Merge tag 'staging-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging

Pull staging/IIO updates from Greg KH:
 "Here's the "big" staging/iio pull request for 4.10-rc1.

  Not as big as 4.9 was, but still just over a thousand changes. We
  almost broke even of lines added vs. removed, as the slicoss driver
  was removed (got a "clean" driver for the same hardware through the
  netdev tree), and some iio drivers were also dropped, but I think we
  ended up adding a few thousand lines to the source tree in the end.
  Other than that it's a lot of minor fixes all over the place, nothing
  major stands out at all.

  All of these have been in linux-next for a while. There will be a
  merge conflict with Al's vfs tree in the lustre code, but the
  resolution for that should be pretty simple, that too has been in
  linux-next"

* tag 'staging-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging: (1002 commits)
  staging: comedi: comedidev.h: Document usage of 'detach' handler
  staging: fsl-mc: remove unnecessary info prints from bus driver
  staging: fsl-mc: add sysfs ABI doc
  staging/lustre/o2iblnd: Fix misspelled attemps->attempts
  staging/lustre/o2iblnd: Fix misspelling intialized->intialized
  staging/lustre: Convert all bare unsigned to unsigned int
  staging/lustre/socklnd: Fix whitespace problem
  staging/lustre/o2iblnd: Add missing space
  staging/lustre/lnetselftest: Fix potential integer overflow
  staging: greybus: audio_module: remove redundant OOM message
  staging: dgnc: Fix lines longer than 80 characters
  staging: dgnc: fix blank line after '{' warnings.
  staging/android: remove Sync Framework tasks from TODO
  staging/lustre/osc: Revert erroneous list_for_each_entry_safe use
  staging: slicoss: remove the staging driver
  staging: lustre: libcfs: remove lnet upcall code
  staging: lustre: remove set but unused variables
  staging: lustre: osc: set lock data for readahead lock
  staging: lustre: import: don't reconnect during connect interpret
  staging: lustre: clio: remove mtime check in vvp_io_fault_start()
  ...
This commit is contained in:
Linus Torvalds
2016-12-13 11:35:00 -08:00
685 changed files with 33577 additions and 31432 deletions

View File

@@ -0,0 +1,21 @@
What: /sys/bus/fsl-mc/drivers/.../bind
Date: December 2016
Contact: stuart.yoder@nxp.com
Description:
Writing a device location to this file will cause
the driver to attempt to bind to the device found at
this location. The format for the location is Object.Id
and is the same as found in /sys/bus/fsl-mc/devices/.
For example:
# echo dpni.2 > /sys/bus/fsl-mc/drivers/fsl_dpaa2_eth/bind
What: /sys/bus/fsl-mc/drivers/.../unbind
Date: December 2016
Contact: stuart.yoder@nxp.com
Description:
Writing a device location to this file will cause the
driver to attempt to unbind from the device found at
this location. The format for the location is Object.Id
and is the same as found in /sys/bus/fsl-mc/devices/.
For example:
# echo dpni.2 > /sys/bus/fsl-mc/drivers/fsl_dpaa2_eth/unbind

View File

@@ -329,6 +329,7 @@ What: /sys/bus/iio/devices/iio:deviceX/in_pressure_scale
What: /sys/bus/iio/devices/iio:deviceX/in_humidityrelative_scale
What: /sys/bus/iio/devices/iio:deviceX/in_velocity_sqrt(x^2+y^2+z^2)_scale
What: /sys/bus/iio/devices/iio:deviceX/in_illuminance_scale
What: /sys/bus/iio/devices/iio:deviceX/in_countY_scale
KernelVersion: 2.6.35
Contact: linux-iio@vger.kernel.org
Description:
@@ -1579,3 +1580,20 @@ Contact: linux-iio@vger.kernel.org
Description:
Raw (unscaled no offset etc.) electric conductivity reading that
can be processed to siemens per meter.
What: /sys/bus/iio/devices/iio:deviceX/in_countY_raw
KernelVersion: 4.9
Contact: linux-iio@vger.kernel.org
Description:
Raw counter device counts from channel Y. For quadrature
counters, multiplication by an available [Y]_scale results in
the counts of a single quadrature signal phase from channel Y.
What: /sys/bus/iio/devices/iio:deviceX/in_indexY_raw
KernelVersion: 4.9
Contact: linux-iio@vger.kernel.org
Description:
Raw counter device index value from channel Y. This attribute
provides an absolute positional reference (e.g. a pulse once per
revolution) which may be used to home positional systems as
required.

