes);
np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1, np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
@@ -496,8 +496,8 @@ xfs_idata_realloc(
* in size so that it can be logged and stay on word boundaries. * in size so that it can be logged and stay on word boundaries.
* We enforce that here. * We enforce that here.
*/ */
ifp->if_u1.if_data = kmem_realloc(ifp->if_u1.if_data, ifp->if_u1.if_data = krealloc(ifp->if_u1.if_data, roundup(new_size, 4),
roundup(new_size, 4), KM_NOFS); GFP_NOFS | __GFP_NOFAIL);
ifp->if_bytes = new_size; ifp->if_bytes = new_size;
} }

View File

@@ -368,10 +368,13 @@ static inline int xfs_ilog_fdata(int w)
* directly mirrors the xfs_dinode structure as it must contain all the same * directly mirrors the xfs_dinode structure as it must contain all the same
* information. * information.
*/ */
typedef struct xfs_ictimestamp { typedef uint64_t xfs_ictimestamp_t;
/* Legacy timestamp encoding format. */
struct xfs_legacy_ictimestamp {
int32_t t_sec; /* timestamp seconds */ int32_t t_sec; /* timestamp seconds */
int32_t t_nsec; /* timestamp nanoseconds */ int32_t t_nsec; /* timestamp nanoseconds */
} xfs_ictimestamp_t; };
/* /*
* Define the format of the inode core that is logged. This structure must be * Define the format of the inode core that is logged. This structure must be

View File

@@ -121,7 +121,6 @@ struct xlog_recover {
void xlog_buf_readahead(struct xlog *log, xfs_daddr_t blkno, uint len, void xlog_buf_readahead(struct xlog *log, xfs_daddr_t blkno, uint len,
const struct xfs_buf_ops *ops); const struct xfs_buf_ops *ops);
bool xlog_is_buffer_cancelled(struct xlog *log, xfs_daddr_t blkno, uint len); bool xlog_is_buffer_cancelled(struct xlog *log, xfs_daddr_t blkno, uint len);
void xlog_recover_iodone(struct xfs_buf *bp);
void xlog_recover_release_intent(struct xlog *log, unsigned short intent_type, void xlog_recover_release_intent(struct xlog *log, unsigned short intent_type,
uint64_t intent_id); uint64_t intent_id);

View File

@@ -23,7 +23,8 @@ typedef uint8_t xfs_dqtype_t;
#define XFS_DQTYPE_STRINGS \ #define XFS_DQTYPE_STRINGS \
{ XFS_DQTYPE_USER, "USER" }, \ { XFS_DQTYPE_USER, "USER" }, \
{ XFS_DQTYPE_PROJ, "PROJ" }, \ { XFS_DQTYPE_PROJ, "PROJ" }, \
{ XFS_DQTYPE_GROUP, "GROUP" } { XFS_DQTYPE_GROUP, "GROUP" }, \
{ XFS_DQTYPE_BIGTIME, "BIGTIME" }
/* /*
* flags for q_flags field in the dquot. * flags for q_flags field in the dquot.
@@ -143,4 +144,9 @@ extern int xfs_calc_dquots_per_chunk(unsigned int nbblks);
extern void xfs_dqblk_repair(struct xfs_mount *mp, struct xfs_dqblk *dqb, extern void xfs_dqblk_repair(struct xfs_mount *mp, struct xfs_dqblk *dqb,
xfs_dqid_t id, xfs_dqtype_t type); xfs_dqid_t id, xfs_dqtype_t type);
struct xfs_dquot;
time64_t xfs_dquot_from_disk_ts(struct xfs_disk_dquot *ddq,
__be32 dtimer);
__be32 xfs_dquot_to_disk_ts(struct xfs_dquot *ddq, time64_t timer);
#endif /* __XFS_QUOTA_H__ */ #endif /* __XFS_QUOTA_H__ */

View File

@@ -954,7 +954,7 @@ xfs_log_sb(
struct xfs_trans *tp) struct xfs_trans *tp)
{ {
struct xfs_mount *mp = tp->t_mountp; struct xfs_mount *mp = tp->t_mountp;
struct xfs_buf *bp = xfs_trans_getsb(tp, mp); struct xfs_buf *bp = xfs_trans_getsb(tp);
mp->m_sb.sb_icount = percpu_counter_sum(&mp->m_icount); mp->m_sb.sb_icount = percpu_counter_sum(&mp->m_icount);
mp->m_sb.sb_ifree = percpu_counter_sum(&mp->m_ifree); mp->m_sb.sb_ifree = percpu_counter_sum(&mp->m_ifree);
@@ -1084,7 +1084,7 @@ xfs_sync_sb_buf(
if (error) if (error)
return error; return error;
bp = xfs_trans_getsb(tp, mp); bp = xfs_trans_getsb(tp);
xfs_log_sb(tp); xfs_log_sb(tp);
xfs_trans_bhold(tp, bp); xfs_trans_bhold(tp, bp);
xfs_trans_set_sync(tp); xfs_trans_set_sync(tp);
@@ -1166,6 +1166,8 @@ xfs_fs_geometry(
geo->flags |= XFS_FSOP_GEOM_FLAGS_RMAPBT; geo->flags |= XFS_FSOP_GEOM_FLAGS_RMAPBT;
if (xfs_sb_version_hasreflink(sbp)) if (xfs_sb_version_hasreflink(sbp))
geo->flags |= XFS_FSOP_GEOM_FLAGS_REFLINK; geo->flags |= XFS_FSOP_GEOM_FLAGS_REFLINK;
if (xfs_sb_version_hasbigtime(sbp))
geo->flags |= XFS_FSOP_GEOM_FLAGS_BIGTIME;
if (xfs_sb_version_hassector(sbp)) if (xfs_sb_version_hassector(sbp))
geo->logsectsize = sbp->sb_logsectsize; geo->logsectsize = sbp->sb_logsectsize;
else else

View File

@@ -176,6 +176,9 @@ struct xfs_ino_geometry {
unsigned int ialloc_align; unsigned int ialloc_align;
unsigned int agino_log; /* #bits for agino in inum */ unsigned int agino_log; /* #bits for agino in inum */
/* precomputed value for di_flags2 */
uint64_t new_diflags2;
}; };
#endif /* __XFS_SHARED_H__ */ #endif /* __XFS_SHARED_H__ */

View File

@@ -131,6 +131,17 @@ xfs_trans_log_inode(
iversion_flags = XFS_ILOG_CORE; iversion_flags = XFS_ILOG_CORE;
} }
/*
* If we're updating the inode core or the timestamps and it's possible
* to upgrade this inode to bigtime format, do so now.
*/
if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) &&
xfs_sb_version_hasbigtime(&ip->i_mount->m_sb) &&
!xfs_inode_has_bigtime(ip)) {
ip->i_d.di_flags2 |= XFS_DIFLAG2_BIGTIME;
flags |= XFS_ILOG_CORE;
}
/* /*
* Record the specific change for fdatasync optimisation. This allows * Record the specific change for fdatasync optimisation. This allows
* fdatasync to skip log forces for inodes that are only timestamp * fdatasync to skip log forces for inodes that are only timestamp
@@ -177,9 +188,9 @@ xfs_trans_log_inode(
/* /*
* Always OR in the bits from the ili_last_fields field. This is to * Always OR in the bits from the ili_last_fields field. This is to
* coordinate with the xfs_iflush() and xfs_iflush_done() routines in * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines
* the eventual clearing of the ili_fields bits. See the big comment in * in the eventual clearing of the ili_fields bits. See the big comment
* xfs_iflush() for an explanation of this coordination mechanism. * in xfs_iflush() for an explanation of this coordination mechanism.
*/ */
iip->ili_fields |= (flags | iip->ili_last_fields | iversion_flags); iip->ili_fields |= (flags | iip->ili_last_fields | iversion_flags);
spin_unlock(&iip->ili_lock); spin_unlock(&iip->ili_lock);

View File

@@ -781,6 +781,35 @@ xchk_agi_xref_icounts(
xchk_block_xref_set_corrupt(sc, sc->sa.agi_bp); xchk_block_xref_set_corrupt(sc, sc->sa.agi_bp);
} }
/* Check agi_[fi]blocks against tree size */
static inline void
xchk_agi_xref_fiblocks(
struct xfs_scrub *sc)
{
struct xfs_agi *agi = sc->sa.agi_bp->b_addr;
xfs_agblock_t blocks;
int error = 0;
if (!xfs_sb_version_hasinobtcounts(&sc->mp->m_sb))
return;
if (sc->sa.ino_cur) {
error = xfs_btree_count_blocks(sc->sa.ino_cur, &blocks);
if (!xchk_should_check_xref(sc, &error, &sc->sa.ino_cur))
return;
if (blocks != be32_to_cpu(agi->agi_iblocks))
xchk_block_xref_set_corrupt(sc, sc->sa.agi_bp);
}
if (sc->sa.fino_cur) {
error = xfs_btree_count_blocks(sc->sa.fino_cur, &blocks);
if (!xchk_should_check_xref(sc, &error, &sc->sa.fino_cur))
return;
if (blocks != be32_to_cpu(agi->agi_fblocks))
xchk_block_xref_set_corrupt(sc, sc->sa.agi_bp);
}
}
/* Cross-reference with the other btrees. */ /* Cross-reference with the other btrees. */
STATIC void STATIC void
xchk_agi_xref( xchk_agi_xref(
@@ -804,6 +833,7 @@ xchk_agi_xref(
xchk_agi_xref_icounts(sc); xchk_agi_xref_icounts(sc);
xchk_xref_is_owned_by(sc, agbno, 1, &XFS_RMAP_OINFO_FS); xchk_xref_is_owned_by(sc, agbno, 1, &XFS_RMAP_OINFO_FS);
xchk_xref_is_not_shared(sc, agbno, 1); xchk_xref_is_not_shared(sc, agbno, 1);
xchk_agi_xref_fiblocks(sc);
/* scrub teardown will take care of sc->sa for us */ /* scrub teardown will take care of sc->sa for us */
} }

View File

@@ -810,10 +810,34 @@ xrep_agi_calc_from_btrees(
error = xfs_ialloc_count_inodes(cur, &count, &freecount); error = xfs_ialloc_count_inodes(cur, &count, &freecount);
if (error) if (error)
goto err; goto err;
if (xfs_sb_version_hasinobtcounts(&mp->m_sb)) {
xfs_agblock_t blocks;
error = xfs_btree_count_blocks(cur, &blocks);
if (error)
goto err;
agi->agi_iblocks = cpu_to_be32(blocks);
}
xfs_btree_del_cursor(cur, error); xfs_btree_del_cursor(cur, error);
agi->agi_count = cpu_to_be32(count); agi->agi_count = cpu_to_be32(count);
agi->agi_freecount = cpu_to_be32(freecount); agi->agi_freecount = cpu_to_be32(freecount);
if (xfs_sb_version_hasfinobt(&mp->m_sb) &&
xfs_sb_version_hasinobtcounts(&mp->m_sb)) {
xfs_agblock_t blocks;
cur = xfs_inobt_init_cursor(mp, sc->tp, agi_bp, sc->sa.agno,
XFS_BTNUM_FINO);
if (error)
goto err;
error = xfs_btree_count_blocks(cur, &blocks);
if (error)
goto err;
xfs_btree_del_cursor(cur, error);
agi->agi_fblocks = cpu_to_be32(blocks);
}
return 0; return 0;
err: err:
xfs_btree_del_cursor(cur, error); xfs_btree_del_cursor(cur, error);

View File

@@ -190,11 +190,30 @@ xchk_inode_flags2(
if ((flags2 & XFS_DIFLAG2_DAX) && (flags2 & XFS_DIFLAG2_REFLINK)) if ((flags2 & XFS_DIFLAG2_DAX) && (flags2 & XFS_DIFLAG2_REFLINK))
goto bad; goto bad;
/* no bigtime iflag without the bigtime feature */
if (xfs_dinode_has_bigtime(dip) &&
!xfs_sb_version_hasbigtime(&mp->m_sb))
goto bad;
return; return;
bad: bad:
xchk_ino_set_corrupt(sc, ino); xchk_ino_set_corrupt(sc, ino);
} }
static inline void
xchk_dinode_nsec(
struct xfs_scrub *sc,
xfs_ino_t ino,
struct xfs_dinode *dip,
const xfs_timestamp_t ts)
{
struct timespec64 tv;
tv = xfs_inode_from_disk_ts(dip, ts);
if (tv.tv_nsec < 0 || tv.tv_nsec >= NSEC_PER_SEC)
xchk_ino_set_corrupt(sc, ino);
}
/* Scrub all the ondisk inode fields. */ /* Scrub all the ondisk inode fields. */
STATIC void STATIC void
xchk_dinode( xchk_dinode(
@@ -293,12 +312,9 @@ xchk_dinode(
} }
/* di_[amc]time.nsec */ /* di_[amc]time.nsec */
if (be32_to_cpu(dip->di_atime.t_nsec) >= NSEC_PER_SEC) xchk_dinode_nsec(sc, ino, dip, dip->di_atime);
xchk_ino_set_corrupt(sc, ino); xchk_dinode_nsec(sc, ino, dip, dip->di_mtime);
if (be32_to_cpu(dip->di_mtime.t_nsec) >= NSEC_PER_SEC) xchk_dinode_nsec(sc, ino, dip, dip->di_ctime);
xchk_ino_set_corrupt(sc, ino);
if (be32_to_cpu(dip->di_ctime.t_nsec) >= NSEC_PER_SEC)
xchk_ino_set_corrupt(sc, ino);
/* /*
* di_size. xfs_dinode_verify checks for things that screw up * di_size. xfs_dinode_verify checks for things that screw up
@@ -403,8 +419,7 @@ xchk_dinode(
} }
if (dip->di_version >= 3) { if (dip->di_version >= 3) {
if (be32_to_cpu(dip->di_crtime.t_nsec) >= NSEC_PER_SEC) xchk_dinode_nsec(sc, ino, dip, dip->di_crtime);
xchk_ino_set_corrupt(sc, ino);
xchk_inode_flags2(sc, dip, ino, mode, flags, flags2); xchk_inode_flags2(sc, dip, ino, mode, flags, flags2);
xchk_inode_cowextsize(sc, dip, ino, mode, flags, xchk_inode_cowextsize(sc, dip, ino, mode, flags,
flags2); flags2);

View File

@@ -22,7 +22,7 @@ xchk_setup_symlink(
struct xfs_inode *ip) struct xfs_inode *ip)
{ {
/* Allocate the buffer without the inode lock held. */ /* Allocate the buffer without the inode lock held. */
sc->buf = kmem_zalloc_large(XFS_SYMLINK_MAXLEN + 1, 0); sc->buf = kvzalloc(XFS_SYMLINK_MAXLEN + 1, GFP_KERNEL);
if (!sc->buf) if (!sc->buf)
return -ENOMEM; return -ENOMEM;

View File

@@ -192,7 +192,7 @@ __xfs_set_acl(struct inode *inode, struct posix_acl *acl, int type)
if (acl) { if (acl) {
args.valuelen = XFS_ACL_SIZE(acl->a_count); args.valuelen = XFS_ACL_SIZE(acl->a_count);
args.value = kmem_zalloc_large(args.valuelen, 0); args.value = kvzalloc(args.valuelen, GFP_KERNEL);
if (!args.value) if (!args.value)
return -ENOMEM; return -ENOMEM;
xfs_acl_to_disk(args.value, acl); xfs_acl_to_disk(args.value, acl);

View File

@@ -544,7 +544,7 @@ xfs_discard_page(
page, ip->i_ino, offset); page, ip->i_ino, offset);
error = xfs_bmap_punch_delalloc_range(ip, start_fsb, error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
PAGE_SIZE / i_blocksize(inode)); i_blocks_per_page(inode, page));
if (error && !XFS_FORCED_SHUTDOWN(mp)) if (error && !XFS_FORCED_SHUTDOWN(mp))
xfs_alert(mp, "page discard unable to remove delalloc mapping."); xfs_alert(mp, "page discard unable to remove delalloc mapping.");
out_invalidate: out_invalidate:

