Merge back cpufreq material for v5.9.
This commit is contained in:
@@ -703,6 +703,11 @@
|
||||
cpufreq.off=1 [CPU_FREQ]
|
||||
disable the cpufreq sub-system
|
||||
|
||||
cpufreq.default_governor=
|
||||
[CPU_FREQ] Name of the default cpufreq governor or
|
||||
policy to use. This governor must be registered in the
|
||||
kernel before the cpufreq driver probes.
|
||||
|
||||
cpu_init_udelay=N
|
||||
[X86] Delay for N microsec between assert and de-assert
|
||||
of APIC INIT to start processors. This delay occurs
|
||||
|
@@ -147,9 +147,9 @@ CPUs in it.
|
||||
|
||||
The next major initialization step for a new policy object is to attach a
|
||||
scaling governor to it (to begin with, that is the default scaling governor
|
||||
determined by the kernel configuration, but it may be changed later
|
||||
via ``sysfs``). First, a pointer to the new policy object is passed to the
|
||||
governor's ``->init()`` callback which is expected to initialize all of the
|
||||
determined by the kernel command line or configuration, but it may be changed
|
||||
later via ``sysfs``). First, a pointer to the new policy object is passed to
|
||||
the governor's ``->init()`` callback which is expected to initialize all of the
|
||||
data structures necessary to handle the given policy and, possibly, to add
|
||||
a governor ``sysfs`` interface to it. Next, the governor is started by
|
||||
invoking its ``->start()`` callback.
|
||||
|
@@ -431,6 +431,17 @@ argument is passed to the kernel in the command line.
|
||||
supported in the current configuration, writes to this attribute will
|
||||
fail with an appropriate error.
|
||||
|
||||
``energy_efficiency``
|
||||
This attribute is only present on platforms, which have CPUs matching
|
||||
Kaby Lake or Coffee Lake desktop CPU model. By default
|
||||
energy efficiency optimizations are disabled on these CPU models in HWP
|
||||
mode by this driver. Enabling energy efficiency may limit maximum
|
||||
operating frequency in both HWP and non HWP mode. In non HWP mode,
|
||||
optimizations are done only in the turbo frequency range. In HWP mode,
|
||||
optimizations are done in the entire frequency range. Setting this
|
||||
attribute to "1" enables energy efficiency optimizations and setting
|
||||
to "0" disables energy efficiency optimizations.
|
||||
|
||||
Interpretation of Policy Attributes
|
||||
-----------------------------------
|
||||
|
||||
@@ -554,7 +565,11 @@ somewhere between the two extremes:
|
||||
Strings written to the ``energy_performance_preference`` attribute are
|
||||
internally translated to integer values written to the processor's
|
||||
Energy-Performance Preference (EPP) knob (if supported) or its
|
||||
Energy-Performance Bias (EPB) knob.
|
||||
Energy-Performance Bias (EPB) knob. It is also possible to write a positive
|
||||
integer value between 0 to 255, if the EPP feature is present. If the EPP
|
||||
feature is not present, writing integer value to this attribute is not
|
||||
supported. In this case, user can use
|
||||
"/sys/devices/system/cpu/cpu*/power/energy_perf_bias" interface.
|
||||
|
||||
[Note that tasks may by migrated from one CPU to another by the scheduler's
|
||||
load-balancing algorithm and if different energy vs performance hints are
|
||||
|
Reference in New Issue
Block a user