misc: mic: SCIF header file and IOCTL interface
This patch introduces the SCIF documentation in the header file and describes the IOCTL interface for user mode. mic_overview.txt is updated with documentation on SCIF and a new document describing SCIF in more details is available in scif_overview.txt. Reviewed-by: Nikhil Rao <nikhil.rao@intel.com> Reviewed-by: Ashutosh Dixit <ashutosh.dixit@intel.com> Signed-off-by: Sudeep Dutt <sudeep.dutt@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:

committed by
Greg Kroah-Hartman

parent
0d09f1a54d
commit
7df20f2d89
@@ -24,6 +24,10 @@ a virtual bus called mic bus is created and virtual dma devices are
|
||||
created on it by the host/card drivers. On host the channels are private
|
||||
and used only by the host driver to transfer data for the virtio devices.
|
||||
|
||||
The Symmetric Communication Interface (SCIF (pronounced as skiff)) is a
|
||||
low level communications API across PCIe currently implemented for MIC.
|
||||
More details are available at scif_overview.txt.
|
||||
|
||||
Here is a block diagram of the various components described above. The
|
||||
virtio backends are situated on the host rather than the card given better
|
||||
single threaded performance for the host compared to MIC, the ability of
|
||||
@@ -47,18 +51,18 @@ the fact that the virtio block storage backend can only be on the host.
|
||||
| | | Virtio over PCIe IOCTLs |
|
||||
| | +--------------------------+
|
||||
+-----------+ | | | +-----------+
|
||||
| MIC DMA | | | | | MIC DMA |
|
||||
| Driver | | | | | Driver |
|
||||
+-----------+ | | | +-----------+
|
||||
| | | | |
|
||||
+---------------+ | | | +----------------+
|
||||
|MIC virtual Bus| | | | |MIC virtual Bus |
|
||||
+---------------+ | | | +----------------+
|
||||
| | | | |
|
||||
| +--------------+ | +---------------+ |
|
||||
| |Intel MIC | | |Intel MIC | |
|
||||
+---|Card Driver | | |Host Driver | |
|
||||
+--------------+ | +---------------+-----+
|
||||
| MIC DMA | | +----------+ | +-----------+ | | MIC DMA |
|
||||
| Driver | | | SCIF | | | SCIF | | | Driver |
|
||||
+-----------+ | +----------+ | +-----------+ | +-----------+
|
||||
| | | | | | |
|
||||
+---------------+ | +-----+-----+ | +-----+-----+ | +---------------+
|
||||
|MIC virtual Bus| | |SCIF HW Bus| | |SCIF HW BUS| | |MIC virtual Bus|
|
||||
+---------------+ | +-----------+ | +-----+-----+ | +---------------+
|
||||
| | | | | | |
|
||||
| +--------------+ | | | +---------------+ |
|
||||
| |Intel MIC | | | | |Intel MIC | |
|
||||
+---|Card Driver +----+ | | |Host Driver | |
|
||||
+--------------+ | +----+---------------+-----+
|
||||
| | |
|
||||
+-------------------------------------------------------------+
|
||||
| |
|
||||
|
98
Documentation/mic/scif_overview.txt
Normal file
98
Documentation/mic/scif_overview.txt
Normal file
@@ -0,0 +1,98 @@
|
||||
The Symmetric Communication Interface (SCIF (pronounced as skiff)) is a low
|
||||
level communications API across PCIe currently implemented for MIC. Currently
|
||||
SCIF provides inter-node communication within a single host platform, where a
|
||||
node is a MIC Coprocessor or Xeon based host. SCIF abstracts the details of
|
||||
communicating over the PCIe bus while providing an API that is symmetric
|
||||
across all the nodes in the PCIe network. An important design objective for SCIF
|
||||
is to deliver the maximum possible performance given the communication
|
||||
abilities of the hardware. SCIF has been used to implement an offload compiler
|
||||
runtime and OFED support for MPI implementations for MIC coprocessors.