View File

@@ -61,7 +61,7 @@ xfs_attr_shortform_list(
int error = 0; int error = 0;
ASSERT(dp->i_afp != NULL); ASSERT(dp->i_afp != NULL);
sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data; sf = (struct xfs_attr_shortform *)dp->i_afp->if_u1.if_data;
ASSERT(sf != NULL); ASSERT(sf != NULL);
if (!sf->hdr.count) if (!sf->hdr.count)
return 0; return 0;
@@ -96,7 +96,7 @@ xfs_attr_shortform_list(
*/ */
if (context->seen_enough) if (context->seen_enough)
break; break;
sfe = XFS_ATTR_SF_NEXTENTRY(sfe); sfe = xfs_attr_sf_nextentry(sfe);
} }
trace_xfs_attr_list_sf_all(context); trace_xfs_attr_list_sf_all(context);
return 0; return 0;
@@ -136,7 +136,7 @@ xfs_attr_shortform_list(
/* These are bytes, and both on-disk, don't endian-flip */ /* These are bytes, and both on-disk, don't endian-flip */
sbp->valuelen = sfe->valuelen; sbp->valuelen = sfe->valuelen;
sbp->flags = sfe->flags; sbp->flags = sfe->flags;
sfe = XFS_ATTR_SF_NEXTENTRY(sfe); sfe = xfs_attr_sf_nextentry(sfe);
sbp++; sbp++;
nsbuf++; nsbuf++;
} }

View File

@@ -946,6 +946,14 @@ xfs_free_file_space(
startoffset_fsb = XFS_B_TO_FSB(mp, offset); startoffset_fsb = XFS_B_TO_FSB(mp, offset);
endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len); endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
/* We can only free complete realtime extents. */
if (XFS_IS_REALTIME_INODE(ip)) {
xfs_extlen_t extsz = xfs_get_extsz_hint(ip);
if ((startoffset_fsb | endoffset_fsb) & (extsz - 1))
return -EINVAL;
}
/* /*
* Need to zero the stuff we're not freeing, on disk. * Need to zero the stuff we're not freeing, on disk.
*/ */
@@ -1139,6 +1147,14 @@ xfs_insert_file_space(
trace_xfs_insert_file_space(ip); trace_xfs_insert_file_space(ip);
/* We can only insert complete realtime extents. */
if (XFS_IS_REALTIME_INODE(ip)) {
xfs_extlen_t extsz = xfs_get_extsz_hint(ip);
if ((stop_fsb | shift_fsb) & (extsz - 1))
return -EINVAL;
}
error = xfs_bmap_can_insert_extents(ip, stop_fsb, shift_fsb); error = xfs_bmap_can_insert_extents(ip, stop_fsb, shift_fsb);
if (error) if (error)
return error; return error;

View File

@@ -52,6 +52,15 @@ static kmem_zone_t *xfs_buf_zone;
* b_lock (trylock due to inversion) * b_lock (trylock due to inversion)
*/ */
static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
static inline int
xfs_buf_submit(
struct xfs_buf *bp)
{
return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
}
static inline int static inline int
xfs_buf_is_vmapped( xfs_buf_is_vmapped(
struct xfs_buf *bp) struct xfs_buf *bp)
@@ -751,7 +760,7 @@ found:
return 0; return 0;
} }
STATIC int int
_xfs_buf_read( _xfs_buf_read(
xfs_buf_t *bp, xfs_buf_t *bp,
xfs_buf_flags_t flags) xfs_buf_flags_t flags)
@@ -759,7 +768,7 @@ _xfs_buf_read(
ASSERT(!(flags & XBF_WRITE)); ASSERT(!(flags & XBF_WRITE));
ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL); ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD); bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD); bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
return xfs_buf_submit(bp); return xfs_buf_submit(bp);
@@ -1170,20 +1179,145 @@ xfs_buf_wait_unpin(
set_current_state(TASK_RUNNING); set_current_state(TASK_RUNNING);
} }
/* static void
* Buffer Utility Routines xfs_buf_ioerror_alert_ratelimited(
*/ struct xfs_buf *bp)
{
static unsigned long lasttime;
static struct xfs_buftarg *lasttarg;
void if (bp->b_target != lasttarg ||
time_after(jiffies, (lasttime + 5*HZ))) {
lasttime = jiffies;
xfs_buf_ioerror_alert(bp, __this_address);
}
lasttarg = bp->b_target;
}
/*
* Account for this latest trip around the retry handler, and decide if
* we've failed enough times to constitute a permanent failure.
*/
static bool
xfs_buf_ioerror_permanent(
struct xfs_buf *bp,
struct xfs_error_cfg *cfg)
{
struct xfs_mount *mp = bp->b_mount;
if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
++bp->b_retries > cfg->max_retries)
return true;
if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
return true;
/* At unmount we may treat errors differently */
if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
return true;
return false;
}
/*
* On a sync write or shutdown we just want to stale the buffer and let the
* caller handle the error in bp->b_error appropriately.
*
* If the write was asynchronous then no one will be looking for the error. If
* this is the first failure of this type, clear the error state and write the
* buffer out again. This means we always retry an async write failure at least
* once, but we also need to set the buffer up to behave correctly now for
* repeated failures.
*
* If we get repeated async write failures, then we take action according to the
* error configuration we have been set up to use.
*
* Returns true if this function took care of error handling and the caller must
* not touch the buffer again. Return false if the caller should proceed with
* normal I/O completion handling.
*/
static bool
xfs_buf_ioend_handle_error(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_mount;
struct xfs_error_cfg *cfg;
/*
* If we've already decided to shutdown the filesystem because of I/O
* errors, there's no point in giving this a retry.
*/
if (XFS_FORCED_SHUTDOWN(mp))
goto out_stale;
xfs_buf_ioerror_alert_ratelimited(bp);
/*
* We're not going to bother about retrying this during recovery.
* One strike!
*/
if (bp->b_flags & _XBF_LOGRECOVERY) {
xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
return false;
}
/*
* Synchronous writes will have callers process the error.
*/
if (!(bp->b_flags & XBF_ASYNC))
goto out_stale;
trace_xfs_buf_iodone_async(bp, _RET_IP_);
cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
if (bp->b_last_error != bp->b_error ||
!(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
bp->b_last_error = bp->b_error;
if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
!bp->b_first_retry_time)
bp->b_first_retry_time = jiffies;
goto resubmit;
}
/*
* Permanent error - we need to trigger a shutdown if we haven't already
* to indicate that inconsistency will result from this action.
*/
if (xfs_buf_ioerror_permanent(bp, cfg)) {
xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
goto out_stale;
}
/* Still considered a transient error. Caller will schedule retries. */
if (bp->b_flags & _XBF_INODES)
xfs_buf_inode_io_fail(bp);
else if (bp->b_flags & _XBF_DQUOTS)
xfs_buf_dquot_io_fail(bp);
else
ASSERT(list_empty(&bp->b_li_list));
xfs_buf_ioerror(bp, 0);
xfs_buf_relse(bp);
return true;
resubmit:
xfs_buf_ioerror(bp, 0);
bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
xfs_buf_submit(bp);
return true;
out_stale:
xfs_buf_stale(bp);
bp->b_flags |= XBF_DONE;
bp->b_flags &= ~XBF_WRITE;
trace_xfs_buf_error_relse(bp, _RET_IP_);
return false;
}
static void
xfs_buf_ioend( xfs_buf_ioend(
struct xfs_buf *bp) struct xfs_buf *bp)
{ {
bool read = bp->b_flags & XBF_READ;
trace_xfs_buf_iodone(bp, _RET_IP_); trace_xfs_buf_iodone(bp, _RET_IP_);
bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
/* /*
* Pull in IO completion errors now. We are guaranteed to be running * Pull in IO completion errors now. We are guaranteed to be running
* single threaded, so we don't need the lock to read b_io_error. * single threaded, so we don't need the lock to read b_io_error.
@@ -1191,39 +1325,47 @@ xfs_buf_ioend(
if (!bp->b_error && bp->b_io_error) if (!bp->b_error && bp->b_io_error)
xfs_buf_ioerror(bp, bp->b_io_error); xfs_buf_ioerror(bp, bp->b_io_error);
if (read) { if (bp->b_flags & XBF_READ) {
if (!bp->b_error && bp->b_ops) if (!bp->b_error && bp->b_ops)
bp->b_ops->verify_read(bp); bp->b_ops->verify_read(bp);
if (!bp->b_error) if (!bp->b_error)
bp->b_flags |= XBF_DONE; bp->b_flags |= XBF_DONE;
xfs_buf_ioend_finish(bp); } else {
return; if (!bp->b_error) {
bp->b_flags &= ~XBF_WRITE_FAIL;
bp->b_flags |= XBF_DONE;
}
if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
return;
/* clear the retry state */
bp->b_last_error = 0;
bp->b_retries = 0;
bp->b_first_retry_time = 0;
/*
* Note that for things like remote attribute buffers, there may
* not be a buffer log item here, so processing the buffer log
* item must remain optional.
*/
if (bp->b_log_item)
xfs_buf_item_done(bp);
if (bp->b_flags & _XBF_INODES)
xfs_buf_inode_iodone(bp);
else if (bp->b_flags & _XBF_DQUOTS)
xfs_buf_dquot_iodone(bp);
} }
if (!bp->b_error) { bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
bp->b_flags &= ~XBF_WRITE_FAIL; _XBF_LOGRECOVERY);
bp->b_flags |= XBF_DONE;
}
/* if (bp->b_flags & XBF_ASYNC)
* If this is a log recovery buffer, we aren't doing transactional IO xfs_buf_relse(bp);
* yet so we need to let it handle IO completions. else
*/ complete(&bp->b_iowait);
if (bp->b_flags & _XBF_LOGRECOVERY) {
xlog_recover_iodone(bp);
return;
}
if (bp->b_flags & _XBF_INODES) {
xfs_buf_inode_iodone(bp);
return;
}
if (bp->b_flags & _XBF_DQUOTS) {
xfs_buf_dquot_iodone(bp);
return;
}
xfs_buf_iodone(bp);
} }
static void static void
@@ -1506,7 +1648,7 @@ xfs_buf_iowait(
* safe to reference the buffer after a call to this function unless the caller * safe to reference the buffer after a call to this function unless the caller
* holds an additional reference itself. * holds an additional reference itself.
*/ */
int static int
__xfs_buf_submit( __xfs_buf_submit(
struct xfs_buf *bp, struct xfs_buf *bp,
bool wait) bool wait)

View File

@@ -249,6 +249,7 @@ int xfs_buf_get_uncached(struct xfs_buftarg *target, size_t numblks, int flags,
int xfs_buf_read_uncached(struct xfs_buftarg *target, xfs_daddr_t daddr, int xfs_buf_read_uncached(struct xfs_buftarg *target, xfs_daddr_t daddr,
size_t numblks, int flags, struct xfs_buf **bpp, size_t numblks, int flags, struct xfs_buf **bpp,
const struct xfs_buf_ops *ops); const struct xfs_buf_ops *ops);
int _xfs_buf_read(struct xfs_buf *bp, xfs_buf_flags_t flags);
void xfs_buf_hold(struct xfs_buf *bp); void xfs_buf_hold(struct xfs_buf *bp);
/* Releasing Buffers */ /* Releasing Buffers */
@@ -269,28 +270,12 @@ static inline void xfs_buf_relse(xfs_buf_t *bp)
/* Buffer Read and Write Routines */ /* Buffer Read and Write Routines */
extern int xfs_bwrite(struct xfs_buf *bp); extern int xfs_bwrite(struct xfs_buf *bp);
extern void xfs_buf_ioend(struct xfs_buf *bp);
static inline void xfs_buf_ioend_finish(struct xfs_buf *bp)
{
if (bp->b_flags & XBF_ASYNC)
xfs_buf_relse(bp);
else
complete(&bp->b_iowait);
}
extern void __xfs_buf_ioerror(struct xfs_buf *bp, int error, extern void __xfs_buf_ioerror(struct xfs_buf *bp, int error,
xfs_failaddr_t failaddr); xfs_failaddr_t failaddr);
#define xfs_buf_ioerror(bp, err) __xfs_buf_ioerror((bp), (err), __this_address) #define xfs_buf_ioerror(bp, err) __xfs_buf_ioerror((bp), (err), __this_address)
extern void xfs_buf_ioerror_alert(struct xfs_buf *bp, xfs_failaddr_t fa); extern void xfs_buf_ioerror_alert(struct xfs_buf *bp, xfs_failaddr_t fa);
void xfs_buf_ioend_fail(struct xfs_buf *); void xfs_buf_ioend_fail(struct xfs_buf *);
extern int __xfs_buf_submit(struct xfs_buf *bp, bool);
static inline int xfs_buf_submit(struct xfs_buf *bp)
{
bool wait = bp->b_flags & XBF_ASYNC ? false : true;
return __xfs_buf_submit(bp, wait);
}
void xfs_buf_zero(struct xfs_buf *bp, size_t boff, size_t bsize); void xfs_buf_zero(struct xfs_buf *bp, size_t boff, size_t bsize);
void __xfs_buf_mark_corrupt(struct xfs_buf *bp, xfs_failaddr_t fa); void __xfs_buf_mark_corrupt(struct xfs_buf *bp, xfs_failaddr_t fa);
#define xfs_buf_mark_corrupt(bp) __xfs_buf_mark_corrupt((bp), __this_address) #define xfs_buf_mark_corrupt(bp) __xfs_buf_mark_corrupt((bp), __this_address)

