net: dsa: sja1105: Implement state machine for TAS with PTP clock source
Tested using the following bash script and the tc from iproute2-next: #!/bin/bash set -e -u -o pipefail NSEC_PER_SEC="1000000000" gatemask() { local tc_list="$1" local mask=0 for tc in ${tc_list}; do mask=$((${mask} | (1 << ${tc}))) done printf "%02x" ${mask} } if ! systemctl is-active --quiet ptp4l; then echo "Please start the ptp4l service" exit fi now=$(phc_ctl /dev/ptp1 get | gawk '/clock time is/ { print $5; }') # Phase-align the base time to the start of the next second. sec=$(echo "${now}" | gawk -F. '{ print $1; }') base_time="$(((${sec} + 1) * ${NSEC_PER_SEC}))" tc qdisc add dev swp5 parent root handle 100 taprio \ num_tc 8 \ map 0 1 2 3 5 6 7 \ queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 \ base-time ${base_time} \ sched-entry S $(gatemask 7) 100000 \ sched-entry S $(gatemask "0 1 2 3 4 5 6") 400000 \ clockid CLOCK_TAI flags 2 The "state machine" is a workqueue invoked after each manipulation command on the PTP clock (reset, adjust time, set time, adjust frequency) which checks over the state of the time-aware scheduler. So it is not monitored periodically, only in reaction to a PTP command typically triggered from a userspace daemon (linuxptp). Otherwise there is no reason for things to go wrong. Now that the timecounter/cyclecounter has been replaced with hardware operations on the PTP clock, the TAS Kconfig now depends upon PTP and the standalone clocksource operating mode has been removed. Signed-off-by: Vladimir Oltean <olteanv@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:

committed by
David S. Miller

parent
41603d78b3
commit
86db36a347
@@ -10,6 +10,11 @@
|
||||
#define SJA1105_TAS_MAX_DELTA BIT(19)
|
||||
#define SJA1105_GATE_MASK GENMASK_ULL(SJA1105_NUM_TC - 1, 0)
|
||||
|
||||
#define work_to_sja1105_tas(d) \
|
||||
container_of((d), struct sja1105_tas_data, tas_work)
|
||||
#define tas_to_sja1105(d) \
|
||||
container_of((d), struct sja1105_private, tas_data)
|
||||
|
||||
/* This is not a preprocessor macro because the "ns" argument may or may not be
|
||||
* s64 at caller side. This ensures it is properly type-cast before div_s64.
|
||||
*/
|
||||
@@ -18,6 +23,100 @@ static s64 ns_to_sja1105_delta(s64 ns)
|
||||
return div_s64(ns, 200);
|
||||
}
|
||||
|
||||
static s64 sja1105_delta_to_ns(s64 delta)
|
||||
{
|
||||
return delta * 200;
|
||||
}
|
||||
|
||||
/* Calculate the first base_time in the future that satisfies this
|
||||
* relationship:
|
||||
*
|
||||
* future_base_time = base_time + N x cycle_time >= now, or
|
||||
*
|
||||
* now - base_time
|
||||
* N >= ---------------
|
||||
* cycle_time
|
||||
*
|
||||
* Because N is an integer, the ceiling value of the above "a / b" ratio
|
||||
* is in fact precisely the floor value of "(a + b - 1) / b", which is
|
||||
* easier to calculate only having integer division tools.
