xfs: refactor the xrep_extent_list into xfs_bitmap
As mentioned previously, the xrep_extent_list basically implements a bitmap with two functions: set and disjoint union. Rename all these functions to xfs_bitmap to shorten the name and make it more obvious what we're doing. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
This commit is contained in:
@@ -16,183 +16,186 @@
|
||||
#include "scrub/repair.h"
|
||||
#include "scrub/bitmap.h"
|
||||
|
||||
/* Collect a dead btree extent for later disposal. */
|
||||
/*
|
||||
* Set a range of this bitmap. Caller must ensure the range is not set.
|
||||
*
|
||||
* This is the logical equivalent of bitmap |= mask(start, len).
|
||||
*/
|
||||
int
|
||||
xrep_collect_btree_extent(
|
||||
struct xfs_scrub *sc,
|
||||
struct xrep_extent_list *exlist,
|
||||
xfs_fsblock_t fsbno,
|
||||
xfs_extlen_t len)
|
||||
xfs_bitmap_set(
|
||||
struct xfs_bitmap *bitmap,
|
||||
uint64_t start,
|
||||
uint64_t len)
|
||||
{
|
||||
struct xrep_extent *rex;
|
||||
struct xfs_bitmap_range *bmr;
|
||||
|
||||
trace_xrep_collect_btree_extent(sc->mp,
|
||||
XFS_FSB_TO_AGNO(sc->mp, fsbno),
|
||||
XFS_FSB_TO_AGBNO(sc->mp, fsbno), len);
|
||||
|
||||
rex = kmem_alloc(sizeof(struct xrep_extent), KM_MAYFAIL);
|
||||
if (!rex)
|
||||
bmr = kmem_alloc(sizeof(struct xfs_bitmap_range), KM_MAYFAIL);
|
||||
if (!bmr)
|
||||
return -ENOMEM;
|
||||
|
||||
INIT_LIST_HEAD(&rex->list);
|
||||
rex->fsbno = fsbno;
|
||||
rex->len = len;
|
||||
list_add_tail(&rex->list, &exlist->list);
|
||||
INIT_LIST_HEAD(&bmr->list);
|
||||
bmr->start = start;
|
||||
bmr->len = len;
|
||||
list_add_tail(&bmr->list, &bitmap->list);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* An error happened during the rebuild so the transaction will be cancelled.
|
||||
* The fs will shut down, and the administrator has to unmount and run repair.
|
||||
* Therefore, free all the memory associated with the list so we can die.
|
||||
*/
|
||||
/* Free everything related to this bitmap. */
|
||||
void
|
||||
xrep_cancel_btree_extents(
|
||||
struct xfs_scrub *sc,
|
||||
struct xrep_extent_list *exlist)
|
||||
xfs_bitmap_destroy(
|
||||
struct xfs_bitmap *bitmap)
|
||||
{
|
||||
struct xrep_extent *rex;
|
||||
struct xrep_extent *n;
|
||||
struct xfs_bitmap_range *bmr;
|
||||
struct xfs_bitmap_range *n;
|
||||
|
||||
for_each_xrep_extent_safe(rex, n, exlist) {
|
||||
list_del(&rex->list);
|
||||
kmem_free(rex);
|
||||
for_each_xfs_bitmap_extent(bmr, n, bitmap) {
|
||||
list_del(&bmr->list);
|
||||
kmem_free(bmr);
|
||||
}
|
||||
}
|
||||
|
||||
/* Set up a per-AG block bitmap. */
|
||||
void
|
||||
xfs_bitmap_init(
|
||||
struct xfs_bitmap *bitmap)
|
||||
{
|
||||
INIT_LIST_HEAD(&bitmap->list);
|
||||
}
|
||||
|
||||
/* Compare two btree extents. */
|
||||
static int
|
||||
xrep_btree_extent_cmp(
|
||||
xfs_bitmap_range_cmp(
|
||||
void *priv,
|
||||
struct list_head *a,
|
||||
struct list_head *b)
|
||||
{
|
||||
struct xrep_extent *ap;
|
||||
struct xrep_extent *bp;
|
||||
struct xfs_bitmap_range *ap;
|
||||
struct xfs_bitmap_range *bp;
|
||||
|
||||
ap = container_of(a, struct xrep_extent, list);
|
||||
bp = container_of(b, struct xrep_extent, list);
|
||||
ap = container_of(a, struct xfs_bitmap_range, list);
|
||||
bp = container_of(b, struct xfs_bitmap_range, list);
|
||||
|
||||
if (ap->fsbno > bp->fsbno)
|
||||
if (ap->start > bp->start)
|
||||
return 1;
|
||||
if (ap->fsbno < bp->fsbno)
|
||||
if (ap->start < bp->start)
|
||||
return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Remove all the blocks mentioned in @sublist from the extents in @exlist.