View File

@@ -30,8 +30,6 @@ static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
return container_of(lip, struct xfs_buf_log_item, bli_item); return container_of(lip, struct xfs_buf_log_item, bli_item);
} }
static void xfs_buf_item_done(struct xfs_buf *bp);
/* Is this log iovec plausibly large enough to contain the buffer log format? */ /* Is this log iovec plausibly large enough to contain the buffer log format? */
bool bool
xfs_buf_log_check_iovec( xfs_buf_log_check_iovec(
@@ -463,7 +461,7 @@ xfs_buf_item_unpin(
*/ */
if (bip->bli_flags & XFS_BLI_STALE_INODE) { if (bip->bli_flags & XFS_BLI_STALE_INODE) {
xfs_buf_item_done(bp); xfs_buf_item_done(bp);
xfs_iflush_done(bp); xfs_buf_inode_iodone(bp);
ASSERT(list_empty(&bp->b_li_list)); ASSERT(list_empty(&bp->b_li_list));
} else { } else {
xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR); xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR);
@@ -956,153 +954,10 @@ xfs_buf_item_relse(
xfs_buf_item_free(bip); xfs_buf_item_free(bip);
} }
/* void
* Decide if we're going to retry the write after a failure, and prepare
* the buffer for retrying the write.
*/
static bool
xfs_buf_ioerror_fail_without_retry(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_mount;
static ulong lasttime;
static xfs_buftarg_t *lasttarg;
/*
* If we've already decided to shutdown the filesystem because of
* I/O errors, there's no point in giving this a retry.
*/
if (XFS_FORCED_SHUTDOWN(mp))
return true;
if (bp->b_target != lasttarg ||
time_after(jiffies, (lasttime + 5*HZ))) {
lasttime = jiffies;
xfs_buf_ioerror_alert(bp, __this_address);
}
lasttarg = bp->b_target;
/* synchronous writes will have callers process the error */
if (!(bp->b_flags & XBF_ASYNC))
return true;
return false;
}
static bool
xfs_buf_ioerror_retry(
struct xfs_buf *bp,
struct xfs_error_cfg *cfg)
{
if ((bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL)) &&
bp->b_last_error == bp->b_error)
return false;
bp->b_flags |= (XBF_WRITE | XBF_DONE | XBF_WRITE_FAIL);
bp->b_last_error = bp->b_error;
if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
!bp->b_first_retry_time)
bp->b_first_retry_time = jiffies;
return true;
}
/*
* Account for this latest trip around the retry handler, and decide if
* we've failed enough times to constitute a permanent failure.
*/
static bool
xfs_buf_ioerror_permanent(
struct xfs_buf *bp,
struct xfs_error_cfg *cfg)
{
struct xfs_mount *mp = bp->b_mount;
if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
++bp->b_retries > cfg->max_retries)
return true;
if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
return true;
/* At unmount we may treat errors differently */
if ((mp->m_flags & XFS_MOUNT_UNMOUNTING) && mp->m_fail_unmount)
return true;
return false;
}
/*
* On a sync write or shutdown we just want to stale the buffer and let the
* caller handle the error in bp->b_error appropriately.
*
* If the write was asynchronous then no one will be looking for the error. If
* this is the first failure of this type, clear the error state and write the
* buffer out again. This means we always retry an async write failure at least
* once, but we also need to set the buffer up to behave correctly now for
* repeated failures.
*
* If we get repeated async write failures, then we take action according to the
* error configuration we have been set up to use.
*
* Multi-state return value:
*
* XBF_IOERROR_FINISH: clear IO error retry state and run callback completions
* XBF_IOERROR_DONE: resubmitted immediately, do not run any completions
* XBF_IOERROR_FAIL: transient error, run failure callback completions and then
* release the buffer
*/
enum {
XBF_IOERROR_FINISH,
XBF_IOERROR_DONE,
XBF_IOERROR_FAIL,
};
static int
xfs_buf_iodone_error(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_mount;
struct xfs_error_cfg *cfg;
if (xfs_buf_ioerror_fail_without_retry(bp))
goto out_stale;
trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
if (xfs_buf_ioerror_retry(bp, cfg)) {
xfs_buf_ioerror(bp, 0);
xfs_buf_submit(bp);
return XBF_IOERROR_DONE;
}
/*
* Permanent error - we need to trigger a shutdown if we haven't already
* to indicate that inconsistency will result from this action.
*/
if (xfs_buf_ioerror_permanent(bp, cfg)) {
xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
goto out_stale;
}
/* Still considered a transient error. Caller will schedule retries. */
return XBF_IOERROR_FAIL;
out_stale:
xfs_buf_stale(bp);
bp->b_flags |= XBF_DONE;
trace_xfs_buf_error_relse(bp, _RET_IP_);
return XBF_IOERROR_FINISH;
}
static void
xfs_buf_item_done( xfs_buf_item_done(
struct xfs_buf *bp) struct xfs_buf *bp)
{ {
struct xfs_buf_log_item *bip = bp->b_log_item;
if (!bip)
return;
/* /*
* If we are forcibly shutting down, this may well be off the AIL * If we are forcibly shutting down, this may well be off the AIL
* already. That's because we simulate the log-committed callbacks to * already. That's because we simulate the log-committed callbacks to
@@ -1111,113 +966,12 @@ xfs_buf_item_done(
* xfs_trans_ail_delete() takes care of these. * xfs_trans_ail_delete() takes care of these.
* *
* Either way, AIL is useless if we're forcing a shutdown. * Either way, AIL is useless if we're forcing a shutdown.
*
* Note that log recovery writes might have buffer items that are not on
* the AIL even when the file system is not shut down.
*/ */
xfs_trans_ail_delete(&bip->bli_item, SHUTDOWN_CORRUPT_INCORE); xfs_trans_ail_delete(&bp->b_log_item->bli_item,
bp->b_log_item = NULL; (bp->b_flags & _XBF_LOGRECOVERY) ? 0 :
xfs_buf_item_free(bip); SHUTDOWN_CORRUPT_INCORE);
xfs_buf_rele(bp); xfs_buf_item_relse(bp);
}
static inline void
xfs_buf_clear_ioerror_retry_state(
struct xfs_buf *bp)
{
bp->b_last_error = 0;
bp->b_retries = 0;
bp->b_first_retry_time = 0;
}
/*
* Inode buffer iodone callback function.
*/
void
xfs_buf_inode_iodone(
struct xfs_buf *bp)
{
if (bp->b_error) {
struct xfs_log_item *lip;
int ret = xfs_buf_iodone_error(bp);
if (ret == XBF_IOERROR_FINISH)
goto finish_iodone;
if (ret == XBF_IOERROR_DONE)
return;
ASSERT(ret == XBF_IOERROR_FAIL);
list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
set_bit(XFS_LI_FAILED, &lip->li_flags);
}
xfs_buf_ioerror(bp, 0);
xfs_buf_relse(bp);
return;
}
finish_iodone:
xfs_buf_clear_ioerror_retry_state(bp);
xfs_buf_item_done(bp);
xfs_iflush_done(bp);
xfs_buf_ioend_finish(bp);
}
/*
* Dquot buffer iodone callback function.
*/
void
xfs_buf_dquot_iodone(
struct xfs_buf *bp)
{
if (bp->b_error) {
struct xfs_log_item *lip;
int ret = xfs_buf_iodone_error(bp);
if (ret == XBF_IOERROR_FINISH)
goto finish_iodone;
if (ret == XBF_IOERROR_DONE)
return;
ASSERT(ret == XBF_IOERROR_FAIL);
spin_lock(&bp->b_mount->m_ail->ail_lock);
list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
xfs_set_li_failed(lip, bp);
}
spin_unlock(&bp->b_mount->m_ail->ail_lock);
xfs_buf_ioerror(bp, 0);
xfs_buf_relse(bp);
return;
}
finish_iodone:
xfs_buf_clear_ioerror_retry_state(bp);
/* a newly allocated dquot buffer might have a log item attached */
xfs_buf_item_done(bp);
xfs_dquot_done(bp);
xfs_buf_ioend_finish(bp);
}
/*
* Dirty buffer iodone callback function.
*
* Note that for things like remote attribute buffers, there may not be a buffer
* log item here, so processing the buffer log item must remain be optional.
*/
void
xfs_buf_iodone(
struct xfs_buf *bp)
{
if (bp->b_error) {
int ret = xfs_buf_iodone_error(bp);
if (ret == XBF_IOERROR_FINISH)
goto finish_iodone;
if (ret == XBF_IOERROR_DONE)
return;
ASSERT(ret == XBF_IOERROR_FAIL);
ASSERT(list_empty(&bp->b_li_list));
xfs_buf_ioerror(bp, 0);
xfs_buf_relse(bp);
return;
}
finish_iodone:
xfs_buf_clear_ioerror_retry_state(bp);
xfs_buf_item_done(bp);
xfs_buf_ioend_finish(bp);
} }

View File

@@ -50,12 +50,24 @@ struct xfs_buf_log_item {
}; };
int xfs_buf_item_init(struct xfs_buf *, struct xfs_mount *); int xfs_buf_item_init(struct xfs_buf *, struct xfs_mount *);
void xfs_buf_item_done(struct xfs_buf *bp);
void xfs_buf_item_relse(struct xfs_buf *); void xfs_buf_item_relse(struct xfs_buf *);
bool xfs_buf_item_put(struct xfs_buf_log_item *); bool xfs_buf_item_put(struct xfs_buf_log_item *);
void xfs_buf_item_log(struct xfs_buf_log_item *, uint, uint); void xfs_buf_item_log(struct xfs_buf_log_item *, uint, uint);
bool xfs_buf_item_dirty_format(struct xfs_buf_log_item *); bool xfs_buf_item_dirty_format(struct xfs_buf_log_item *);
void xfs_buf_inode_iodone(struct xfs_buf *); void xfs_buf_inode_iodone(struct xfs_buf *);
void xfs_buf_inode_io_fail(struct xfs_buf *bp);
#ifdef CONFIG_XFS_QUOTA
void xfs_buf_dquot_iodone(struct xfs_buf *); void xfs_buf_dquot_iodone(struct xfs_buf *);
void xfs_buf_dquot_io_fail(struct xfs_buf *bp);
#else
static inline void xfs_buf_dquot_iodone(struct xfs_buf *bp)
{
}
static inline void xfs_buf_dquot_io_fail(struct xfs_buf *bp)
{
}
#endif /* CONFIG_XFS_QUOTA */
void xfs_buf_iodone(struct xfs_buf *); void xfs_buf_iodone(struct xfs_buf *);
bool xfs_buf_log_check_iovec(struct xfs_log_iovec *iovec); bool xfs_buf_log_check_iovec(struct xfs_log_iovec *iovec);

View File

@@ -414,7 +414,7 @@ xlog_recover_validate_buf_type(
* *
* Write verifiers update the metadata LSN from log items attached to * Write verifiers update the metadata LSN from log items attached to
* the buffer. Therefore, initialize a bli purely to carry the LSN to * the buffer. Therefore, initialize a bli purely to carry the LSN to
* the verifier. We'll clean it up in our ->iodone() callback. * the verifier.
*/ */
if (bp->b_ops) { if (bp->b_ops) {
struct xfs_buf_log_item *bip; struct xfs_buf_log_item *bip;

View File

@@ -98,12 +98,33 @@ xfs_qm_adjust_dqlimits(
xfs_dquot_set_prealloc_limits(dq); xfs_dquot_set_prealloc_limits(dq);
} }
/* Set the expiration time of a quota's grace period. */
time64_t
xfs_dquot_set_timeout(
struct xfs_mount *mp,
time64_t timeout)
{
struct xfs_quotainfo *qi = mp->m_quotainfo;
return clamp_t(time64_t, timeout, qi->qi_expiry_min,
qi->qi_expiry_max);
}
/* Set the length of the default grace period. */
time64_t
xfs_dquot_set_grace_period(
time64_t grace)
{
return clamp_t(time64_t, grace, XFS_DQ_GRACE_MIN, XFS_DQ_GRACE_MAX);
}
/* /*
* Determine if this quota counter is over either limit and set the quota * Determine if this quota counter is over either limit and set the quota
* timers as appropriate. * timers as appropriate.
*/ */
static inline void static inline void
xfs_qm_adjust_res_timer( xfs_qm_adjust_res_timer(
struct xfs_mount *mp,
struct xfs_dquot_res *res, struct xfs_dquot_res *res,
struct xfs_quota_limits *qlim) struct xfs_quota_limits *qlim)
{ {
@@ -112,7 +133,8 @@ xfs_qm_adjust_res_timer(
if ((res->softlimit && res->count > res->softlimit) || if ((res->softlimit && res->count > res->softlimit) ||
(res->hardlimit && res->count > res->hardlimit)) { (res->hardlimit && res->count > res->hardlimit)) {
if (res->timer == 0) if (res->timer == 0)
res->timer = ktime_get_real_seconds() + qlim->time; res->timer = xfs_dquot_set_timeout(mp,
ktime_get_real_seconds() + qlim->time);
} else { } else {
if (res->timer == 0) if (res->timer == 0)
res->warnings = 0; res->warnings = 0;
@@ -145,9 +167,9 @@ xfs_qm_adjust_dqtimers(
ASSERT(dq->q_id); ASSERT(dq->q_id);
defq = xfs_get_defquota(qi, xfs_dquot_type(dq)); defq = xfs_get_defquota(qi, xfs_dquot_type(dq));
xfs_qm_adjust_res_timer(&dq->q_blk, &defq->blk); xfs_qm_adjust_res_timer(dq->q_mount, &dq->q_blk, &defq->blk);
xfs_qm_adjust_res_timer(&dq->q_ino, &defq->ino); xfs_qm_adjust_res_timer(dq->q_mount, &dq->q_ino, &defq->ino);
xfs_qm_adjust_res_timer(&dq->q_rtb, &defq->rtb); xfs_qm_adjust_res_timer(dq->q_mount, &dq->q_rtb, &defq->rtb);
} }
/* /*
@@ -201,6 +223,8 @@ xfs_qm_init_dquot_blk(
d->dd_diskdq.d_version = XFS_DQUOT_VERSION; d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
d->dd_diskdq.d_id = cpu_to_be32(curid); d->dd_diskdq.d_id = cpu_to_be32(curid);
d->dd_diskdq.d_type = type; d->dd_diskdq.d_type = type;
if (curid > 0 && xfs_sb_version_hasbigtime(&mp->m_sb))
d->dd_diskdq.d_type |= XFS_DQTYPE_BIGTIME;
if (xfs_sb_version_hascrc(&mp->m_sb)) { if (xfs_sb_version_hascrc(&mp->m_sb)) {
uuid_copy(&d->dd_uuid, &mp->m_sb.sb_meta_uuid); uuid_copy(&d->dd_uuid, &mp->m_sb.sb_meta_uuid);
xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk), xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk),
@@ -514,9 +538,9 @@ xfs_dquot_from_disk(
dqp->q_ino.warnings = be16_to_cpu(ddqp->d_iwarns); dqp->q_ino.warnings = be16_to_cpu(ddqp->d_iwarns);
dqp->q_rtb.warnings = be16_to_cpu(ddqp->d_rtbwarns); dqp->q_rtb.warnings = be16_to_cpu(ddqp->d_rtbwarns);
dqp->q_blk.timer = be32_to_cpu(ddqp->d_btimer); dqp->q_blk.timer = xfs_dquot_from_disk_ts(ddqp, ddqp->d_btimer);
dqp->q_ino.timer = be32_to_cpu(ddqp->d_itimer); dqp->q_ino.timer = xfs_dquot_from_disk_ts(ddqp, ddqp->d_itimer);
dqp->q_rtb.timer = be32_to_cpu(ddqp->d_rtbtimer); dqp->q_rtb.timer = xfs_dquot_from_disk_ts(ddqp, ddqp->d_rtbtimer);
/* /*
* Reservation counters are defined as reservation plus current usage * Reservation counters are defined as reservation plus current usage
@@ -559,9 +583,9 @@ xfs_dquot_to_disk(
ddqp->d_iwarns = cpu_to_be16(dqp->q_ino.warnings); ddqp->d_iwarns = cpu_to_be16(dqp->q_ino.warnings);
ddqp->d_rtbwarns = cpu_to_be16(dqp->q_rtb.warnings); ddqp->d_rtbwarns = cpu_to_be16(dqp->q_rtb.warnings);
ddqp->d_btimer = cpu_to_be32(dqp->q_blk.timer); ddqp->d_btimer = xfs_dquot_to_disk_ts(dqp, dqp->q_blk.timer);
ddqp->d_itimer = cpu_to_be32(dqp->q_ino.timer); ddqp->d_itimer = xfs_dquot_to_disk_ts(dqp, dqp->q_ino.timer);
ddqp->d_rtbtimer = cpu_to_be32(dqp->q_rtb.timer); ddqp->d_rtbtimer = xfs_dquot_to_disk_ts(dqp, dqp->q_rtb.timer);
} }
/* Allocate and initialize the dquot buffer for this in-core dquot. */ /* Allocate and initialize the dquot buffer for this in-core dquot. */
@@ -1107,7 +1131,7 @@ xfs_qm_dqflush_done(
} }
void void
xfs_dquot_done( xfs_buf_dquot_iodone(
struct xfs_buf *bp) struct xfs_buf *bp)
{ {
struct xfs_log_item *lip, *n; struct xfs_log_item *lip, *n;
@@ -1118,6 +1142,18 @@ xfs_dquot_done(
} }
} }
void
xfs_buf_dquot_io_fail(
struct xfs_buf *bp)
{
struct xfs_log_item *lip;
spin_lock(&bp->b_mount->m_ail->ail_lock);
list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
xfs_set_li_failed(lip, bp);
spin_unlock(&bp->b_mount->m_ail->ail_lock);
}
/* Check incore dquot for errors before we flush. */ /* Check incore dquot for errors before we flush. */
static xfs_failaddr_t static xfs_failaddr_t
xfs_qm_dqflush_check( xfs_qm_dqflush_check(
@@ -1145,6 +1181,14 @@ xfs_qm_dqflush_check(
!dqp->q_rtb.timer) !dqp->q_rtb.timer)
return __this_address; return __this_address;
/* bigtime flag should never be set on root dquots */
if (dqp->q_type & XFS_DQTYPE_BIGTIME) {
if (!xfs_sb_version_hasbigtime(&dqp->q_mount->m_sb))
return __this_address;
if (dqp->q_id == 0)
return __this_address;
}
return NULL; return NULL;
} }

View File

@@ -237,4 +237,7 @@ typedef int (*xfs_qm_dqiterate_fn)(struct xfs_dquot *dq,
int xfs_qm_dqiterate(struct xfs_mount *mp, xfs_dqtype_t type, int xfs_qm_dqiterate(struct xfs_mount *mp, xfs_dqtype_t type,
xfs_qm_dqiterate_fn iter_fn, void *priv); xfs_qm_dqiterate_fn iter_fn, void *priv);
time64_t xfs_dquot_set_timeout(struct xfs_mount *mp, time64_t timeout);
time64_t xfs_dquot_set_grace_period(time64_t grace);
#endif /* __XFS_DQUOT_H__ */ #endif /* __XFS_DQUOT_H__ */

View File

@@ -1008,6 +1008,21 @@ xfs_file_fadvise(
return ret; return ret;
} }
/* Does this file, inode, or mount want synchronous writes? */
static inline bool xfs_file_sync_writes(struct file *filp)
{
struct xfs_inode *ip = XFS_I(file_inode(filp));
if (ip->i_mount->m_flags & XFS_MOUNT_WSYNC)
return true;
if (filp->f_flags & (__O_SYNC | O_DSYNC))
return true;
if (IS_SYNC(file_inode(filp)))
return true;
return false;
}
STATIC loff_t STATIC loff_t
xfs_file_remap_range( xfs_file_remap_range(
struct file *file_in, struct file *file_in,
@@ -1065,7 +1080,7 @@ xfs_file_remap_range(
if (ret) if (ret)
goto out_unlock; goto out_unlock;
if (mp->m_flags & XFS_MOUNT_WSYNC) if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
xfs_log_force_inode(dest); xfs_log_force_inode(dest);
out_unlock: out_unlock:
xfs_iunlock2_io_mmap(src, dest); xfs_iunlock2_io_mmap(src, dest);