|
||||
*/
|
||||
static s64 future_base_time(s64 base_time, s64 cycle_time, s64 now)
|
||||
{
|
||||
s64 a, b, n;
|
||||
|
||||
if (base_time >= now)
|
||||
return base_time;
|
||||
|
||||
a = now - base_time;
|
||||
b = cycle_time;
|
||||
n = div_s64(a + b - 1, b);
|
||||
|
||||
return base_time + n * cycle_time;
|
||||
}
|
||||
|
||||
static int sja1105_tas_set_runtime_params(struct sja1105_private *priv)
|
||||
{
|
||||
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
||||
struct dsa_switch *ds = priv->ds;
|
||||
s64 earliest_base_time = S64_MAX;
|
||||
s64 latest_base_time = 0;
|
||||
s64 its_cycle_time = 0;
|
||||
s64 max_cycle_time = 0;
|
||||
int port;
|
||||
|
||||
tas_data->enabled = false;
|
||||
|
||||
for (port = 0; port < SJA1105_NUM_PORTS; port++) {
|
||||
const struct tc_taprio_qopt_offload *offload;
|
||||
|
||||
offload = tas_data->offload[port];
|
||||
if (!offload)
|
||||
continue;
|
||||
|
||||
tas_data->enabled = true;
|
||||
|
||||
if (max_cycle_time < offload->cycle_time)
|
||||
max_cycle_time = offload->cycle_time;
|
||||
if (latest_base_time < offload->base_time)
|
||||
latest_base_time = offload->base_time;
|
||||
if (earliest_base_time > offload->base_time) {
|
||||
earliest_base_time = offload->base_time;
|
||||
its_cycle_time = offload->cycle_time;
|
||||
}
|
||||
}
|
||||
|
||||
if (!tas_data->enabled)
|
||||
return 0;
|
||||
|
||||
/* Roll the earliest base time over until it is in a comparable
|
||||
* time base with the latest, then compare their deltas.
|
||||
* We want to enforce that all ports' base times are within
|
||||
* SJA1105_TAS_MAX_DELTA 200ns cycles of one another.
|
||||
*/
|
||||
earliest_base_time = future_base_time(earliest_base_time,
|
||||
its_cycle_time,
|
||||
latest_base_time);
|
||||
while (earliest_base_time > latest_base_time)
|
||||
earliest_base_time -= its_cycle_time;
|
||||
if (latest_base_time - earliest_base_time >
|
||||
sja1105_delta_to_ns(SJA1105_TAS_MAX_DELTA)) {
|
||||
dev_err(ds->dev,
|
||||
"Base times too far apart: min %llu max %llu\n",
|
||||
earliest_base_time, latest_base_time);
|
||||
return -ERANGE;
|
||||
}
|
||||
|
||||
tas_data->earliest_base_time = earliest_base_time;
|
||||
tas_data->max_cycle_time = max_cycle_time;
|
||||
|
||||
dev_dbg(ds->dev, "earliest base time %lld ns\n", earliest_base_time);
|
||||
dev_dbg(ds->dev, "latest base time %lld ns\n", latest_base_time);
|
||||
dev_dbg(ds->dev, "longest cycle time %lld ns\n", max_cycle_time);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Lo and behold: the egress scheduler from hell.
|
||||
*
|
||||
* At the hardware level, the Time-Aware Shaper holds a global linear arrray of
|
||||
@@ -99,7 +198,11 @@ static int sja1105_init_scheduling(struct sja1105_private *priv)
|
||||
int num_cycles = 0;
|
||||
int cycle = 0;
|
||||
int i, k = 0;
|
||||
int port;
|
||||
int port, rc;
|
||||
|
||||
rc = sja1105_tas_set_runtime_params(priv);
|
||||
if (rc < 0)
|
||||
return rc;
|
||||
|
||||
/* Discard previous Schedule Table */
|
||||
table = &priv->static_config.tables[BLK_IDX_SCHEDULE];
|
||||
@@ -184,11 +287,13 @@ static int sja1105_init_scheduling(struct sja1105_private *priv)
|
||||
schedule_entry_points = table->entries;
|
||||
|
||||
/* Finally start populating the static config tables */
|
||||
schedule_entry_points_params->clksrc = SJA1105_TAS_CLKSRC_STANDALONE;
|
||||
schedule_entry_points_params->clksrc = SJA1105_TAS_CLKSRC_PTP;
|
||||
schedule_entry_points_params->actsubsch = num_cycles - 1;
|
||||
|
||||
for (port = 0; port < SJA1105_NUM_PORTS; port++) {
|
||||
const struct tc_taprio_qopt_offload *offload;
|
||||
/* Relative base time */
|
||||
s64 rbt;
|
||||
|
||||
offload = tas_data->offload[port];
|
||||
if (!offload)
|
||||
@@ -196,15 +301,21 @@ static int sja1105_init_scheduling(struct sja1105_private *priv)
|
||||
|
||||
schedule_start_idx = k;
|
||||
schedule_end_idx = k + offload->num_entries - 1;
|
||||
/* TODO this is the base time for the port's subschedule,
|
||||
* relative to PTPSCHTM. But as we're using the standalone
|
||||
* clock source and not PTP clock as time reference, there's
|
||||
* little point in even trying to put more logic into this,
|
||||
* like preserving the phases between the subschedules of
|
||||
* different ports. We'll get all of that when switching to the
|
||||
* PTP clock source.
