[MTD] Refactor NAND hwcontrol to cmd_ctrl

The hwcontrol function enforced a step by step state machine
for any kind of hardware chip access. Let the hardware driver
know which control bits are set and inform it about a change
of the control lines. Let the hardware driver write out the
command and address bytes directly. This gives a peformance
advantage for address bus controlled chips and simplifies the
quirks in the hardware drivers.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
Thomas Gleixner
2006-05-23 23:25:53 +02:00
parent 3821720d51
commit 7abd3ef987
18 changed files with 419 additions and 532 deletions

View File

@@ -56,36 +56,18 @@ static struct mtd_partition partition_info[] = {
/*
* hardware specific access to control-lines
*
* NAND_NCE: bit 0 - don't care
* NAND_CLE: bit 1 - address bit 2
* NAND_ALE: bit 2 - address bit 3
*/
static void h1910_hwcontrol(struct mtd_info *mtd, int cmd)
static void h1910_hwcontrol(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
struct nand_chip *this = (struct nand_chip *)(mtd->priv);
struct nand_chip *chip = mtd->priv;
switch (cmd) {
case NAND_CTL_SETCLE:
this->IO_ADDR_R |= (1 << 2);
this->IO_ADDR_W |= (1 << 2);
break;
case NAND_CTL_CLRCLE:
this->IO_ADDR_R &= ~(1 << 2);
this->IO_ADDR_W &= ~(1 << 2);
break;
case NAND_CTL_SETALE:
this->IO_ADDR_R |= (1 << 3);
this->IO_ADDR_W |= (1 << 3);
break;
case NAND_CTL_CLRALE:
this->IO_ADDR_R &= ~(1 << 3);
this->IO_ADDR_W &= ~(1 << 3);
break;
case NAND_CTL_SETNCE:
break;
case NAND_CTL_CLRNCE:
break;
}
if (cmd != NAND_CMD_NONE)
writeb(cmd, chip->IO_ADDR_W | ((ctrl & 0x6) << 1));
}
/*
@@ -145,7 +127,7 @@ static int __init h1910_init(void)
/* insert callbacks */
this->IO_ADDR_R = nandaddr;
this->IO_ADDR_W = nandaddr;
this->hwcontrol = h1910_hwcontrol;
this->cmd_ctrl = h1910_hwcontrol;
this->dev_ready = NULL; /* unknown whether that was correct or not so we will just do it like this */
/* 15 us command delay time */
this->chip_delay = 50;