|
||||
* Remove all the blocks mentioned in @sub from the extents in @bitmap.
|
||||
*
|
||||
* The intent is that callers will iterate the rmapbt for all of its records
|
||||
* for a given owner to generate @exlist; and iterate all the blocks of the
|
||||
* for a given owner to generate @bitmap; and iterate all the blocks of the
|
||||
* metadata structures that are not being rebuilt and have the same rmapbt
|
||||
* owner to generate @sublist. This routine subtracts all the extents
|
||||
* mentioned in sublist from all the extents linked in @exlist, which leaves
|
||||
* @exlist as the list of blocks that are not accounted for, which we assume
|
||||
* owner to generate @sub. This routine subtracts all the extents
|
||||
* mentioned in sub from all the extents linked in @bitmap, which leaves
|
||||
* @bitmap as the list of blocks that are not accounted for, which we assume
|
||||
* are the dead blocks of the old metadata structure. The blocks mentioned in
|
||||
* @exlist can be reaped.
|
||||
* @bitmap can be reaped.
|
||||
*
|
||||
* This is the logical equivalent of bitmap &= ~sub.
|
||||
*/
|
||||
#define LEFT_ALIGNED (1 << 0)
|
||||
#define RIGHT_ALIGNED (1 << 1)
|
||||
int
|
||||
xrep_subtract_extents(
|
||||
struct xfs_scrub *sc,
|
||||
struct xrep_extent_list *exlist,
|
||||
struct xrep_extent_list *sublist)
|
||||
xfs_bitmap_disunion(
|
||||
struct xfs_bitmap *bitmap,
|
||||
struct xfs_bitmap *sub)
|
||||
{
|
||||
struct list_head *lp;
|
||||
struct xrep_extent *ex;
|
||||
struct xrep_extent *newex;
|
||||
struct xrep_extent *subex;
|
||||
xfs_fsblock_t sub_fsb;
|
||||
xfs_extlen_t sub_len;
|
||||
struct xfs_bitmap_range *br;
|
||||
struct xfs_bitmap_range *new_br;
|
||||
struct xfs_bitmap_range *sub_br;
|
||||
uint64_t sub_start;
|
||||
uint64_t sub_len;
|
||||
int state;
|
||||
int error = 0;
|
||||
|
||||
if (list_empty(&exlist->list) || list_empty(&sublist->list))
|
||||
if (list_empty(&bitmap->list) || list_empty(&sub->list))
|
||||
return 0;
|
||||
ASSERT(!list_empty(&sublist->list));
|
||||
ASSERT(!list_empty(&sub->list));
|
||||
|
||||
list_sort(NULL, &exlist->list, xrep_btree_extent_cmp);
|
||||
list_sort(NULL, &sublist->list, xrep_btree_extent_cmp);
|
||||
list_sort(NULL, &bitmap->list, xfs_bitmap_range_cmp);
|
||||
list_sort(NULL, &sub->list, xfs_bitmap_range_cmp);
|
||||
|
||||
/*
|
||||
* Now that we've sorted both lists, we iterate exlist once, rolling
|
||||
* forward through sublist and/or exlist as necessary until we find an
|
||||
* Now that we've sorted both lists, we iterate bitmap once, rolling
|
||||
* forward through sub and/or bitmap as necessary until we find an
|
||||
* overlap or reach the end of either list. We do not reset lp to the
|
||||
* head of exlist nor do we reset subex to the head of sublist. The
|
||||
* head of bitmap nor do we reset sub_br to the head of sub. The
|
||||
* list traversal is similar to merge sort, but we're deleting
|
||||
* instead. In this manner we avoid O(n^2) operations.