|
||||
/* This is the base time expressed as a number of TAS ticks
|
||||
* relative to PTPSCHTM, which we'll (perhaps improperly) call
|
||||
* the operational base time.
|
||||
*/
|
||||
entry_point_delta = 1;
|
||||
rbt = future_base_time(offload->base_time,
|
||||
offload->cycle_time,
|
||||
tas_data->earliest_base_time);
|
||||
rbt -= tas_data->earliest_base_time;
|
||||
/* UM10944.pdf 4.2.2. Schedule Entry Points table says that
|
||||
* delta cannot be zero, which is shitty. Advance all relative
|
||||
* base times by 1 TAS delta, so that even the earliest base
|
||||
* time becomes 1 in relative terms. Then start the operational
|
||||
* base time (PTPSCHTM) one TAS delta earlier than planned.
|
||||
*/
|
||||
entry_point_delta = ns_to_sja1105_delta(rbt) + 1;
|
||||
|
||||
schedule_entry_points[cycle].subschindx = cycle;
|
||||
schedule_entry_points[cycle].delta = entry_point_delta;
|
||||
@@ -403,8 +514,303 @@ int sja1105_setup_tc_taprio(struct dsa_switch *ds, int port,
|
||||
return sja1105_static_config_reload(priv, SJA1105_SCHEDULING);
|
||||
}
|
||||
|
||||
static int sja1105_tas_check_running(struct sja1105_private *priv)
|
||||
{
|
||||
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
||||
struct dsa_switch *ds = priv->ds;
|
||||
struct sja1105_ptp_cmd cmd = {0};
|
||||
int rc;
|
||||
|
||||
rc = sja1105_ptp_commit(ds, &cmd, SPI_READ);
|
||||
if (rc < 0)
|
||||
return rc;
|
||||
|
||||
if (cmd.ptpstrtsch == 1)
|
||||
/* Schedule successfully started */
|
||||
tas_data->state = SJA1105_TAS_STATE_RUNNING;
|
||||
else if (cmd.ptpstopsch == 1)
|
||||
/* Schedule is stopped */
|
||||
tas_data->state = SJA1105_TAS_STATE_DISABLED;
|
||||
else
|
||||
/* Schedule is probably not configured with PTP clock source */
|
||||
rc = -EINVAL;
|
||||
|
||||
return rc;
|
||||
}
|
||||
|
||||
/* Write to PTPCLKCORP */
|
||||
static int sja1105_tas_adjust_drift(struct sja1105_private *priv,
|
||||
u64 correction)
|
||||
{
|
||||
const struct sja1105_regs *regs = priv->info->regs;
|
||||
u32 ptpclkcorp = ns_to_sja1105_ticks(correction);
|
||||
|
||||
return sja1105_xfer_u32(priv, SPI_WRITE, regs->ptpclkcorp,
|
||||
&ptpclkcorp, NULL);
|
||||
}
|
||||
|
||||
/* Write to PTPSCHTM */
|
||||
static int sja1105_tas_set_base_time(struct sja1105_private *priv,
|
||||
u64 base_time)
|
||||
{
|
||||
const struct sja1105_regs *regs = priv->info->regs;
|
||||
u64 ptpschtm = ns_to_sja1105_ticks(base_time);
|
||||
|
||||
return sja1105_xfer_u64(priv, SPI_WRITE, regs->ptpschtm,
|
||||
&ptpschtm, NULL);
|
||||
}
|
||||
|
||||
static int sja1105_tas_start(struct sja1105_private *priv)
|
||||
{
|
||||
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
||||
struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd;
|
||||
struct dsa_switch *ds = priv->ds;
|
||||
int rc;
|
||||
|
||||
dev_dbg(ds->dev, "Starting the TAS\n");
|
||||
|
||||
if (tas_data->state == SJA1105_TAS_STATE_ENABLED_NOT_RUNNING ||
|
||||
tas_data->state == SJA1105_TAS_STATE_RUNNING) {
|
||||
dev_err(ds->dev, "TAS already started\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