|
||||
|
||||
==== SCIF API Components ====
|
||||
The SCIF API has the following parts:
|
||||
1. Connection establishment using a client server model
|
||||
2. Byte stream messaging intended for short messages
|
||||
3. Node enumeration to determine online nodes
|
||||
4. Poll semantics for detection of incoming connections and messages
|
||||
5. Memory registration to pin down pages
|
||||
6. Remote memory mapping for low latency CPU accesses via mmap
|
||||
7. Remote DMA (RDMA) for high bandwidth DMA transfers
|
||||
8. Fence APIs for RDMA synchronization
|
||||
|
||||
SCIF exposes the notion of a connection which can be used by peer processes on
|
||||
nodes in a SCIF PCIe "network" to share memory "windows" and to communicate. A
|
||||
process in a SCIF node initiates a SCIF connection to a peer process on a
|
||||
different node via a SCIF "endpoint". SCIF endpoints support messaging APIs
|
||||
which are similar to connection oriented socket APIs. Connected SCIF endpoints
|
||||
can also register local memory which is followed by data transfer using either
|
||||
DMA, CPU copies or remote memory mapping via mmap. SCIF supports both user and
|
||||
kernel mode clients which are functionally equivalent.
|
||||
|
||||
==== SCIF Performance for MIC ====
|
||||
DMA bandwidth comparison between the TCP (over ethernet over PCIe) stack versus
|
||||
SCIF shows the performance advantages of SCIF for HPC applications and runtimes.
|
||||
|
||||
Comparison of TCP and SCIF based BW
|
||||
|
||||
Throughput (GB/sec)
|
||||
8 + PCIe Bandwidth ******
|
||||
+ TCP ######
|
||||
7 + ************************************** SCIF %%%%%%
|
||||
| %%%%%%%%%%%%%%%%%%%
|
||||
6 + %%%%
|
||||
| %%
|
||||
| %%%
|
||||
5 + %%
|
||||
| %%
|
||||
4 + %%
|
||||
| %%
|
||||
3 + %%
|
||||
| %
|
||||
2 + %%
|
||||
| %%
|
||||
| %
|
||||
1 +
|
||||
+ ######################################
|
||||
0 +++---+++--+--+-+--+--+-++-+--+-++-+--+-++-+-
|
||||
1 10 100 1000 10000 100000
|
||||
Transfer Size (KBytes)
|
||||
|
||||
SCIF allows memory sharing via mmap(..) between processes on different PCIe
|
||||
nodes and thus provides bare-metal PCIe latency. The round trip SCIF mmap
|
||||
latency from the host to an x100 MIC for an 8 byte message is 0.44 usecs.
|
||||
|
||||
SCIF has a user space library which is a thin IOCTL wrapper providing a user
|
||||
space API similar to the kernel API in scif.h. The SCIF user space library
|
||||
is distributed @ https://software.intel.com/en-us/mic-developer
|
||||
|
||||
Here is some pseudo code for an example of how two applications on two PCIe
|
||||
nodes would typically use the SCIF API:
|
||||
|
||||
Process A (on node A) Process B (on node B)
|
||||
|
||||
/* get online node information */
|
||||
scif_get_node_ids(..) scif_get_node_ids(..)
|
||||
scif_open(..) scif_open(..)
|
||||
scif_bind(..) scif_bind(..)
|
||||
scif_listen(..)
|
||||
scif_accept(..) scif_connect(..)
|
||||
/* SCIF connection established */
|
||||
|
||||
/* Send and receive short messages */
|
||||
scif_send(..)/scif_recv(..) scif_send(..)/scif_recv(..)
|
||||
|
||||
/* Register memory */
|
||||
scif_register(..) scif_register(..)
|
||||
|
||||
/* RDMA */
|
||||
scif_readfrom(..)/scif_writeto(..) scif_readfrom(..)/scif_writeto(..)
|
||||
|
||||
/* Fence DMAs */
|
||||
scif_fence_signal(..) scif_fence_signal(..)
|
||||
|
||||
mmap(..) mmap(..)
|
||||
|
||||
/* Access remote registered memory */
|
||||
|
||||
/* Close the endpoints */
|
||||
scif_close(..) scif_close(..)
|
Reference in New Issue
Block a user