View File

@@ -52,7 +52,6 @@ xfs_inode_alloc(
XFS_STATS_INC(mp, vn_active); XFS_STATS_INC(mp, vn_active);
ASSERT(atomic_read(&ip->i_pincount) == 0); ASSERT(atomic_read(&ip->i_pincount) == 0);
ASSERT(!xfs_isiflocked(ip));
ASSERT(ip->i_ino == 0); ASSERT(ip->i_ino == 0);
/* initialise the xfs inode */ /* initialise the xfs inode */
@@ -123,7 +122,7 @@ void
xfs_inode_free( xfs_inode_free(
struct xfs_inode *ip) struct xfs_inode *ip)
{ {
ASSERT(!xfs_isiflocked(ip)); ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
/* /*
* Because we use RCU freeing we need to ensure the inode always * Because we use RCU freeing we need to ensure the inode always
@@ -1035,23 +1034,21 @@ xfs_reclaim_inode(
if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
goto out; goto out;
if (!xfs_iflock_nowait(ip)) if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
goto out_iunlock; goto out_iunlock;
if (XFS_FORCED_SHUTDOWN(ip->i_mount)) { if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
xfs_iunpin_wait(ip); xfs_iunpin_wait(ip);
/* xfs_iflush_abort() drops the flush lock */
xfs_iflush_abort(ip); xfs_iflush_abort(ip);
goto reclaim; goto reclaim;
} }
if (xfs_ipincount(ip)) if (xfs_ipincount(ip))
goto out_ifunlock; goto out_clear_flush;
if (!xfs_inode_clean(ip)) if (!xfs_inode_clean(ip))
goto out_ifunlock; goto out_clear_flush;
xfs_ifunlock(ip); xfs_iflags_clear(ip, XFS_IFLUSHING);
reclaim: reclaim:
ASSERT(!xfs_isiflocked(ip));
/* /*
* Because we use RCU freeing we need to ensure the inode always appears * Because we use RCU freeing we need to ensure the inode always appears
@@ -1101,8 +1098,8 @@ reclaim:
__xfs_inode_free(ip); __xfs_inode_free(ip);
return; return;
out_ifunlock: out_clear_flush:
xfs_ifunlock(ip); xfs_iflags_clear(ip, XFS_IFLUSHING);
out_iunlock: out_iunlock:
xfs_iunlock(ip, XFS_ILOCK_EXCL); xfs_iunlock(ip, XFS_ILOCK_EXCL);
out: out:
@@ -1211,7 +1208,7 @@ xfs_reclaim_inodes(
while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) { while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
xfs_ail_push_all_sync(mp->m_ail); xfs_ail_push_all_sync(mp->m_ail);
xfs_reclaim_inodes_ag(mp, &nr_to_scan); xfs_reclaim_inodes_ag(mp, &nr_to_scan);
}; }
} }
/* /*

View File

@@ -598,22 +598,6 @@ xfs_lock_two_inodes(
} }
} }
void
__xfs_iflock(
struct xfs_inode *ip)
{
wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
do {
prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
if (xfs_isiflocked(ip))
io_schedule();
} while (!xfs_iflock_nowait(ip));
finish_wait(wq, &wait.wq_entry);
}
STATIC uint STATIC uint
_xfs_dic2xflags( _xfs_dic2xflags(
uint16_t di_flags, uint16_t di_flags,
@@ -840,7 +824,7 @@ xfs_ialloc(
if (xfs_sb_version_has_v3inode(&mp->m_sb)) { if (xfs_sb_version_has_v3inode(&mp->m_sb)) {
inode_set_iversion(inode, 1); inode_set_iversion(inode, 1);
ip->i_d.di_flags2 = 0; ip->i_d.di_flags2 = mp->m_ino_geo.new_diflags2;
ip->i_d.di_cowextsize = 0; ip->i_d.di_cowextsize = 0;
ip->i_d.di_crtime = tv; ip->i_d.di_crtime = tv;
} }
@@ -2531,11 +2515,8 @@ retry:
* valid, the wrong inode or stale. * valid, the wrong inode or stale.
*/ */
spin_lock(&ip->i_flags_lock); spin_lock(&ip->i_flags_lock);
if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE)) { if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
spin_unlock(&ip->i_flags_lock); goto out_iflags_unlock;
rcu_read_unlock();
return;
}
/* /*
* Don't try to lock/unlock the current inode, but we _cannot_ skip the * Don't try to lock/unlock the current inode, but we _cannot_ skip the
@@ -2552,16 +2533,14 @@ retry:
} }
} }
ip->i_flags |= XFS_ISTALE; ip->i_flags |= XFS_ISTALE;
spin_unlock(&ip->i_flags_lock);
rcu_read_unlock();
/* /*
* If we can't get the flush lock, the inode is already attached. All * If the inode is flushing, it is already attached to the buffer. All
* we needed to do here is mark the inode stale so buffer IO completion * we needed to do here is mark the inode stale so buffer IO completion
* will remove it from the AIL. * will remove it from the AIL.
*/ */
iip = ip->i_itemp; iip = ip->i_itemp;
if (!xfs_iflock_nowait(ip)) { if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
ASSERT(!list_empty(&iip->ili_item.li_bio_list)); ASSERT(!list_empty(&iip->ili_item.li_bio_list));
ASSERT(iip->ili_last_fields); ASSERT(iip->ili_last_fields);
goto out_iunlock; goto out_iunlock;
@@ -2573,10 +2552,12 @@ retry:
* commit as the flock synchronises removal of the inode from the * commit as the flock synchronises removal of the inode from the
* cluster buffer against inode reclaim. * cluster buffer against inode reclaim.
*/ */
if (!iip || list_empty(&iip->ili_item.li_bio_list)) { if (!iip || list_empty(&iip->ili_item.li_bio_list))
xfs_ifunlock(ip);
goto out_iunlock; goto out_iunlock;
}
__xfs_iflags_set(ip, XFS_IFLUSHING);
spin_unlock(&ip->i_flags_lock);
rcu_read_unlock();
/* we have a dirty inode in memory that has not yet been flushed. */ /* we have a dirty inode in memory that has not yet been flushed. */
spin_lock(&iip->ili_lock); spin_lock(&iip->ili_lock);
@@ -2586,9 +2567,16 @@ retry:
spin_unlock(&iip->ili_lock); spin_unlock(&iip->ili_lock);
ASSERT(iip->ili_last_fields); ASSERT(iip->ili_last_fields);
if (ip != free_ip)
xfs_iunlock(ip, XFS_ILOCK_EXCL);
return;
out_iunlock: out_iunlock:
if (ip != free_ip) if (ip != free_ip)
xfs_iunlock(ip, XFS_ILOCK_EXCL); xfs_iunlock(ip, XFS_ILOCK_EXCL);
out_iflags_unlock:
spin_unlock(&ip->i_flags_lock);
rcu_read_unlock();
} }
/* /*
@@ -2631,8 +2619,9 @@ xfs_ifree_cluster(
/* /*
* We obtain and lock the backing buffer first in the process * We obtain and lock the backing buffer first in the process
* here, as we have to ensure that any dirty inode that we * here to ensure dirty inodes attached to the buffer remain in
* can't get the flush lock on is attached to the buffer. * the flushing state while we mark them stale.
*
* If we scan the in-memory inodes first, then buffer IO can * If we scan the in-memory inodes first, then buffer IO can
* complete before we get a lock on it, and hence we may fail * complete before we get a lock on it, and hence we may fail
* to mark all the active inodes on the buffer stale. * to mark all the active inodes on the buffer stale.
@@ -2717,7 +2706,7 @@ xfs_ifree(
VFS_I(ip)->i_mode = 0; /* mark incore inode as free */ VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
ip->i_d.di_flags = 0; ip->i_d.di_flags = 0;
ip->i_d.di_flags2 = 0; ip->i_d.di_flags2 = ip->i_mount->m_ino_geo.new_diflags2;
ip->i_d.di_dmevmask = 0; ip->i_d.di_dmevmask = 0;
ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */ ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS; ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
@@ -3443,7 +3432,7 @@ xfs_iflush(
int error; int error;
ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)); ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
ASSERT(xfs_isiflocked(ip)); ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK)); ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
ASSERT(iip->ili_item.li_buf == bp); ASSERT(iip->ili_item.li_buf == bp);
@@ -3553,8 +3542,8 @@ xfs_iflush(
* *
* What we do is move the bits to the ili_last_fields field. When * What we do is move the bits to the ili_last_fields field. When
* logging the inode, these bits are moved back to the ili_fields field. * logging the inode, these bits are moved back to the ili_fields field.
* In the xfs_iflush_done() routine we clear ili_last_fields, since we * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
* know that the information those bits represent is permanently on * we know that the information those bits represent is permanently on
* disk. As long as the flush completes before the inode is logged * disk. As long as the flush completes before the inode is logged
* again, then both ili_fields and ili_last_fields will be cleared. * again, then both ili_fields and ili_last_fields will be cleared.
*/ */
@@ -3568,7 +3557,7 @@ flush_out:
/* /*
* Store the current LSN of the inode so that we can tell whether the * Store the current LSN of the inode so that we can tell whether the
* item has moved in the AIL from xfs_iflush_done(). * item has moved in the AIL from xfs_buf_inode_iodone().
*/ */
xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn, xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
&iip->ili_item.li_lsn); &iip->ili_item.li_lsn);
@@ -3613,7 +3602,7 @@ xfs_iflush_cluster(
/* /*
* Quick and dirty check to avoid locks if possible. * Quick and dirty check to avoid locks if possible.
*/ */
if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLOCK)) if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
continue; continue;
if (xfs_ipincount(ip)) if (xfs_ipincount(ip))
continue; continue;
@@ -3627,7 +3616,7 @@ xfs_iflush_cluster(
*/ */
spin_lock(&ip->i_flags_lock); spin_lock(&ip->i_flags_lock);
ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE)); ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLOCK)) { if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
spin_unlock(&ip->i_flags_lock); spin_unlock(&ip->i_flags_lock);
continue; continue;
} }
@@ -3635,23 +3624,16 @@ xfs_iflush_cluster(
/* /*
* ILOCK will pin the inode against reclaim and prevent * ILOCK will pin the inode against reclaim and prevent
* concurrent transactions modifying the inode while we are * concurrent transactions modifying the inode while we are
* flushing the inode. * flushing the inode. If we get the lock, set the flushing
* state before we drop the i_flags_lock.
*/ */
if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
spin_unlock(&ip->i_flags_lock); spin_unlock(&ip->i_flags_lock);
continue; continue;
} }
__xfs_iflags_set(ip, XFS_IFLUSHING);
spin_unlock(&ip->i_flags_lock); spin_unlock(&ip->i_flags_lock);
/*
* Skip inodes that are already flush locked as they have
* already been written to the buffer.
*/
if (!xfs_iflock_nowait(ip)) {
xfs_iunlock(ip, XFS_ILOCK_SHARED);
continue;
}
/* /*
* Abort flushing this inode if we are shut down because the * Abort flushing this inode if we are shut down because the
* inode may not currently be in the AIL. This can occur when * inode may not currently be in the AIL. This can occur when
@@ -3661,7 +3643,6 @@ xfs_iflush_cluster(
*/ */
if (XFS_FORCED_SHUTDOWN(mp)) { if (XFS_FORCED_SHUTDOWN(mp)) {
xfs_iunpin_wait(ip); xfs_iunpin_wait(ip);
/* xfs_iflush_abort() drops the flush lock */
xfs_iflush_abort(ip); xfs_iflush_abort(ip);
xfs_iunlock(ip, XFS_ILOCK_SHARED); xfs_iunlock(ip, XFS_ILOCK_SHARED);
error = -EIO; error = -EIO;
@@ -3670,7 +3651,7 @@ xfs_iflush_cluster(
/* don't block waiting on a log force to unpin dirty inodes */ /* don't block waiting on a log force to unpin dirty inodes */
if (xfs_ipincount(ip)) { if (xfs_ipincount(ip)) {
xfs_ifunlock(ip); xfs_iflags_clear(ip, XFS_IFLUSHING);
xfs_iunlock(ip, XFS_ILOCK_SHARED); xfs_iunlock(ip, XFS_ILOCK_SHARED);
continue; continue;
} }
@@ -3678,7 +3659,7 @@ xfs_iflush_cluster(
if (!xfs_inode_clean(ip)) if (!xfs_inode_clean(ip))
error = xfs_iflush(ip, bp); error = xfs_iflush(ip, bp);
else else
xfs_ifunlock(ip); xfs_iflags_clear(ip, XFS_IFLUSHING);
xfs_iunlock(ip, XFS_ILOCK_SHARED); xfs_iunlock(ip, XFS_ILOCK_SHARED);
if (error) if (error)
break; break;

View File

@@ -194,6 +194,11 @@ static inline bool xfs_inode_has_cow_data(struct xfs_inode *ip)
return ip->i_cowfp && ip->i_cowfp->if_bytes; return ip->i_cowfp && ip->i_cowfp->if_bytes;
} }
static inline bool xfs_inode_has_bigtime(struct xfs_inode *ip)
{
return ip->i_d.di_flags2 & XFS_DIFLAG2_BIGTIME;
}
/* /*
* Return the buftarg used for data allocations on a given inode. * Return the buftarg used for data allocations on a given inode.
*/ */
@@ -211,8 +216,7 @@ static inline bool xfs_inode_has_cow_data(struct xfs_inode *ip)
#define XFS_INEW (1 << __XFS_INEW_BIT) #define XFS_INEW (1 << __XFS_INEW_BIT)
#define XFS_ITRUNCATED (1 << 5) /* truncated down so flush-on-close */ #define XFS_ITRUNCATED (1 << 5) /* truncated down so flush-on-close */
#define XFS_IDIRTY_RELEASE (1 << 6) /* dirty release already seen */ #define XFS_IDIRTY_RELEASE (1 << 6) /* dirty release already seen */
#define __XFS_IFLOCK_BIT 7 /* inode is being flushed right now */ #define XFS_IFLUSHING (1 << 7) /* inode is being flushed */
#define XFS_IFLOCK (1 << __XFS_IFLOCK_BIT)
#define __XFS_IPINNED_BIT 8 /* wakeup key for zero pin count */ #define __XFS_IPINNED_BIT 8 /* wakeup key for zero pin count */
#define XFS_IPINNED (1 << __XFS_IPINNED_BIT) #define XFS_IPINNED (1 << __XFS_IPINNED_BIT)
#define XFS_IEOFBLOCKS (1 << 9) /* has the preallocblocks tag set */ #define XFS_IEOFBLOCKS (1 << 9) /* has the preallocblocks tag set */
@@ -233,36 +237,6 @@ static inline bool xfs_inode_has_cow_data(struct xfs_inode *ip)
(XFS_IRECLAIMABLE | XFS_IRECLAIM | \ (XFS_IRECLAIMABLE | XFS_IRECLAIM | \
XFS_IDIRTY_RELEASE | XFS_ITRUNCATED) XFS_IDIRTY_RELEASE | XFS_ITRUNCATED)
/*
* Synchronize processes attempting to flush the in-core inode back to disk.
*/
static inline int xfs_isiflocked(struct xfs_inode *ip)
{
return xfs_iflags_test(ip, XFS_IFLOCK);
}
extern void __xfs_iflock(struct xfs_inode *ip);
static inline int xfs_iflock_nowait(struct xfs_inode *ip)
{
return !xfs_iflags_test_and_set(ip, XFS_IFLOCK);
}
static inline void xfs_iflock(struct xfs_inode *ip)
{
if (!xfs_iflock_nowait(ip))
__xfs_iflock(ip);
}
static inline void xfs_ifunlock(struct xfs_inode *ip)
{
ASSERT(xfs_isiflocked(ip));
xfs_iflags_clear(ip, XFS_IFLOCK);
smp_mb();
wake_up_bit(&ip->i_flags, __XFS_IFLOCK_BIT);
}
/* /*
* Flags for inode locking. * Flags for inode locking.
* Bit ranges: 1<<1 - 1<<16-1 -- iolock/ilock modes (bitfield) * Bit ranges: 1<<1 - 1<<16-1 -- iolock/ilock modes (bitfield)