cmd->ptpstrtsch = 1;
|
||||
cmd->ptpstopsch = 0;
|
||||
|
||||
rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE);
|
||||
if (rc < 0)
|
||||
return rc;
|
||||
|
||||
tas_data->state = SJA1105_TAS_STATE_ENABLED_NOT_RUNNING;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int sja1105_tas_stop(struct sja1105_private *priv)
|
||||
{
|
||||
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
||||
struct sja1105_ptp_cmd *cmd = &priv->ptp_data.cmd;
|
||||
struct dsa_switch *ds = priv->ds;
|
||||
int rc;
|
||||
|
||||
dev_dbg(ds->dev, "Stopping the TAS\n");
|
||||
|
||||
if (tas_data->state == SJA1105_TAS_STATE_DISABLED) {
|
||||
dev_err(ds->dev, "TAS already disabled\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
cmd->ptpstopsch = 1;
|
||||
cmd->ptpstrtsch = 0;
|
||||
|
||||
rc = sja1105_ptp_commit(ds, cmd, SPI_WRITE);
|
||||
if (rc < 0)
|
||||
return rc;
|
||||
|
||||
tas_data->state = SJA1105_TAS_STATE_DISABLED;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* The schedule engine and the PTP clock are driven by the same oscillator, and
|
||||
* they run in parallel. But whilst the PTP clock can keep an absolute
|
||||
* time-of-day, the schedule engine is only running in 'ticks' (25 ticks make
|
||||
* up a delta, which is 200ns), and wrapping around at the end of each cycle.
|
||||
* The schedule engine is started when the PTP clock reaches the PTPSCHTM time
|
||||
* (in PTP domain).
|
||||
* Because the PTP clock can be rate-corrected (accelerated or slowed down) by
|
||||
* a software servo, and the schedule engine clock runs in parallel to the PTP
|
||||
* clock, there is logic internal to the switch that periodically keeps the
|
||||
* schedule engine from drifting away. The frequency with which this internal
|
||||
* syntonization happens is the PTP clock correction period (PTPCLKCORP). It is
|
||||
* a value also in the PTP clock domain, and is also rate-corrected.
|
||||
* To be precise, during a correction period, there is logic to determine by
|
||||
* how many scheduler clock ticks has the PTP clock drifted. At the end of each
|
||||
* correction period/beginning of new one, the length of a delta is shrunk or
|
||||
* expanded with an integer number of ticks, compared with the typical 25.
|
||||
* So a delta lasts for 200ns (or 25 ticks) only on average.
|
||||
* Sometimes it is longer, sometimes it is shorter. The internal syntonization
|
||||
* logic can adjust for at most 5 ticks each 20 ticks.
|
||||
*
|
||||
* The first implication is that you should choose your schedule correction
|
||||
* period to be an integer multiple of the schedule length. Preferably one.
|
||||
* In case there are schedules of multiple ports active, then the correction
|
||||
* period needs to be a multiple of them all. Given the restriction that the
|
||||
* cycle times have to be multiples of one another anyway, this means the
|
||||
* correction period can simply be the largest cycle time, hence the current
|
||||
* choice. This way, the updates are always synchronous to the transmission
|
||||
* cycle, and therefore predictable.