|
||||
*/
|
||||
subex = list_first_entry(&sublist->list, struct xrep_extent,
|
||||
sub_br = list_first_entry(&sub->list, struct xfs_bitmap_range,
|
||||
list);
|
||||
lp = exlist->list.next;
|
||||
while (lp != &exlist->list) {
|
||||
ex = list_entry(lp, struct xrep_extent, list);
|
||||
lp = bitmap->list.next;
|
||||
while (lp != &bitmap->list) {
|
||||
br = list_entry(lp, struct xfs_bitmap_range, list);
|
||||
|
||||
/*
|
||||
* Advance subex and/or ex until we find a pair that
|
||||
* Advance sub_br and/or br until we find a pair that
|
||||
* intersect or we run out of extents.
|
||||
*/
|
||||
while (subex->fsbno + subex->len <= ex->fsbno) {
|
||||
if (list_is_last(&subex->list, &sublist->list))
|
||||
while (sub_br->start + sub_br->len <= br->start) {
|
||||
if (list_is_last(&sub_br->list, &sub->list))
|
||||
goto out;
|
||||
subex = list_next_entry(subex, list);
|
||||
sub_br = list_next_entry(sub_br, list);
|
||||
}
|
||||
if (subex->fsbno >= ex->fsbno + ex->len) {
|
||||
if (sub_br->start >= br->start + br->len) {
|
||||
lp = lp->next;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* trim subex to fit the extent we have */
|
||||
sub_fsb = subex->fsbno;
|
||||
sub_len = subex->len;
|
||||
if (subex->fsbno < ex->fsbno) {
|
||||
sub_len -= ex->fsbno - subex->fsbno;
|
||||
sub_fsb = ex->fsbno;
|
||||
/* trim sub_br to fit the extent we have */
|
||||
sub_start = sub_br->start;
|
||||
sub_len = sub_br->len;
|
||||
if (sub_br->start < br->start) {
|
||||
sub_len -= br->start - sub_br->start;
|
||||
sub_start = br->start;
|
||||
}
|
||||
if (sub_len > ex->len)
|
||||
sub_len = ex->len;
|
||||
if (sub_len > br->len)
|
||||
sub_len = br->len;
|
||||
|
||||
state = 0;
|
||||
if (sub_fsb == ex->fsbno)
|
||||
if (sub_start == br->start)
|
||||
state |= LEFT_ALIGNED;
|
||||
if (sub_fsb + sub_len == ex->fsbno + ex->len)
|
||||
if (sub_start + sub_len == br->start + br->len)
|
||||
state |= RIGHT_ALIGNED;
|
||||
switch (state) {
|
||||
case LEFT_ALIGNED:
|
||||
/* Coincides with only the left. */
|
||||
ex->fsbno += sub_len;
|
||||
ex->len -= sub_len;
|
||||
br->start += sub_len;
|
||||
br->len -= sub_len;
|
||||
break;
|
||||
case RIGHT_ALIGNED:
|
||||
/* Coincides with only the right. */
|
||||
ex->len -= sub_len;
|
||||
br->len -= sub_len;
|
||||
lp = lp->next;
|
||||
break;
|
||||
case LEFT_ALIGNED | RIGHT_ALIGNED:
|
||||
/* Total overlap, just delete ex. */
|
||||
lp = lp->next;
|
||||
list_del(&ex->list);
|
||||
kmem_free(ex);
|
||||
list_del(&br->list);
|
||||
kmem_free(br);
|
||||
break;
|
||||
case 0:
|
||||
/*
|
||||
* Deleting from the middle: add the new right extent
|
||||
* and then shrink the left extent.
|
||||
*/
|
||||
newex = kmem_alloc(sizeof(struct xrep_extent),
|
||||
new_br = kmem_alloc(sizeof(struct xfs_bitmap_range),
|
||||
KM_MAYFAIL);
|
||||
if (!newex) {
|
||||
if (!new_br) {
|
||||
error = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
INIT_LIST_HEAD(&newex->list);
|
||||
newex->fsbno = sub_fsb + sub_len;
|
||||
newex->len = ex->fsbno + ex->len - newex->fsbno;
|
||||
list_add(&newex->list, &ex->list);
|
||||
ex->len = sub_fsb - ex->fsbno;
|
||||
INIT_LIST_HEAD(&new_br->list);
|
||||
new_br->start = sub_start + sub_len;
|
||||
new_br->len = br->start + br->len - new_br->start;
|
||||
list_add(&new_br->list, &br->list);
|
||||
br->len = sub_start - br->start;
|
||||
lp = lp->next;
|
||||
break;
|
||||
default:
|
||||
|
Reference in New Issue
Block a user