View File

@@ -295,6 +295,28 @@ xfs_inode_item_format_attr_fork(
} }
} }
/*
* Convert an incore timestamp to a log timestamp. Note that the log format
* specifies host endian format!
*/
static inline xfs_ictimestamp_t
xfs_inode_to_log_dinode_ts(
struct xfs_inode *ip,
const struct timespec64 tv)
{
struct xfs_legacy_ictimestamp *lits;
xfs_ictimestamp_t its;
if (xfs_inode_has_bigtime(ip))
return xfs_inode_encode_bigtime(tv);
lits = (struct xfs_legacy_ictimestamp *)&its;
lits->t_sec = tv.tv_sec;
lits->t_nsec = tv.tv_nsec;
return its;
}
static void static void
xfs_inode_to_log_dinode( xfs_inode_to_log_dinode(
struct xfs_inode *ip, struct xfs_inode *ip,
@@ -313,12 +335,9 @@ xfs_inode_to_log_dinode(
memset(to->di_pad, 0, sizeof(to->di_pad)); memset(to->di_pad, 0, sizeof(to->di_pad));
memset(to->di_pad3, 0, sizeof(to->di_pad3)); memset(to->di_pad3, 0, sizeof(to->di_pad3));
to->di_atime.t_sec = inode->i_atime.tv_sec; to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime);
to->di_atime.t_nsec = inode->i_atime.tv_nsec; to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime);
to->di_mtime.t_sec = inode->i_mtime.tv_sec; to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode->i_ctime);
to->di_mtime.t_nsec = inode->i_mtime.tv_nsec;
to->di_ctime.t_sec = inode->i_ctime.tv_sec;
to->di_ctime.t_nsec = inode->i_ctime.tv_nsec;
to->di_nlink = inode->i_nlink; to->di_nlink = inode->i_nlink;
to->di_gen = inode->i_generation; to->di_gen = inode->i_generation;
to->di_mode = inode->i_mode; to->di_mode = inode->i_mode;
@@ -340,8 +359,7 @@ xfs_inode_to_log_dinode(
if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) { if (xfs_sb_version_has_v3inode(&ip->i_mount->m_sb)) {
to->di_version = 3; to->di_version = 3;
to->di_changecount = inode_peek_iversion(inode); to->di_changecount = inode_peek_iversion(inode);
to->di_crtime.t_sec = from->di_crtime.tv_sec; to->di_crtime = xfs_inode_to_log_dinode_ts(ip, from->di_crtime);
to->di_crtime.t_nsec = from->di_crtime.tv_nsec;
to->di_flags2 = from->di_flags2; to->di_flags2 = from->di_flags2;
to->di_cowextsize = from->di_cowextsize; to->di_cowextsize = from->di_cowextsize;
to->di_ino = ip->i_ino; to->di_ino = ip->i_ino;
@@ -491,8 +509,7 @@ xfs_inode_item_push(
(ip->i_flags & XFS_ISTALE)) (ip->i_flags & XFS_ISTALE))
return XFS_ITEM_PINNED; return XFS_ITEM_PINNED;
/* If the inode is already flush locked, we're already flushing. */ if (xfs_iflags_test(ip, XFS_IFLUSHING))
if (xfs_isiflocked(ip))
return XFS_ITEM_FLUSHING; return XFS_ITEM_FLUSHING;
if (!xfs_buf_trylock(bp)) if (!xfs_buf_trylock(bp))
@@ -703,7 +720,7 @@ xfs_iflush_finish(
iip->ili_last_fields = 0; iip->ili_last_fields = 0;
iip->ili_flush_lsn = 0; iip->ili_flush_lsn = 0;
spin_unlock(&iip->ili_lock); spin_unlock(&iip->ili_lock);
xfs_ifunlock(iip->ili_inode); xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
if (drop_buffer) if (drop_buffer)
xfs_buf_rele(bp); xfs_buf_rele(bp);
} }
@@ -711,11 +728,11 @@ xfs_iflush_finish(
/* /*
* Inode buffer IO completion routine. It is responsible for removing inodes * Inode buffer IO completion routine. It is responsible for removing inodes
* attached to the buffer from the AIL if they have not been re-logged, as well * attached to the buffer from the AIL if they have not been re-logged and
* as completing the flush and unlocking the inode. * completing the inode flush.
*/ */
void void
xfs_iflush_done( xfs_buf_inode_iodone(
struct xfs_buf *bp) struct xfs_buf *bp)
{ {
struct xfs_log_item *lip, *n; struct xfs_log_item *lip, *n;
@@ -754,11 +771,21 @@ xfs_iflush_done(
list_splice_tail(&flushed_inodes, &bp->b_li_list); list_splice_tail(&flushed_inodes, &bp->b_li_list);
} }
void
xfs_buf_inode_io_fail(
struct xfs_buf *bp)
{
struct xfs_log_item *lip;
list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
set_bit(XFS_LI_FAILED, &lip->li_flags);
}
/* /*
* This is the inode flushing abort routine. It is called from xfs_iflush when * This is the inode flushing abort routine. It is called when
* the filesystem is shutting down to clean up the inode state. It is * the filesystem is shutting down to clean up the inode state. It is
* responsible for removing the inode item from the AIL if it has not been * responsible for removing the inode item from the AIL if it has not been
* re-logged, and unlocking the inode's flush lock. * re-logged and clearing the inode's flush state.
*/ */
void void
xfs_iflush_abort( xfs_iflush_abort(
@@ -790,7 +817,7 @@ xfs_iflush_abort(
list_del_init(&iip->ili_item.li_bio_list); list_del_init(&iip->ili_item.li_bio_list);
spin_unlock(&iip->ili_lock); spin_unlock(&iip->ili_lock);
} }
xfs_ifunlock(ip); xfs_iflags_clear(ip, XFS_IFLUSHING);
if (bp) if (bp)
xfs_buf_rele(bp); xfs_buf_rele(bp);
} }

View File

@@ -25,8 +25,8 @@ struct xfs_inode_log_item {
* *
* We need atomic changes between inode dirtying, inode flushing and * We need atomic changes between inode dirtying, inode flushing and
* inode completion, but these all hold different combinations of * inode completion, but these all hold different combinations of
* ILOCK and iflock and hence we need some other method of serialising * ILOCK and IFLUSHING and hence we need some other method of
* updates to the flush state. * serialising updates to the flush state.
*/ */
spinlock_t ili_lock; /* flush state lock */ spinlock_t ili_lock; /* flush state lock */
unsigned int ili_last_fields; /* fields when flushed */ unsigned int ili_last_fields; /* fields when flushed */
@@ -43,7 +43,6 @@ static inline int xfs_inode_clean(struct xfs_inode *ip)
extern void xfs_inode_item_init(struct xfs_inode *, struct xfs_mount *); extern void xfs_inode_item_init(struct xfs_inode *, struct xfs_mount *);
extern void xfs_inode_item_destroy(struct xfs_inode *); extern void xfs_inode_item_destroy(struct xfs_inode *);
extern void xfs_iflush_done(struct xfs_buf *);
extern void xfs_iflush_abort(struct xfs_inode *); extern void xfs_iflush_abort(struct xfs_inode *);
extern int xfs_inode_item_format_convert(xfs_log_iovec_t *, extern int xfs_inode_item_format_convert(xfs_log_iovec_t *,
struct xfs_inode_log_format *); struct xfs_inode_log_format *);

View File

@@ -115,6 +115,82 @@ out_free_ip:
return error; return error;
} }
static inline bool xfs_log_dinode_has_bigtime(const struct xfs_log_dinode *ld)
{
return ld->di_version >= 3 &&
(ld->di_flags2 & XFS_DIFLAG2_BIGTIME);
}
/* Convert a log timestamp to an ondisk timestamp. */
static inline xfs_timestamp_t
xfs_log_dinode_to_disk_ts(
struct xfs_log_dinode *from,
const xfs_ictimestamp_t its)
{
struct xfs_legacy_timestamp *lts;
struct xfs_legacy_ictimestamp *lits;
xfs_timestamp_t ts;
if (xfs_log_dinode_has_bigtime(from))
return cpu_to_be64(its);
lts = (struct xfs_legacy_timestamp *)&ts;
lits = (struct xfs_legacy_ictimestamp *)&its;
lts->t_sec = cpu_to_be32(lits->t_sec);
lts->t_nsec = cpu_to_be32(lits->t_nsec);
return ts;
}
STATIC void
xfs_log_dinode_to_disk(
struct xfs_log_dinode *from,
struct xfs_dinode *to)
{
to->di_magic = cpu_to_be16(from->di_magic);
to->di_mode = cpu_to_be16(from->di_mode);
to->di_version = from->di_version;
to->di_format = from->di_format;
to->di_onlink = 0;
to->di_uid = cpu_to_be32(from->di_uid);
to->di_gid = cpu_to_be32(from->di_gid);
to->di_nlink = cpu_to_be32(from->di_nlink);
to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
to->di_atime = xfs_log_dinode_to_disk_ts(from, from->di_atime);
to->di_mtime = xfs_log_dinode_to_disk_ts(from, from->di_mtime);
to->di_ctime = xfs_log_dinode_to_disk_ts(from, from->di_ctime);
to->di_size = cpu_to_be64(from->di_size);
to->di_nblocks = cpu_to_be64(from->di_nblocks);
to->di_extsize = cpu_to_be32(from->di_extsize);
to->di_nextents = cpu_to_be32(from->di_nextents);
to->di_anextents = cpu_to_be16(from->di_anextents);
to->di_forkoff = from->di_forkoff;
to->di_aformat = from->di_aformat;
to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
to->di_dmstate = cpu_to_be16(from->di_dmstate);
to->di_flags = cpu_to_be16(from->di_flags);
to->di_gen = cpu_to_be32(from->di_gen);
if (from->di_version == 3) {
to->di_changecount = cpu_to_be64(from->di_changecount);
to->di_crtime = xfs_log_dinode_to_disk_ts(from,
from->di_crtime);
to->di_flags2 = cpu_to_be64(from->di_flags2);
to->di_cowextsize = cpu_to_be32(from->di_cowextsize);
to->di_ino = cpu_to_be64(from->di_ino);
to->di_lsn = cpu_to_be64(from->di_lsn);
memcpy(to->di_pad2, from->di_pad2, sizeof(to->di_pad2));
uuid_copy(&to->di_uuid, &from->di_uuid);
to->di_flushiter = 0;
} else {
to->di_flushiter = cpu_to_be16(from->di_flushiter);
}
}
STATIC int STATIC int
xlog_recover_inode_commit_pass2( xlog_recover_inode_commit_pass2(
struct xlog *log, struct xlog *log,

View File

@@ -404,7 +404,7 @@ xfs_ioc_attr_list(
context.cursor.offset)) context.cursor.offset))
return -EINVAL; return -EINVAL;
buffer = kmem_zalloc_large(bufsize, 0); buffer = kvzalloc(bufsize, GFP_KERNEL);
if (!buffer) if (!buffer)
return -ENOMEM; return -ENOMEM;
@@ -1190,7 +1190,8 @@ xfs_flags2diflags2(
unsigned int xflags) unsigned int xflags)
{ {
uint64_t di_flags2 = uint64_t di_flags2 =
(ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK); (ip->i_d.di_flags2 & (XFS_DIFLAG2_REFLINK |
XFS_DIFLAG2_BIGTIME));
if (xflags & FS_XFLAG_DAX) if (xflags & FS_XFLAG_DAX)
di_flags2 |= XFS_DIFLAG2_DAX; di_flags2 |= XFS_DIFLAG2_DAX;
@@ -1690,7 +1691,7 @@ xfs_ioc_getbmap(
if (bmx.bmv_count > ULONG_MAX / recsize) if (bmx.bmv_count > ULONG_MAX / recsize)
return -ENOMEM; return -ENOMEM;
buf = kmem_zalloc_large(bmx.bmv_count * sizeof(*buf), 0); buf = kvzalloc(bmx.bmv_count * sizeof(*buf), GFP_KERNEL);
if (!buf) if (!buf)
return -ENOMEM; return -ENOMEM;

View File

@@ -265,32 +265,6 @@ xlog_header_check_mount(
return 0; return 0;
} }
void
xlog_recover_iodone(
struct xfs_buf *bp)
{
if (bp->b_error) {
/*
* We're not going to bother about retrying
* this during recovery. One strike!
*/
if (!XFS_FORCED_SHUTDOWN(bp->b_mount)) {
xfs_buf_ioerror_alert(bp, __this_address);
xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
}
}
/*
* On v5 supers, a bli could be attached to update the metadata LSN.
* Clean it up.
*/
if (bp->b_log_item)
xfs_buf_item_relse(bp);
ASSERT(bp->b_log_item == NULL);
bp->b_flags &= ~_XBF_LOGRECOVERY;
xfs_buf_ioend_finish(bp);
}
/* /*
* This routine finds (to an approximation) the first block in the physical * This routine finds (to an approximation) the first block in the physical
* log which contains the given cycle. It uses a binary search algorithm. * log which contains the given cycle. It uses a binary search algorithm.
@@ -2097,7 +2071,7 @@ xlog_recover_add_to_cont_trans(
old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
old_len = item->ri_buf[item->ri_cnt-1].i_len; old_len = item->ri_buf[item->ri_cnt-1].i_len;
ptr = kmem_realloc(old_ptr, len + old_len, 0); ptr = krealloc(old_ptr, len + old_len, GFP_KERNEL | __GFP_NOFAIL);
memcpy(&ptr[old_len], dp, len); memcpy(&ptr[old_len], dp, len);
item->ri_buf[item->ri_cnt-1].i_len += len; item->ri_buf[item->ri_cnt-1].i_len += len;
item->ri_buf[item->ri_cnt-1].i_addr = ptr; item->ri_buf[item->ri_cnt-1].i_addr = ptr;
@@ -3294,14 +3268,14 @@ xlog_do_log_recovery(
*/ */
STATIC int STATIC int
xlog_do_recover( xlog_do_recover(
struct xlog *log, struct xlog *log,
xfs_daddr_t head_blk, xfs_daddr_t head_blk,
xfs_daddr_t tail_blk) xfs_daddr_t tail_blk)
{ {
struct xfs_mount *mp = log->l_mp; struct xfs_mount *mp = log->l_mp;
int error; struct xfs_buf *bp = mp->m_sb_bp;
xfs_buf_t *bp; struct xfs_sb *sbp = &mp->m_sb;
xfs_sb_t *sbp; int error;
trace_xfs_log_recover(log, head_blk, tail_blk); trace_xfs_log_recover(log, head_blk, tail_blk);
@@ -3315,9 +3289,8 @@ xlog_do_recover(
/* /*
* If IO errors happened during recovery, bail out. * If IO errors happened during recovery, bail out.
*/ */
if (XFS_FORCED_SHUTDOWN(mp)) { if (XFS_FORCED_SHUTDOWN(mp))
return -EIO; return -EIO;
}
/* /*
* We now update the tail_lsn since much of the recovery has completed * We now update the tail_lsn since much of the recovery has completed
@@ -3331,16 +3304,12 @@ xlog_do_recover(
xlog_assign_tail_lsn(mp); xlog_assign_tail_lsn(mp);
/* /*
* Now that we've finished replaying all buffer and inode * Now that we've finished replaying all buffer and inode updates,
* updates, re-read in the superblock and reverify it. * re-read the superblock and reverify it.
*/ */
bp = xfs_getsb(mp); xfs_buf_lock(bp);
bp->b_flags &= ~(XBF_DONE | XBF_ASYNC); xfs_buf_hold(bp);
ASSERT(!(bp->b_flags & XBF_WRITE)); error = _xfs_buf_read(bp, XBF_READ);
bp->b_flags |= XBF_READ;
bp->b_ops = &xfs_sb_buf_ops;
error = xfs_buf_submit(bp);
if (error) { if (error) {
if (!XFS_FORCED_SHUTDOWN(mp)) { if (!XFS_FORCED_SHUTDOWN(mp)) {
xfs_buf_ioerror_alert(bp, __this_address); xfs_buf_ioerror_alert(bp, __this_address);
@@ -3351,7 +3320,6 @@ xlog_do_recover(
} }
/* Convert superblock from on-disk format */ /* Convert superblock from on-disk format */
sbp = &mp->m_sb;
xfs_sb_from_disk(sbp, bp->b_addr); xfs_sb_from_disk(sbp, bp->b_addr);
xfs_buf_relse(bp); xfs_buf_relse(bp);