|
||||
*
|
||||
* The second implication is that at the beginning of a correction period, the
|
||||
* first few deltas will be modulated in time, until the schedule engine is
|
||||
* properly phase-aligned with the PTP clock. For this reason, you should place
|
||||
* your best-effort traffic at the beginning of a cycle, and your
|
||||
* time-triggered traffic afterwards.
|
||||
*
|
||||
* The third implication is that once the schedule engine is started, it can
|
||||
* only adjust for so much drift within a correction period. In the servo you
|
||||
* can only change the PTPCLKRATE, but not step the clock (PTPCLKADD). If you
|
||||
* want to do the latter, you need to stop and restart the schedule engine,
|
||||
* which is what the state machine handles.
|
||||
*/
|
||||
static void sja1105_tas_state_machine(struct work_struct *work)
|
||||
{
|
||||
struct sja1105_tas_data *tas_data = work_to_sja1105_tas(work);
|
||||
struct sja1105_private *priv = tas_to_sja1105(tas_data);
|
||||
struct sja1105_ptp_data *ptp_data = &priv->ptp_data;
|
||||
struct timespec64 base_time_ts, now_ts;
|
||||
struct dsa_switch *ds = priv->ds;
|
||||
struct timespec64 diff;
|
||||
s64 base_time, now;
|
||||
int rc = 0;
|
||||
|
||||
mutex_lock(&ptp_data->lock);
|
||||
|
||||
switch (tas_data->state) {
|
||||
case SJA1105_TAS_STATE_DISABLED:
|
||||
/* Can't do anything at all if clock is still being stepped */
|
||||
if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ)
|
||||
break;
|
||||
|
||||
rc = sja1105_tas_adjust_drift(priv, tas_data->max_cycle_time);
|
||||
if (rc < 0)
|
||||
break;
|
||||
|
||||
rc = __sja1105_ptp_gettimex(ds, &now, NULL);
|
||||
if (rc < 0)
|
||||
break;
|
||||
|
||||
/* Plan to start the earliest schedule first. The others
|
||||
* will be started in hardware, by way of their respective
|
||||
* entry points delta.
|
||||
* Try our best to avoid fringe cases (race condition between
|
||||
* ptpschtm and ptpstrtsch) by pushing the oper_base_time at
|
||||
* least one second in the future from now. This is not ideal,
|
||||
* but this only needs to buy us time until the
|
||||
* sja1105_tas_start command below gets executed.
|
||||
*/
|
||||
base_time = future_base_time(tas_data->earliest_base_time,
|
||||
tas_data->max_cycle_time,
|
||||
now + 1ull * NSEC_PER_SEC);
|
||||
base_time -= sja1105_delta_to_ns(1);
|
||||
|
||||
rc = sja1105_tas_set_base_time(priv, base_time);
|
||||
if (rc < 0)
|
||||
break;
|
||||
|
||||
tas_data->oper_base_time = base_time;
|
||||
|
||||
rc = sja1105_tas_start(priv);
|
||||
if (rc < 0)
|
||||
break;
|
||||
|
||||
base_time_ts = ns_to_timespec64(base_time);
|
||||
now_ts = ns_to_timespec64(now);
|
||||
|
||||
dev_dbg(ds->dev, "OPER base time %lld.%09ld (now %lld.%09ld)\n",
|
||||
base_time_ts.tv_sec, base_time_ts.tv_nsec,
|
||||
now_ts.tv_sec, now_ts.tv_nsec);
|
||||
|
||||
break;
|
||||
|
||||
case SJA1105_TAS_STATE_ENABLED_NOT_RUNNING:
|
||||
if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) {
|
||||
/* Clock was stepped.. bad news for TAS */
|
||||
sja1105_tas_stop(priv);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Check if TAS has actually started, by comparing the
