Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6

Pull crypto updates from Herbert Xu:
 "API:
   - Fix out-of-sync IVs in self-test for IPsec AEAD algorithms

  Algorithms:
   - Use formally verified implementation of x86/curve25519

  Drivers:
   - Enhance hwrng support in caam

   - Use crypto_engine for skcipher/aead/rsa/hash in caam

   - Add Xilinx AES driver

   - Add uacce driver

   - Register zip engine to uacce in hisilicon

   - Add support for OCTEON TX CPT engine in marvell"

* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (162 commits)
  crypto: af_alg - bool type cosmetics
  crypto: arm[64]/poly1305 - add artifact to .gitignore files
  crypto: caam - limit single JD RNG output to maximum of 16 bytes
  crypto: caam - enable prediction resistance in HRWNG
  bus: fsl-mc: add api to retrieve mc version
  crypto: caam - invalidate entropy register during RNG initialization
  crypto: caam - check if RNG job failed
  crypto: caam - simplify RNG implementation
  crypto: caam - drop global context pointer and init_done
  crypto: caam - use struct hwrng's .init for initialization
  crypto: caam - allocate RNG instantiation descriptor with GFP_DMA
  crypto: ccree - remove duplicated include from cc_aead.c
  crypto: chelsio - remove set but not used variable 'adap'
  crypto: marvell - enable OcteonTX cpt options for build
  crypto: marvell - add the Virtual Function driver for CPT
  crypto: marvell - add support for OCTEON TX CPT engine
  crypto: marvell - create common Kconfig and Makefile for Marvell
  crypto: arm/neon - memzero_explicit aes-cbc key
  crypto: bcm - Use scnprintf() for avoiding potential buffer overflow
  crypto: atmel-i2c - Fix wakeup fail
  ...
Šī revīzija ir iekļauta:
Linus Torvalds
2020-04-01 14:47:40 -07:00
revīzija 72f35423e8
152 mainīti faili ar 13868 papildinājumiem un 5388 dzēšanām

Parādīt failu

@@ -43,27 +43,33 @@
*
* Memory Structure:
*
* To support the needs of the most prominent user of AEAD ciphers, namely
* IPSEC, the AEAD ciphers have a special memory layout the caller must adhere
* to.
* The source scatterlist must contain the concatenation of
* associated data || plaintext or ciphertext.
*
* The scatter list pointing to the input data must contain:
* The destination scatterlist has the same layout, except that the plaintext
* (resp. ciphertext) will grow (resp. shrink) by the authentication tag size
* during encryption (resp. decryption).
*
* * for RFC4106 ciphers, the concatenation of
* associated authentication data || IV || plaintext or ciphertext. Note, the
* same IV (buffer) is also set with the aead_request_set_crypt call. Note,
* the API call of aead_request_set_ad must provide the length of the AAD and
* the IV. The API call of aead_request_set_crypt only points to the size of
* the input plaintext or ciphertext.
* In-place encryption/decryption is enabled by using the same scatterlist
* pointer for both the source and destination.
*
* * for "normal" AEAD ciphers, the concatenation of
* associated authentication data || plaintext or ciphertext.
* Even in the out-of-place case, space must be reserved in the destination for
* the associated data, even though it won't be written to. This makes the
* in-place and out-of-place cases more consistent. It is permissible for the
* "destination" associated data to alias the "source" associated data.
*
* It is important to note that if multiple scatter gather list entries form
* the input data mentioned above, the first entry must not point to a NULL
* buffer. If there is any potential where the AAD buffer can be NULL, the
* calling code must contain a precaution to ensure that this does not result
* in the first scatter gather list entry pointing to a NULL buffer.
* As with the other scatterlist crypto APIs, zero-length scatterlist elements
* are not allowed in the used part of the scatterlist. Thus, if there is no
* associated data, the first element must point to the plaintext/ciphertext.
*
* To meet the needs of IPsec, a special quirk applies to rfc4106, rfc4309,
* rfc4543, and rfc7539esp ciphers. For these ciphers, the final 'ivsize' bytes
* of the associated data buffer must contain a second copy of the IV. This is
* in addition to the copy passed to aead_request_set_crypt(). These two IV
* copies must not differ; different implementations of the same algorithm may
* behave differently in that case. Note that the algorithm might not actually
* treat the IV as associated data; nevertheless the length passed to
* aead_request_set_ad() must include it.
*/
struct crypto_aead;

Parādīt failu

@@ -66,7 +66,7 @@ struct af_alg_sgl {
struct af_alg_tsgl {
struct list_head list;
unsigned int cur; /* Last processed SG entry */
struct scatterlist sg[0]; /* Array of SGs forming the SGL */
struct scatterlist sg[]; /* Array of SGs forming the SGL */
};
#define MAX_SGL_ENTS ((4096 - sizeof(struct af_alg_tsgl)) / \