View File

@@ -80,9 +80,9 @@ xfs_uuid_mount(
} }
if (hole < 0) { if (hole < 0) {
xfs_uuid_table = kmem_realloc(xfs_uuid_table, xfs_uuid_table = krealloc(xfs_uuid_table,
(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
0); GFP_KERNEL | __GFP_NOFAIL);
hole = xfs_uuid_table_size++; hole = xfs_uuid_table_size++;
} }
xfs_uuid_table[hole] = *uuid; xfs_uuid_table[hole] = *uuid;
@@ -1059,11 +1059,12 @@ xfs_unmountfs(
* We can potentially deadlock here if we have an inode cluster * We can potentially deadlock here if we have an inode cluster
* that has been freed has its buffer still pinned in memory because * that has been freed has its buffer still pinned in memory because
* the transaction is still sitting in a iclog. The stale inodes * the transaction is still sitting in a iclog. The stale inodes
* on that buffer will have their flush locks held until the * on that buffer will be pinned to the buffer until the
* transaction hits the disk and the callbacks run. the inode * transaction hits the disk and the callbacks run. Pushing the AIL will
* flush takes the flush lock unconditionally and with nothing to * skip the stale inodes and may never see the pinned buffer, so
* push out the iclog we will never get that unlocked. hence we * nothing will push out the iclog and unpin the buffer. Hence we
* need to force the log first. * need to force the log here to ensure all items are flushed into the
* AIL before we go any further.
*/ */
xfs_log_force(mp, XFS_LOG_SYNC); xfs_log_force(mp, XFS_LOG_SYNC);
@@ -1288,23 +1289,6 @@ xfs_mod_frextents(
return ret; return ret;
} }
/*
* xfs_getsb() is called to obtain the buffer for the superblock.
* The buffer is returned locked and read in from disk.
* The buffer should be released with a call to xfs_brelse().
*/
struct xfs_buf *
xfs_getsb(
struct xfs_mount *mp)
{
struct xfs_buf *bp = mp->m_sb_bp;
xfs_buf_lock(bp);
xfs_buf_hold(bp);
ASSERT(bp->b_flags & XBF_DONE);
return bp;
}
/* /*
* Used to free the superblock along various error paths. * Used to free the superblock along various error paths.
*/ */

View File

@@ -410,7 +410,6 @@ extern int xfs_mod_fdblocks(struct xfs_mount *mp, int64_t delta,
bool reserved); bool reserved);
extern int xfs_mod_frextents(struct xfs_mount *mp, int64_t delta); extern int xfs_mod_frextents(struct xfs_mount *mp, int64_t delta);
extern struct xfs_buf *xfs_getsb(xfs_mount_t *);
extern int xfs_readsb(xfs_mount_t *, int); extern int xfs_readsb(xfs_mount_t *, int);
extern void xfs_freesb(xfs_mount_t *); extern void xfs_freesb(xfs_mount_t *);
extern bool xfs_fs_writable(struct xfs_mount *mp, int level); extern bool xfs_fs_writable(struct xfs_mount *mp, int level);

View File

@@ -15,6 +15,10 @@
"XFS: offsetof(" #structname ", " #member ") is wrong, " \ "XFS: offsetof(" #structname ", " #member ") is wrong, " \
"expected " #off) "expected " #off)
#define XFS_CHECK_VALUE(value, expected) \
BUILD_BUG_ON_MSG((value) != (expected), \
"XFS: value of " #value " is wrong, expected " #expected)
static inline void __init static inline void __init
xfs_check_ondisk_structs(void) xfs_check_ondisk_structs(void)
{ {
@@ -23,7 +27,7 @@ xfs_check_ondisk_structs(void)
XFS_CHECK_STRUCT_SIZE(struct xfs_acl_entry, 12); XFS_CHECK_STRUCT_SIZE(struct xfs_acl_entry, 12);
XFS_CHECK_STRUCT_SIZE(struct xfs_agf, 224); XFS_CHECK_STRUCT_SIZE(struct xfs_agf, 224);
XFS_CHECK_STRUCT_SIZE(struct xfs_agfl, 36); XFS_CHECK_STRUCT_SIZE(struct xfs_agfl, 36);
XFS_CHECK_STRUCT_SIZE(struct xfs_agi, 336); XFS_CHECK_STRUCT_SIZE(struct xfs_agi, 344);
XFS_CHECK_STRUCT_SIZE(struct xfs_bmbt_key, 8); XFS_CHECK_STRUCT_SIZE(struct xfs_bmbt_key, 8);
XFS_CHECK_STRUCT_SIZE(struct xfs_bmbt_rec, 16); XFS_CHECK_STRUCT_SIZE(struct xfs_bmbt_rec, 16);
XFS_CHECK_STRUCT_SIZE(struct xfs_bmdr_block, 4); XFS_CHECK_STRUCT_SIZE(struct xfs_bmdr_block, 4);
@@ -41,7 +45,8 @@ xfs_check_ondisk_structs(void)
XFS_CHECK_STRUCT_SIZE(struct xfs_refcount_rec, 12); XFS_CHECK_STRUCT_SIZE(struct xfs_refcount_rec, 12);
XFS_CHECK_STRUCT_SIZE(struct xfs_rmap_key, 20); XFS_CHECK_STRUCT_SIZE(struct xfs_rmap_key, 20);
XFS_CHECK_STRUCT_SIZE(struct xfs_rmap_rec, 24); XFS_CHECK_STRUCT_SIZE(struct xfs_rmap_rec, 24);
XFS_CHECK_STRUCT_SIZE(struct xfs_timestamp, 8); XFS_CHECK_STRUCT_SIZE(xfs_timestamp_t, 8);
XFS_CHECK_STRUCT_SIZE(struct xfs_legacy_timestamp, 8);
XFS_CHECK_STRUCT_SIZE(xfs_alloc_key_t, 8); XFS_CHECK_STRUCT_SIZE(xfs_alloc_key_t, 8);
XFS_CHECK_STRUCT_SIZE(xfs_alloc_ptr_t, 4); XFS_CHECK_STRUCT_SIZE(xfs_alloc_ptr_t, 4);
XFS_CHECK_STRUCT_SIZE(xfs_alloc_rec_t, 8); XFS_CHECK_STRUCT_SIZE(xfs_alloc_rec_t, 8);
@@ -84,12 +89,12 @@ xfs_check_ondisk_structs(void)
XFS_CHECK_OFFSET(xfs_attr_leaf_name_remote_t, namelen, 8); XFS_CHECK_OFFSET(xfs_attr_leaf_name_remote_t, namelen, 8);
XFS_CHECK_OFFSET(xfs_attr_leaf_name_remote_t, name, 9); XFS_CHECK_OFFSET(xfs_attr_leaf_name_remote_t, name, 9);
XFS_CHECK_STRUCT_SIZE(xfs_attr_leafblock_t, 40); XFS_CHECK_STRUCT_SIZE(xfs_attr_leafblock_t, 40);
XFS_CHECK_OFFSET(xfs_attr_shortform_t, hdr.totsize, 0); XFS_CHECK_OFFSET(struct xfs_attr_shortform, hdr.totsize, 0);
XFS_CHECK_OFFSET(xfs_attr_shortform_t, hdr.count, 2); XFS_CHECK_OFFSET(struct xfs_attr_shortform, hdr.count, 2);
XFS_CHECK_OFFSET(xfs_attr_shortform_t, list[0].namelen, 4); XFS_CHECK_OFFSET(struct xfs_attr_shortform, list[0].namelen, 4);
XFS_CHECK_OFFSET(xfs_attr_shortform_t, list[0].valuelen, 5); XFS_CHECK_OFFSET(struct xfs_attr_shortform, list[0].valuelen, 5);
XFS_CHECK_OFFSET(xfs_attr_shortform_t, list[0].flags, 6); XFS_CHECK_OFFSET(struct xfs_attr_shortform, list[0].flags, 6);
XFS_CHECK_OFFSET(xfs_attr_shortform_t, list[0].nameval, 7); XFS_CHECK_OFFSET(struct xfs_attr_shortform, list[0].nameval, 7);
XFS_CHECK_STRUCT_SIZE(xfs_da_blkinfo_t, 12); XFS_CHECK_STRUCT_SIZE(xfs_da_blkinfo_t, 12);
XFS_CHECK_STRUCT_SIZE(xfs_da_intnode_t, 16); XFS_CHECK_STRUCT_SIZE(xfs_da_intnode_t, 16);
XFS_CHECK_STRUCT_SIZE(xfs_da_node_entry_t, 8); XFS_CHECK_STRUCT_SIZE(xfs_da_node_entry_t, 8);
@@ -121,7 +126,8 @@ xfs_check_ondisk_structs(void)
XFS_CHECK_STRUCT_SIZE(struct xfs_extent_64, 16); XFS_CHECK_STRUCT_SIZE(struct xfs_extent_64, 16);
XFS_CHECK_STRUCT_SIZE(struct xfs_log_dinode, 176); XFS_CHECK_STRUCT_SIZE(struct xfs_log_dinode, 176);
XFS_CHECK_STRUCT_SIZE(struct xfs_icreate_log, 28); XFS_CHECK_STRUCT_SIZE(struct xfs_icreate_log, 28);
XFS_CHECK_STRUCT_SIZE(struct xfs_ictimestamp, 8); XFS_CHECK_STRUCT_SIZE(xfs_ictimestamp_t, 8);
XFS_CHECK_STRUCT_SIZE(struct xfs_legacy_ictimestamp, 8);
XFS_CHECK_STRUCT_SIZE(struct xfs_inode_log_format_32, 52); XFS_CHECK_STRUCT_SIZE(struct xfs_inode_log_format_32, 52);
XFS_CHECK_STRUCT_SIZE(struct xfs_inode_log_format, 56); XFS_CHECK_STRUCT_SIZE(struct xfs_inode_log_format, 56);
XFS_CHECK_STRUCT_SIZE(struct xfs_qoff_logformat, 20); XFS_CHECK_STRUCT_SIZE(struct xfs_qoff_logformat, 20);
@@ -152,6 +158,20 @@ xfs_check_ondisk_structs(void)
XFS_CHECK_STRUCT_SIZE(struct xfs_inumbers, 24); XFS_CHECK_STRUCT_SIZE(struct xfs_inumbers, 24);
XFS_CHECK_STRUCT_SIZE(struct xfs_bulkstat_req, 64); XFS_CHECK_STRUCT_SIZE(struct xfs_bulkstat_req, 64);
XFS_CHECK_STRUCT_SIZE(struct xfs_inumbers_req, 64); XFS_CHECK_STRUCT_SIZE(struct xfs_inumbers_req, 64);
/*
* Make sure the incore inode timestamp range corresponds to hand
* converted values based on the ondisk format specification.
*/
XFS_CHECK_VALUE(XFS_BIGTIME_TIME_MIN - XFS_BIGTIME_EPOCH_OFFSET,
XFS_LEGACY_TIME_MIN);
XFS_CHECK_VALUE(XFS_BIGTIME_TIME_MAX - XFS_BIGTIME_EPOCH_OFFSET,
16299260424LL);
/* Do the same with the incore quota expiration range. */
XFS_CHECK_VALUE(XFS_DQ_BIGTIME_EXPIRY_MIN << XFS_DQ_BIGTIME_SHIFT, 4);
XFS_CHECK_VALUE(XFS_DQ_BIGTIME_EXPIRY_MAX << XFS_DQ_BIGTIME_SHIFT,
16299260424LL);
} }
#endif /* __XFS_ONDISK_H */ #endif /* __XFS_ONDISK_H */

View File

@@ -661,6 +661,17 @@ xfs_qm_init_quotainfo(
/* Precalc some constants */ /* Precalc some constants */
qinf->qi_dqchunklen = XFS_FSB_TO_BB(mp, XFS_DQUOT_CLUSTER_SIZE_FSB); qinf->qi_dqchunklen = XFS_FSB_TO_BB(mp, XFS_DQUOT_CLUSTER_SIZE_FSB);
qinf->qi_dqperchunk = xfs_calc_dquots_per_chunk(qinf->qi_dqchunklen); qinf->qi_dqperchunk = xfs_calc_dquots_per_chunk(qinf->qi_dqchunklen);
if (xfs_sb_version_hasbigtime(&mp->m_sb)) {
qinf->qi_expiry_min =
xfs_dq_bigtime_to_unix(XFS_DQ_BIGTIME_EXPIRY_MIN);
qinf->qi_expiry_max =
xfs_dq_bigtime_to_unix(XFS_DQ_BIGTIME_EXPIRY_MAX);
} else {
qinf->qi_expiry_min = XFS_DQ_LEGACY_EXPIRY_MIN;
qinf->qi_expiry_max = XFS_DQ_LEGACY_EXPIRY_MAX;
}
trace_xfs_quota_expiry_range(mp, qinf->qi_expiry_min,
qinf->qi_expiry_max);
mp->m_qflags |= (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_CHKD); mp->m_qflags |= (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_CHKD);
@@ -879,6 +890,8 @@ xfs_qm_reset_dqcounts(
ddq->d_bwarns = 0; ddq->d_bwarns = 0;
ddq->d_iwarns = 0; ddq->d_iwarns = 0;
ddq->d_rtbwarns = 0; ddq->d_rtbwarns = 0;
if (xfs_sb_version_hasbigtime(&mp->m_sb))
ddq->d_type |= XFS_DQTYPE_BIGTIME;
} }
if (xfs_sb_version_hascrc(&mp->m_sb)) { if (xfs_sb_version_hascrc(&mp->m_sb)) {

View File

@@ -65,6 +65,10 @@ struct xfs_quotainfo {
struct xfs_def_quota qi_grp_default; struct xfs_def_quota qi_grp_default;
struct xfs_def_quota qi_prj_default; struct xfs_def_quota qi_prj_default;
struct shrinker qi_shrinker; struct shrinker qi_shrinker;
/* Minimum and maximum quota expiration timestamp values. */
time64_t qi_expiry_min;
time64_t qi_expiry_max;
}; };
static inline struct radix_tree_root * static inline struct radix_tree_root *

View File

@@ -479,13 +479,19 @@ xfs_setqlim_warns(
static inline void static inline void
xfs_setqlim_timer( xfs_setqlim_timer(
struct xfs_mount *mp,
struct xfs_dquot_res *res, struct xfs_dquot_res *res,
struct xfs_quota_limits *qlim, struct xfs_quota_limits *qlim,
s64 timer) s64 timer)
{ {
res->timer = timer; if (qlim) {
if (qlim) /* Set the length of the default grace period. */
qlim->time = timer; res->timer = xfs_dquot_set_grace_period(timer);
qlim->time = res->timer;
} else {
/* Set the grace period expiration on a quota. */
res->timer = xfs_dquot_set_timeout(mp, timer);
}
} }
/* /*
@@ -574,7 +580,7 @@ xfs_qm_scall_setqlim(
if (newlim->d_fieldmask & QC_SPC_WARNS) if (newlim->d_fieldmask & QC_SPC_WARNS)
xfs_setqlim_warns(res, qlim, newlim->d_spc_warns); xfs_setqlim_warns(res, qlim, newlim->d_spc_warns);
if (newlim->d_fieldmask & QC_SPC_TIMER) if (newlim->d_fieldmask & QC_SPC_TIMER)
xfs_setqlim_timer(res, qlim, newlim->d_spc_timer); xfs_setqlim_timer(mp, res, qlim, newlim->d_spc_timer);
/* Blocks on the realtime device. */ /* Blocks on the realtime device. */
hard = (newlim->d_fieldmask & QC_RT_SPC_HARD) ? hard = (newlim->d_fieldmask & QC_RT_SPC_HARD) ?
@@ -590,7 +596,7 @@ xfs_qm_scall_setqlim(
if (newlim->d_fieldmask & QC_RT_SPC_WARNS) if (newlim->d_fieldmask & QC_RT_SPC_WARNS)
xfs_setqlim_warns(res, qlim, newlim->d_rt_spc_warns); xfs_setqlim_warns(res, qlim, newlim->d_rt_spc_warns);
if (newlim->d_fieldmask & QC_RT_SPC_TIMER) if (newlim->d_fieldmask & QC_RT_SPC_TIMER)
xfs_setqlim_timer(res, qlim, newlim->d_rt_spc_timer); xfs_setqlim_timer(mp, res, qlim, newlim->d_rt_spc_timer);
/* Inodes */ /* Inodes */
hard = (newlim->d_fieldmask & QC_INO_HARD) ? hard = (newlim->d_fieldmask & QC_INO_HARD) ?
@@ -606,7 +612,7 @@ xfs_qm_scall_setqlim(
if (newlim->d_fieldmask & QC_INO_WARNS) if (newlim->d_fieldmask & QC_INO_WARNS)
xfs_setqlim_warns(res, qlim, newlim->d_ino_warns); xfs_setqlim_warns(res, qlim, newlim->d_ino_warns);
if (newlim->d_fieldmask & QC_INO_TIMER) if (newlim->d_fieldmask & QC_INO_TIMER)
xfs_setqlim_timer(res, qlim, newlim->d_ino_timer); xfs_setqlim_timer(mp, res, qlim, newlim->d_ino_timer);
if (id != 0) { if (id != 0) {
/* /*