|
||||
* scheduled start time with the SJA1105 PTP clock
|
||||
*/
|
||||
rc = __sja1105_ptp_gettimex(ds, &now, NULL);
|
||||
if (rc < 0)
|
||||
break;
|
||||
|
||||
if (now < tas_data->oper_base_time) {
|
||||
/* TAS has not started yet */
|
||||
diff = ns_to_timespec64(tas_data->oper_base_time - now);
|
||||
dev_dbg(ds->dev, "time to start: [%lld.%09ld]",
|
||||
diff.tv_sec, diff.tv_nsec);
|
||||
break;
|
||||
}
|
||||
|
||||
/* Time elapsed, what happened? */
|
||||
rc = sja1105_tas_check_running(priv);
|
||||
if (rc < 0)
|
||||
break;
|
||||
|
||||
if (tas_data->state != SJA1105_TAS_STATE_RUNNING)
|
||||
/* TAS has started */
|
||||
dev_err(ds->dev,
|
||||
"TAS not started despite time elapsed\n");
|
||||
|
||||
break;
|
||||
|
||||
case SJA1105_TAS_STATE_RUNNING:
|
||||
/* Clock was stepped.. bad news for TAS */
|
||||
if (tas_data->last_op != SJA1105_PTP_ADJUSTFREQ) {
|
||||
sja1105_tas_stop(priv);
|
||||
break;
|
||||
}
|
||||
|
||||
rc = sja1105_tas_check_running(priv);
|
||||
if (rc < 0)
|
||||
break;
|
||||
|
||||
if (tas_data->state != SJA1105_TAS_STATE_RUNNING)
|
||||
dev_err(ds->dev, "TAS surprisingly stopped\n");
|
||||
|
||||
break;
|
||||
|
||||
default:
|
||||
if (net_ratelimit())
|
||||
dev_err(ds->dev, "TAS in an invalid state (incorrect use of API)!\n");
|
||||
}
|
||||
|
||||
if (rc && net_ratelimit())
|
||||
dev_err(ds->dev, "An operation returned %d\n", rc);
|
||||
|
||||
mutex_unlock(&ptp_data->lock);
|
||||
}
|
||||
|
||||
void sja1105_tas_clockstep(struct dsa_switch *ds)
|
||||
{
|
||||
struct sja1105_private *priv = ds->priv;
|
||||
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
||||
|
||||
if (!tas_data->enabled)
|
||||
return;
|
||||
|
||||
tas_data->last_op = SJA1105_PTP_CLOCKSTEP;
|
||||
schedule_work(&tas_data->tas_work);
|
||||
}
|
||||
|
||||
void sja1105_tas_adjfreq(struct dsa_switch *ds)
|
||||
{
|
||||
struct sja1105_private *priv = ds->priv;
|
||||
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
||||
|
||||
if (!tas_data->enabled)
|
||||
return;
|
||||
|
||||
/* No reason to schedule the workqueue, nothing changed */
|
||||
if (tas_data->state == SJA1105_TAS_STATE_RUNNING)
|
||||
return;
|
||||
|
||||
tas_data->last_op = SJA1105_PTP_ADJUSTFREQ;
|
||||
schedule_work(&tas_data->tas_work);
|
||||
}
|
||||
|
||||
void sja1105_tas_setup(struct dsa_switch *ds)
|
||||
{
|
||||
struct sja1105_private *priv = ds->priv;
|
||||
struct sja1105_tas_data *tas_data = &priv->tas_data;
|
||||
|
||||
INIT_WORK(&tas_data->tas_work, sja1105_tas_state_machine);
|
||||
tas_data->state = SJA1105_TAS_STATE_DISABLED;
|
||||
tas_data->last_op = SJA1105_PTP_NONE;
|
||||
}
|
||||
|
||||
void sja1105_tas_teardown(struct dsa_switch *ds)
|
||||
@@ -413,6 +819,8 @@ void sja1105_tas_teardown(struct dsa_switch *ds)
|
||||
struct tc_taprio_qopt_offload *offload;
|
||||
int port;
|
||||
|
||||
cancel_work_sync(&priv->tas_data.tas_work);
|
||||
|
||||
for (port = 0; port < SJA1105_NUM_PORTS; port++) {
|
||||
offload = priv->tas_data.offload[port];
|
||||
if (!offload)
|
||||
|
Reference in New Issue
Block a user