firewire: add isochronous multichannel reception

This adds the DMA context programming and userspace ABI for multichannel
reception, i.e. for listening on multiple channel numbers by means of a
single DMA context.

The use case is reception of more streams than there are IR DMA units
offered by the link layer.  This is already implemented by the older
ohci1394 + ieee1394 + raw1394 stack.  And as discussed recently on
linux1394-devel, this feature is occasionally used in practice.

The big drawbacks of this mode are that buffer layout and interrupt
generation necessarily differ from single-channel reception:  Headers
and trailers are not stripped from packets, packets are not aligned with
buffer chunks, interrupts are per buffer chunk, not per packet.

These drawbacks also cause a rather hefty code footprint to support this
rarely used OHCI-1394 feature.  (367 lines added, among them 94 lines of
added userspace ABI documentation.)

This implementation enforces that a multichannel reception context may
only listen to channels to which no single-channel context on the same
link layer is presently listening to.  OHCI-1394 would allow to overlay
single-channel contexts by the multi-channel context, but this would be
a departure from the present first-come-first-served policy of IR
context creation.

The implementation is heavily based on an earlier one by Jay Fenlason.
Thanks Jay.

Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de>
This commit is contained in:
Stefan Richter
2010-07-29 18:19:22 +02:00
bovenliggende ae2a976614
commit 872e330e38
6 gewijzigde bestanden met toevoegingen van 561 en 194 verwijderingen

Bestand weergeven

@@ -117,6 +117,23 @@ void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
}
EXPORT_SYMBOL(fw_iso_buffer_destroy);
/* Convert DMA address to offset into virtually contiguous buffer. */
size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
{
int i;
dma_addr_t address;
ssize_t offset;
for (i = 0; i < buffer->page_count; i++) {
address = page_private(buffer->pages[i]);
offset = (ssize_t)completed - (ssize_t)address;
if (offset > 0 && offset <= PAGE_SIZE)
return (i << PAGE_SHIFT) + offset;
}
return 0;
}
struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
int type, int channel, int speed, size_t header_size,
fw_iso_callback_t callback, void *callback_data)
@@ -133,7 +150,7 @@ struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
ctx->channel = channel;
ctx->speed = speed;
ctx->header_size = header_size;
ctx->callback = callback;
ctx->callback.sc = callback;
ctx->callback_data = callback_data;
return ctx;
@@ -142,9 +159,7 @@ EXPORT_SYMBOL(fw_iso_context_create);
void fw_iso_context_destroy(struct fw_iso_context *ctx)
{
struct fw_card *card = ctx->card;
card->driver->free_iso_context(ctx);
ctx->card->driver->free_iso_context(ctx);
}
EXPORT_SYMBOL(fw_iso_context_destroy);
@@ -155,14 +170,17 @@ int fw_iso_context_start(struct fw_iso_context *ctx,
}
EXPORT_SYMBOL(fw_iso_context_start);
int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
{
return ctx->card->driver->set_iso_channels(ctx, channels);
}
int fw_iso_context_queue(struct fw_iso_context *ctx,
struct fw_iso_packet *packet,
struct fw_iso_buffer *buffer,
unsigned long payload)
{
struct fw_card *card = ctx->card;
return card->driver->queue_iso(ctx, packet, buffer, payload);
return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
}
EXPORT_SYMBOL(fw_iso_context_queue);