View File

@@ -108,8 +108,6 @@ extern void xfs_qm_mount_quotas(struct xfs_mount *);
extern void xfs_qm_unmount(struct xfs_mount *); extern void xfs_qm_unmount(struct xfs_mount *);
extern void xfs_qm_unmount_quotas(struct xfs_mount *); extern void xfs_qm_unmount_quotas(struct xfs_mount *);
void xfs_dquot_done(struct xfs_buf *);
#else #else
static inline int static inline int
xfs_qm_vop_dqalloc(struct xfs_inode *ip, kuid_t kuid, kgid_t kgid, xfs_qm_vop_dqalloc(struct xfs_inode *ip, kuid_t kuid, kgid_t kgid,
@@ -151,12 +149,6 @@ static inline int xfs_trans_reserve_quota_bydquots(struct xfs_trans *tp,
#define xfs_qm_mount_quotas(mp) #define xfs_qm_mount_quotas(mp)
#define xfs_qm_unmount(mp) #define xfs_qm_unmount(mp)
#define xfs_qm_unmount_quotas(mp) #define xfs_qm_unmount_quotas(mp)
static inline void xfs_dquot_done(struct xfs_buf *bp)
{
return;
}
#endif /* CONFIG_XFS_QUOTA */ #endif /* CONFIG_XFS_QUOTA */
#define xfs_trans_unreserve_quota_nblks(tp, ip, nblks, ninos, flags) \ #define xfs_trans_unreserve_quota_nblks(tp, ip, nblks, ninos, flags) \

View File

@@ -247,6 +247,9 @@ xfs_rtallocate_extent_block(
end = XFS_BLOCKTOBIT(mp, bbno + 1) - 1; end = XFS_BLOCKTOBIT(mp, bbno + 1) - 1;
i <= end; i <= end;
i++) { i++) {
/* Make sure we don't scan off the end of the rt volume. */
maxlen = min(mp->m_sb.sb_rextents, i + maxlen) - i;
/* /*
* See if there's a free extent of maxlen starting at i. * See if there's a free extent of maxlen starting at i.
* If it's not so then next will contain the first non-free. * If it's not so then next will contain the first non-free.
@@ -442,6 +445,14 @@ xfs_rtallocate_extent_near(
*/ */
if (bno >= mp->m_sb.sb_rextents) if (bno >= mp->m_sb.sb_rextents)
bno = mp->m_sb.sb_rextents - 1; bno = mp->m_sb.sb_rextents - 1;
/* Make sure we don't run off the end of the rt volume. */
maxlen = min(mp->m_sb.sb_rextents, bno + maxlen) - bno;
if (maxlen < minlen) {
*rtblock = NULLRTBLOCK;
return 0;
}
/* /*
* Try the exact allocation first. * Try the exact allocation first.
*/ */
@@ -862,7 +873,7 @@ xfs_alloc_rsum_cache(
* lower bound on the minimum level with any free extents. We can * lower bound on the minimum level with any free extents. We can
* continue without the cache if it couldn't be allocated. * continue without the cache if it couldn't be allocated.
*/ */
mp->m_rsum_cache = kmem_zalloc_large(rbmblocks, 0); mp->m_rsum_cache = kvzalloc(rbmblocks, GFP_KERNEL);
if (!mp->m_rsum_cache) if (!mp->m_rsum_cache)
xfs_warn(mp, "could not allocate realtime summary cache"); xfs_warn(mp, "could not allocate realtime summary cache");
} }

View File

@@ -654,11 +654,11 @@ xfs_fs_destroy_inode(
ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM)); ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM));
/* /*
* We always use background reclaim here because even if the * We always use background reclaim here because even if the inode is
* inode is clean, it still may be under IO and hence we have * clean, it still may be under IO and hence we have wait for IO
* to take the flush lock. The background reclaim path handles * completion to occur before we can reclaim the inode. The background
* this more efficiently than we can here, so simply let background * reclaim path handles this more efficiently than we can here, so
* reclaim tear down all inodes. * simply let background reclaim tear down all inodes.
*/ */
xfs_inode_set_reclaim_tag(ip); xfs_inode_set_reclaim_tag(ip);
} }
@@ -1484,8 +1484,14 @@ xfs_fc_fill_super(
sb->s_maxbytes = MAX_LFS_FILESIZE; sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_max_links = XFS_MAXLINK; sb->s_max_links = XFS_MAXLINK;
sb->s_time_gran = 1; sb->s_time_gran = 1;
sb->s_time_min = S32_MIN; if (xfs_sb_version_hasbigtime(&mp->m_sb)) {
sb->s_time_max = S32_MAX; sb->s_time_min = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MIN);
sb->s_time_max = xfs_bigtime_to_unix(XFS_BIGTIME_TIME_MAX);
} else {
sb->s_time_min = XFS_LEGACY_TIME_MIN;
sb->s_time_max = XFS_LEGACY_TIME_MAX;
}
trace_xfs_inode_timestamp_range(mp, sb->s_time_min, sb->s_time_max);
sb->s_iflags |= SB_I_CGROUPWB; sb->s_iflags |= SB_I_CGROUPWB;
set_posix_acl_flag(sb); set_posix_acl_flag(sb);
@@ -1494,6 +1500,10 @@ xfs_fc_fill_super(
if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5) if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5)
sb->s_flags |= SB_I_VERSION; sb->s_flags |= SB_I_VERSION;
if (xfs_sb_version_hasbigtime(&mp->m_sb))
xfs_warn(mp,
"EXPERIMENTAL big timestamp feature in use. Use at your own risk!");
if (mp->m_flags & XFS_MOUNT_DAX_ALWAYS) { if (mp->m_flags & XFS_MOUNT_DAX_ALWAYS) {
bool rtdev_is_dax = false, datadev_is_dax; bool rtdev_is_dax = false, datadev_is_dax;
@@ -1549,6 +1559,10 @@ xfs_fc_fill_super(
goto out_filestream_unmount; goto out_filestream_unmount;
} }
if (xfs_sb_version_hasinobtcounts(&mp->m_sb))
xfs_warn(mp,
"EXPERIMENTAL inode btree counters feature in use. Use at your own risk!");
error = xfs_mountfs(mp); error = xfs_mountfs(mp);
if (error) if (error)
goto out_filestream_unmount; goto out_filestream_unmount;

View File

@@ -338,7 +338,7 @@ DEFINE_BUF_EVENT(xfs_buf_delwri_split);
DEFINE_BUF_EVENT(xfs_buf_delwri_pushbuf); DEFINE_BUF_EVENT(xfs_buf_delwri_pushbuf);
DEFINE_BUF_EVENT(xfs_buf_get_uncached); DEFINE_BUF_EVENT(xfs_buf_get_uncached);
DEFINE_BUF_EVENT(xfs_buf_item_relse); DEFINE_BUF_EVENT(xfs_buf_item_relse);
DEFINE_BUF_EVENT(xfs_buf_item_iodone_async); DEFINE_BUF_EVENT(xfs_buf_iodone_async);
DEFINE_BUF_EVENT(xfs_buf_error_relse); DEFINE_BUF_EVENT(xfs_buf_error_relse);
DEFINE_BUF_EVENT(xfs_buf_wait_buftarg); DEFINE_BUF_EVENT(xfs_buf_wait_buftarg);
DEFINE_BUF_EVENT(xfs_trans_read_buf_shut); DEFINE_BUF_EVENT(xfs_trans_read_buf_shut);
@@ -3676,7 +3676,6 @@ DEFINE_EVENT(xfs_kmem_class, name, \
DEFINE_KMEM_EVENT(kmem_alloc); DEFINE_KMEM_EVENT(kmem_alloc);
DEFINE_KMEM_EVENT(kmem_alloc_io); DEFINE_KMEM_EVENT(kmem_alloc_io);
DEFINE_KMEM_EVENT(kmem_alloc_large); DEFINE_KMEM_EVENT(kmem_alloc_large);
DEFINE_KMEM_EVENT(kmem_realloc);
TRACE_EVENT(xfs_check_new_dalign, TRACE_EVENT(xfs_check_new_dalign,
TP_PROTO(struct xfs_mount *mp, int new_dalign, xfs_ino_t calc_rootino), TP_PROTO(struct xfs_mount *mp, int new_dalign, xfs_ino_t calc_rootino),
@@ -3844,6 +3843,32 @@ TRACE_EVENT(xfs_btree_bload_block,
__entry->nr_records) __entry->nr_records)
) )
DECLARE_EVENT_CLASS(xfs_timestamp_range_class,
TP_PROTO(struct xfs_mount *mp, time64_t min, time64_t max),
TP_ARGS(mp, min, max),
TP_STRUCT__entry(
__field(dev_t, dev)
__field(long long, min)
__field(long long, max)
),
TP_fast_assign(
__entry->dev = mp->m_super->s_dev;
__entry->min = min;
__entry->max = max;
),
TP_printk("dev %d:%d min %lld max %lld",
MAJOR(__entry->dev), MINOR(__entry->dev),
__entry->min,
__entry->max)
)
#define DEFINE_TIMESTAMP_RANGE_EVENT(name) \
DEFINE_EVENT(xfs_timestamp_range_class, name, \
TP_PROTO(struct xfs_mount *mp, long long min, long long max), \
TP_ARGS(mp, min, max))
DEFINE_TIMESTAMP_RANGE_EVENT(xfs_inode_timestamp_range);
DEFINE_TIMESTAMP_RANGE_EVENT(xfs_quota_expiry_range);
#endif /* _TRACE_XFS_H */ #endif /* _TRACE_XFS_H */
#undef TRACE_INCLUDE_PATH #undef TRACE_INCLUDE_PATH

View File

@@ -468,7 +468,7 @@ xfs_trans_apply_sb_deltas(
xfs_buf_t *bp; xfs_buf_t *bp;
int whole = 0; int whole = 0;
bp = xfs_trans_getsb(tp, tp->t_mountp); bp = xfs_trans_getsb(tp);
sbp = bp->b_addr; sbp = bp->b_addr;
/* /*

View File

@@ -209,7 +209,7 @@ xfs_trans_read_buf(
flags, bpp, ops); flags, bpp, ops);
} }
struct xfs_buf *xfs_trans_getsb(xfs_trans_t *, struct xfs_mount *); struct xfs_buf *xfs_trans_getsb(struct xfs_trans *);
void xfs_trans_brelse(xfs_trans_t *, struct xfs_buf *); void xfs_trans_brelse(xfs_trans_t *, struct xfs_buf *);
void xfs_trans_bjoin(xfs_trans_t *, struct xfs_buf *); void xfs_trans_bjoin(xfs_trans_t *, struct xfs_buf *);

View File

@@ -166,50 +166,34 @@ xfs_trans_get_buf_map(
} }
/* /*
* Get and lock the superblock buffer of this file system for the * Get and lock the superblock buffer for the given transaction.
* given transaction.
*
* We don't need to use incore_match() here, because the superblock
* buffer is a private buffer which we keep a pointer to in the
* mount structure.
*/ */
xfs_buf_t * struct xfs_buf *
xfs_trans_getsb( xfs_trans_getsb(
xfs_trans_t *tp, struct xfs_trans *tp)
struct xfs_mount *mp)
{ {
xfs_buf_t *bp; struct xfs_buf *bp = tp->t_mountp->m_sb_bp;
struct xfs_buf_log_item *bip;
/* /*
* Default to just trying to lock the superblock buffer * Just increment the lock recursion count if the buffer is already
* if tp is NULL. * attached to this transaction.
*/ */
if (tp == NULL)
return xfs_getsb(mp);
/*
* If the superblock buffer already has this transaction
* pointer in its b_fsprivate2 field, then we know we already
* have it locked. In this case we just increment the lock
* recursion count and return the buffer to the caller.
*/
bp = mp->m_sb_bp;
if (bp->b_transp == tp) { if (bp->b_transp == tp) {
bip = bp->b_log_item; struct xfs_buf_log_item *bip = bp->b_log_item;
ASSERT(bip != NULL); ASSERT(bip != NULL);
ASSERT(atomic_read(&bip->bli_refcount) > 0); ASSERT(atomic_read(&bip->bli_refcount) > 0);
bip->bli_recur++; bip->bli_recur++;
trace_xfs_trans_getsb_recur(bip); trace_xfs_trans_getsb_recur(bip);
return bp; } else {
xfs_buf_lock(bp);
xfs_buf_hold(bp);
_xfs_trans_bjoin(tp, bp, 1);
trace_xfs_trans_getsb(bp->b_log_item);
} }
bp = xfs_getsb(mp);
if (bp == NULL)
return NULL;
_xfs_trans_bjoin(tp, bp, 1);
trace_xfs_trans_getsb(bp->b_log_item);
return bp; return bp;
} }

View File

@@ -55,6 +55,12 @@ xfs_trans_log_dquot(
{ {
ASSERT(XFS_DQ_IS_LOCKED(dqp)); ASSERT(XFS_DQ_IS_LOCKED(dqp));
/* Upgrade the dquot to bigtime format if possible. */
if (dqp->q_id != 0 &&
xfs_sb_version_hasbigtime(&tp->t_mountp->m_sb) &&
!(dqp->q_type & XFS_DQTYPE_BIGTIME))
dqp->q_type |= XFS_DQTYPE_BIGTIME;
tp->t_flags |= XFS_TRANS_DIRTY; tp->t_flags |= XFS_TRANS_DIRTY;
set_bit(XFS_LI_DIRTY, &dqp->q_logitem.qli_item.li_flags); set_bit(XFS_LI_DIRTY, &dqp->q_logitem.qli_item.li_flags);
} }

View File

@@ -231,8 +231,7 @@ vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index); int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index);
int dax_invalidate_mapping_entry_sync(struct address_space *mapping, int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
pgoff_t index); pgoff_t index);
int dax_iomap_zero(loff_t pos, unsigned offset, unsigned size, s64 dax_iomap_zero(loff_t pos, u64 length, struct iomap *iomap);
struct iomap *iomap);
static inline bool dax_mapping(struct address_space *mapping) static inline bool dax_mapping(struct address_space *mapping)
{ {
return mapping->host && IS_DAX(mapping->host); return mapping->host && IS_DAX(mapping->host);

View File

@@ -13,6 +13,7 @@
struct address_space; struct address_space;
struct fiemap_extent_info; struct fiemap_extent_info;
struct inode; struct inode;
struct iomap_dio;
struct iomap_writepage_ctx; struct iomap_writepage_ctx;
struct iov_iter; struct iov_iter;
struct kiocb; struct kiocb;
@@ -258,6 +259,10 @@ struct iomap_dio_ops {
ssize_t iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter, ssize_t iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
const struct iomap_ops *ops, const struct iomap_dio_ops *dops, const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
bool wait_for_completion); bool wait_for_completion);
struct iomap_dio *__iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
const struct iomap_ops *ops, const struct iomap_dio_ops *dops,
bool wait_for_completion);
ssize_t iomap_dio_complete(struct iomap_dio *dio);
int iomap_dio_iopoll(struct kiocb *kiocb, bool spin); int iomap_dio_iopoll(struct kiocb *kiocb, bool spin);
#ifdef CONFIG_SWAP #ifdef CONFIG_SWAP

View File

@@ -333,4 +333,6 @@ struct ipmi_smi_info {
/* This is to get the private info of struct ipmi_smi */ /* This is to get the private info of struct ipmi_smi */
extern int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data); extern int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data);
#define GET_DEVICE_ID_MAX_RETRY 5
#endif /* __LINUX_IPMI_H */ #endif /* __LINUX_IPMI_H */

View File

@@ -927,4 +927,20 @@ static inline int page_mkwrite_check_truncate(struct page *page,
return offset; return offset;
} }
/**
* i_blocks_per_page - How many blocks fit in this page.
* @inode: The inode which contains the blocks.
* @page: The page (head page if the page is a THP).
*
* If the block size is larger than the size of this page, return zero.
*
* Context: The caller should hold a refcount on the page to prevent it
* from being split.
* Return: The number of filesystem blocks covered by this page.
*/
static inline
unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
{
return thp_size(page) >> inode->i_blkbits;
}
#endif /* _LINUX_PAGEMAP_H */ #endif /* _LINUX_PAGEMAP_H */

View File

@@ -83,7 +83,7 @@ extern void do_group_exit(int);
extern void exit_files(struct task_struct *); extern void exit_files(struct task_struct *);
extern void exit_itimers(struct signal_struct *); extern void exit_itimers(struct signal_struct *);
extern long _do_fork(struct kernel_clone_args *kargs); extern pid_t kernel_clone(struct kernel_clone_args *kargs);
struct task_struct *fork_idle(int); struct task_struct *fork_idle(int);
struct mm_struct *copy_init_mm(void); struct mm_struct *copy_init_mm(void);
extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags);

View File

@@ -69,6 +69,8 @@
#define IPMI_ERR_MSG_TRUNCATED 0xc6 #define IPMI_ERR_MSG_TRUNCATED 0xc6
#define IPMI_REQ_LEN_INVALID_ERR 0xc7 #define IPMI_REQ_LEN_INVALID_ERR 0xc7
#define IPMI_REQ_LEN_EXCEEDED_ERR 0xc8 #define IPMI_REQ_LEN_EXCEEDED_ERR 0xc8
#define IPMI_DEVICE_IN_FW_UPDATE_ERR 0xd1
#define IPMI_DEVICE_IN_INIT_ERR 0xd2
#define IPMI_NOT_IN_MY_STATE_ERR 0xd5 /* IPMI 2.0 */ #define IPMI_NOT_IN_MY_STATE_ERR 0xd5 /* IPMI 2.0 */
#define IPMI_LOST_ARBITRATION_ERR 0x81 #define IPMI_LOST_ARBITRATION_ERR 0x81
#define IPMI_BUS_ERR 0x82 #define IPMI_BUS_ERR 0x82

View File

@@ -0,0 +1,12 @@
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
#ifndef _UAPI_LINUX_PIDFD_H
#define _UAPI_LINUX_PIDFD_H
#include <linux/types.h>
#include <linux/fcntl.h>
/* Flags for pidfd_open(). */
#define PIDFD_NONBLOCK O_NONBLOCK
#endif /* _UAPI_LINUX_PIDFD_H */

View File

@@ -2006,7 +2006,6 @@ int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask)
BUG_ON(!list_empty(&root_cgrp->self.children)); BUG_ON(!list_empty(&root_cgrp->self.children));
BUG_ON(atomic_read(&root->nr_cgrps) != 1); BUG_ON(atomic_read(&root->nr_cgrps) != 1);
kernfs_activate(root_cgrp->kn);
ret = 0; ret = 0;
goto out; goto out;
@@ -3682,6 +3681,9 @@ static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
struct cgroup_subsys_state *css; struct cgroup_subsys_state *css;
int ret; int ret;
if (!nbytes)
return 0;
/* /*
* If namespaces are delegation boundaries, disallow writes to * If namespaces are delegation boundaries, disallow writes to
* files in an non-init namespace root from inside the namespace * files in an non-init namespace root from inside the namespace

View File

@@ -1474,7 +1474,7 @@ end:
return retval; return retval;
} }
static struct pid *pidfd_get_pid(unsigned int fd) static struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
{ {
struct fd f; struct fd f;
struct pid *pid; struct pid *pid;
@@ -1484,8 +1484,10 @@ static struct pid *pidfd_get_pid(unsigned int fd)
return ERR_PTR(-EBADF); return ERR_PTR(-EBADF);
pid = pidfd_pid(f.file); pid = pidfd_pid(f.file);
if (!IS_ERR(pid)) if (!IS_ERR(pid)) {
get_pid(pid); get_pid(pid);
*flags = f.file->f_flags;
}
fdput(f); fdput(f);
return pid; return pid;
@@ -1498,6 +1500,7 @@ static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
struct pid *pid = NULL; struct pid *pid = NULL;
enum pid_type type; enum pid_type type;
long ret; long ret;
unsigned int f_flags = 0;
if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED| if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
__WNOTHREAD|__WCLONE|__WALL)) __WNOTHREAD|__WCLONE|__WALL))
@@ -1531,9 +1534,10 @@ static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
if (upid < 0) if (upid < 0)
return -EINVAL; return -EINVAL;
pid = pidfd_get_pid(upid); pid = pidfd_get_pid(upid, &f_flags);
if (IS_ERR(pid)) if (IS_ERR(pid))
return PTR_ERR(pid); return PTR_ERR(pid);
break; break;
default: default:
return -EINVAL; return -EINVAL;
@@ -1544,7 +1548,12 @@ static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
wo.wo_flags = options; wo.wo_flags = options;
wo.wo_info = infop; wo.wo_info = infop;
wo.wo_rusage = ru; wo.wo_rusage = ru;
if (f_flags & O_NONBLOCK)
wo.wo_flags |= WNOHANG;
ret = do_wait(&wo); ret = do_wait(&wo);
if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
ret = -EAGAIN;
put_pid(pid); put_pid(pid);
return ret; return ret;

View File

@@ -2416,14 +2416,14 @@ struct mm_struct *copy_init_mm(void)
* *
* args->exit_signal is expected to be checked for sanity by the caller. * args->exit_signal is expected to be checked for sanity by the caller.
*/ */
long _do_fork(struct kernel_clone_args *args) pid_t kernel_clone(struct kernel_clone_args *args)
{ {
u64 clone_flags = args->flags; u64 clone_flags = args->flags;
struct completion vfork; struct completion vfork;
struct pid *pid; struct pid *pid;
struct task_struct *p; struct task_struct *p;
int trace = 0; int trace = 0;
long nr; pid_t nr;
/* /*
* For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
@@ -2511,7 +2511,7 @@ pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
.stack_size = (unsigned long)arg, .stack_size = (unsigned long)arg,
}; };
return _do_fork(&args); return kernel_clone(&args);
} }
#ifdef __ARCH_WANT_SYS_FORK #ifdef __ARCH_WANT_SYS_FORK
@@ -2522,7 +2522,7 @@ SYSCALL_DEFINE0(fork)
.exit_signal = SIGCHLD, .exit_signal = SIGCHLD,
}; };
return _do_fork(&args); return kernel_clone(&args);
#else #else
/* can not support in nommu mode */ /* can not support in nommu mode */
return -EINVAL; return -EINVAL;
@@ -2538,7 +2538,7 @@ SYSCALL_DEFINE0(vfork)
.exit_signal = SIGCHLD, .exit_signal = SIGCHLD,
}; };
return _do_fork(&args); return kernel_clone(&args);
} }
#endif #endif
@@ -2576,7 +2576,7 @@ SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
.tls = tls, .tls = tls,
}; };
return _do_fork(&args); return kernel_clone(&args);
} }
#endif #endif
@@ -2734,7 +2734,7 @@ SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
if (!clone3_args_valid(&kargs)) if (!clone3_args_valid(&kargs))
return -EINVAL; return -EINVAL;
return _do_fork(&kargs); return kernel_clone(&kargs);
} }
#endif #endif
@@ -2897,7 +2897,7 @@ int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
/* /*
* unshare allows a process to 'unshare' part of the process * unshare allows a process to 'unshare' part of the process
* context which was originally shared using clone. copy_* * context which was originally shared using clone. copy_*
* functions used by _do_fork() cannot be used here directly * functions used by kernel_clone() cannot be used here directly
* because they modify an inactive task_struct that is being * because they modify an inactive task_struct that is being
* constructed. Here we are modifying the current, active, * constructed. Here we are modifying the current, active,
* task_struct. * task_struct.

View File

@@ -43,6 +43,7 @@
#include <linux/sched/task.h> #include <linux/sched/task.h>
#include <linux/idr.h> #include <linux/idr.h>
#include <net/sock.h> #include <net/sock.h>
#include <uapi/linux/pidfd.h>
struct pid init_struct_pid = { struct pid init_struct_pid = {
.count = REFCOUNT_INIT(1), .count = REFCOUNT_INIT(1),
@@ -523,7 +524,8 @@ struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
/** /**
* pidfd_create() - Create a new pid file descriptor. * pidfd_create() - Create a new pid file descriptor.
* *
* @pid: struct pid that the pidfd will reference * @pid: struct pid that the pidfd will reference
* @flags: flags to pass
* *
* This creates a new pid file descriptor with the O_CLOEXEC flag set. * This creates a new pid file descriptor with the O_CLOEXEC flag set.
* *
@@ -533,12 +535,12 @@ struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
* Return: On success, a cloexec pidfd is returned. * Return: On success, a cloexec pidfd is returned.
* On error, a negative errno number will be returned. * On error, a negative errno number will be returned.
*/ */
static int pidfd_create(struct pid *pid) static int pidfd_create(struct pid *pid, unsigned int flags)
{ {
int fd; int fd;
fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid), fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
O_RDWR | O_CLOEXEC); flags | O_RDWR | O_CLOEXEC);
if (fd < 0) if (fd < 0)
put_pid(pid); put_pid(pid);
@@ -566,7 +568,7 @@ SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
int fd; int fd;
struct pid *p; struct pid *p;
if (flags) if (flags & ~PIDFD_NONBLOCK)
return -EINVAL; return -EINVAL;
if (pid <= 0) if (pid <= 0)
@@ -577,7 +579,7 @@ SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
return -ESRCH; return -ESRCH;
if (pid_has_task(p, PIDTYPE_TGID)) if (pid_has_task(p, PIDTYPE_TGID))
fd = pidfd_create(p); fd = pidfd_create(p, flags);
else else
fd = -EINVAL; fd = -EINVAL;

View File

@@ -2,13 +2,13 @@
/* /*
* NOTE: This example is works on x86 and powerpc. * NOTE: This example is works on x86 and powerpc.
* Here's a sample kernel module showing the use of kprobes to dump a * Here's a sample kernel module showing the use of kprobes to dump a
* stack trace and selected registers when _do_fork() is called. * stack trace and selected registers when kernel_clone() is called.
* *
* For more information on theory of operation of kprobes, see * For more information on theory of operation of kprobes, see
* Documentation/trace/kprobes.rst * Documentation/trace/kprobes.rst
* *
* You will see the trace data in /var/log/messages and on the console * You will see the trace data in /var/log/messages and on the console
* whenever _do_fork() is invoked to create a new process. * whenever kernel_clone() is invoked to create a new process.
*/ */
#include <linux/kernel.h> #include <linux/kernel.h>
@@ -16,7 +16,7 @@
#include <linux/kprobes.h> #include <linux/kprobes.h>
#define MAX_SYMBOL_LEN 64 #define MAX_SYMBOL_LEN 64
static char symbol[MAX_SYMBOL_LEN] = "_do_fork"; static char symbol[MAX_SYMBOL_LEN] = "kernel_clone";
module_param_string(symbol, symbol, sizeof(symbol), 0644); module_param_string(symbol, symbol, sizeof(symbol), 0644);
/* For each probe you need to allocate a kprobe structure */ /* For each probe you need to allocate a kprobe structure */

View File

@@ -8,7 +8,7 @@
* *
* usage: insmod kretprobe_example.ko func=<func_name> * usage: insmod kretprobe_example.ko func=<func_name>
* *
* If no func_name is specified, _do_fork is instrumented * If no func_name is specified, kernel_clone is instrumented
* *
* For more information on theory of operation of kretprobes, see * For more information on theory of operation of kretprobes, see
* Documentation/trace/kprobes.rst * Documentation/trace/kprobes.rst
@@ -26,7 +26,7 @@
#include <linux/limits.h> #include <linux/limits.h>
#include <linux/sched.h> #include <linux/sched.h>
static char func_name[NAME_MAX] = "_do_fork"; static char func_name[NAME_MAX] = "kernel_clone";
module_param_string(func, func_name, NAME_MAX, S_IRUGO); module_param_string(func, func_name, NAME_MAX, S_IRUGO);
MODULE_PARM_DESC(func, "Function to kretprobe; this module will report the" MODULE_PARM_DESC(func, "Function to kretprobe; this module will report the"
" function's execution time"); " function's execution time");

View File

@@ -65,12 +65,14 @@ void exclude_cmds(struct cmdnames *cmds, struct cmdnames *excludes)
ci = cj = ei = 0; ci = cj = ei = 0;
while (ci < cmds->cnt && ei < excludes->cnt) { while (ci < cmds->cnt && ei < excludes->cnt) {
cmp = strcmp(cmds->names[ci]->name, excludes->names[ei]->name); cmp = strcmp(cmds->names[ci]->name, excludes->names[ei]->name);
if (cmp < 0) if (cmp < 0) {
cmds->names[cj++] = cmds->names[ci++]; cmds->names[cj++] = cmds->names[ci++];
else if (cmp == 0) } else if (cmp == 0) {
ci++, ei++; ci++;
else if (cmp > 0)
ei++; ei++;
} else if (cmp > 0) {
ei++;
}
} }
while (ci < cmds->cnt) while (ci < cmds->cnt)

View File

@@ -99,13 +99,17 @@ static unsigned long string_to_frequency(const char *str)
continue; continue;
if (str[cp] == '.') { if (str[cp] == '.') {
while (power > -1 && isdigit(str[cp+1])) while (power > -1 && isdigit(str[cp+1])) {
cp++, power--; cp++;
power--;
}
} }
if (power >= -1) /* not enough => pad */ if (power >= -1) { /* not enough => pad */
pad = power + 1; pad = power + 1;
else /* to much => strip */ } else { /* too much => strip */
pad = 0, cp += power + 1; pad = 0;
cp += power + 1;
}
/* check bounds */ /* check bounds */
if (cp <= 0 || cp + pad > NORM_FREQ_LEN - 1) if (cp <= 0 || cp + pad > NORM_FREQ_LEN - 1)
return 0; return 0;

View File

@@ -6,7 +6,7 @@
echo 0 > events/enable echo 0 > events/enable
echo > dynamic_events echo > dynamic_events
PLACE=_do_fork PLACE=kernel_clone
echo "p:myevent1 $PLACE" >> dynamic_events echo "p:myevent1 $PLACE" >> dynamic_events
echo "r:myevent2 $PLACE" >> dynamic_events echo "r:myevent2 $PLACE" >> dynamic_events

View File

@@ -6,7 +6,7 @@
echo 0 > events/enable echo 0 > events/enable
echo > dynamic_events echo > dynamic_events
PLACE=_do_fork PLACE=kernel_clone
setup_events() { setup_events() {
echo "p:myevent1 $PLACE" >> dynamic_events echo "p:myevent1 $PLACE" >> dynamic_events

View File

@@ -6,7 +6,7 @@
echo 0 > events/enable echo 0 > events/enable
echo > dynamic_events echo > dynamic_events
PLACE=_do_fork PLACE=kernel_clone
setup_events() { setup_events() {
echo "p:myevent1 $PLACE" >> dynamic_events echo "p:myevent1 $PLACE" >> dynamic_events

View File

@@ -4,9 +4,9 @@
# requires: set_ftrace_filter # requires: set_ftrace_filter
# flags: instance # flags: instance
echo _do_fork:stacktrace >> set_ftrace_filter echo kernel_clone:stacktrace >> set_ftrace_filter
grep -q "_do_fork:stacktrace:unlimited" set_ftrace_filter grep -q "kernel_clone:stacktrace:unlimited" set_ftrace_filter
(echo "forked"; sleep 1) (echo "forked"; sleep 1)

View File

@@ -3,7 +3,7 @@
# description: Kprobe dynamic event - adding and removing # description: Kprobe dynamic event - adding and removing
# requires: kprobe_events # requires: kprobe_events
echo p:myevent _do_fork > kprobe_events echo p:myevent kernel_clone > kprobe_events
grep myevent kprobe_events grep myevent kprobe_events
test -d events/kprobes/myevent test -d events/kprobes/myevent
echo > kprobe_events echo > kprobe_events

View File

@@ -3,7 +3,7 @@
# description: Kprobe dynamic event - busy event check # description: Kprobe dynamic event - busy event check
# requires: kprobe_events # requires: kprobe_events
echo p:myevent _do_fork > kprobe_events echo p:myevent kernel_clone > kprobe_events
test -d events/kprobes/myevent test -d events/kprobes/myevent
echo 1 > events/kprobes/myevent/enable echo 1 > events/kprobes/myevent/enable
echo > kprobe_events && exit_fail # this must fail echo > kprobe_events && exit_fail # this must fail

View File

@@ -3,13 +3,13 @@
# description: Kprobe dynamic event with arguments # description: Kprobe dynamic event with arguments
# requires: kprobe_events # requires: kprobe_events
echo 'p:testprobe _do_fork $stack $stack0 +0($stack)' > kprobe_events echo 'p:testprobe kernel_clone $stack $stack0 +0($stack)' > kprobe_events
grep testprobe kprobe_events | grep -q 'arg1=\$stack arg2=\$stack0 arg3=+0(\$stack)' grep testprobe kprobe_events | grep -q 'arg1=\$stack arg2=\$stack0 arg3=+0(\$stack)'
test -d events/kprobes/testprobe test -d events/kprobes/testprobe
echo 1 > events/kprobes/testprobe/enable echo 1 > events/kprobes/testprobe/enable
( echo "forked") ( echo "forked")
grep testprobe trace | grep '_do_fork' | \ grep testprobe trace | grep 'kernel_clone' | \
grep -q 'arg1=0x[[:xdigit:]]* arg2=0x[[:xdigit:]]* arg3=0x[[:xdigit:]]*$' grep -q 'arg1=0x[[:xdigit:]]* arg2=0x[[:xdigit:]]* arg3=0x[[:xdigit:]]*$'
echo 0 > events/kprobes/testprobe/enable echo 0 > events/kprobes/testprobe/enable

Some files were not shown because too many files have changed in this diff Show More