View File

@@ -0,0 +1,36 @@
What: /sys/bus/iio/devices/iio:deviceX/in_altvoltageY_invert
Date: October 2016
KernelVersion: 4.9
Contact: Peter Rosin <peda@axentia.se>
Description:
The DAC is used to find the peak level of an alternating
voltage input signal by a binary search using the output
of a comparator wired to an interrupt pin. Like so:
_
| \
input +------>-------|+ \
| \
.-------. | }---.
| | | / |
| dac|-->--|- / |
| | |_/ |
| | |
| | |
| irq|------<-------'
| |
'-------'
The boolean invert attribute (0/1) should be set when the
input signal is centered around the maximum value of the
dac instead of zero. The envelope detector will search
from below in this case and will also invert the result.
The edge/level of the interrupt is also switched to its
opposite value.
What: /sys/bus/iio/devices/iio:deviceX/in_altvoltageY_compare_interval
Date: October 2016
KernelVersion: 4.9
Contact: Peter Rosin <peda@axentia.se>
Description:
Number of milliseconds to wait for the comparator in each
step of the binary search for the input peak level. Needs
to relate to the frequency of the input signal.

View File

@@ -0,0 +1,125 @@
What: /sys/bus/iio/devices/iio:deviceX/in_count_count_direction_available
What: /sys/bus/iio/devices/iio:deviceX/in_count_count_mode_available
What: /sys/bus/iio/devices/iio:deviceX/in_count_noise_error_available
What: /sys/bus/iio/devices/iio:deviceX/in_count_quadrature_mode_available
What: /sys/bus/iio/devices/iio:deviceX/in_index_index_polarity_available
What: /sys/bus/iio/devices/iio:deviceX/in_index_synchronous_mode_available
KernelVersion: 4.9
Contact: linux-iio@vger.kernel.org
Description:
Discrete set of available values for the respective counter
configuration are listed in this file.
What: /sys/bus/iio/devices/iio:deviceX/in_countY_count_direction
KernelVersion: 4.9
Contact: linux-iio@vger.kernel.org
Description:
Read-only attribute that indicates whether the counter for
channel Y is counting up or down.
What: /sys/bus/iio/devices/iio:deviceX/in_countY_count_mode
KernelVersion: 4.9
Contact: linux-iio@vger.kernel.org
Description:
Count mode for channel Y. Four count modes are available:
normal, range limit, non-recycle, and modulo-n. The preset value
for channel Y is used by the count mode where required.
Normal:
Counting is continuous in either direction.
Range Limit:
An upper or lower limit is set, mimicking limit switches
in the mechanical counterpart. The upper limit is set to
the preset value, while the lower limit is set to 0. The
counter freezes at count = preset when counting up, and
at count = 0 when counting down. At either of these
limits, the counting is resumed only when the count
direction is reversed.
Non-recycle:
Counter is disabled whenever a 24-bit count overflow or
underflow takes place. The counter is re-enabled when a
new count value is loaded to the counter via a preset
operation or write to raw.
Modulo-N:
A count boundary is set between 0 and the preset value.
The counter is reset to 0 at count = preset when
counting up, while the counter is set to the preset
value at count = 0 when counting down; the counter does
not freeze at the bundary points, but counts
continuously throughout.
What: /sys/bus/iio/devices/iio:deviceX/in_countY_noise_error
KernelVersion: 4.9
Contact: linux-iio@vger.kernel.org
Description:
Read-only attribute that indicates whether excessive noise is
present at the channel Y count inputs in quadrature clock mode;
irrelevant in non-quadrature clock mode.
What: /sys/bus/iio/devices/iio:deviceX/in_countY_preset
KernelVersion: 4.9
Contact: linux-iio@vger.kernel.org
Description:
If the counter device supports preset registers, the preset
count for channel Y is provided by this attribute.
What: /sys/bus/iio/devices/iio:deviceX/in_countY_quadrature_mode
KernelVersion: 4.9
Contact: linux-iio@vger.kernel.org
Description:
Configure channel Y counter for non-quadrature or quadrature
clock mode. Selecting non-quadrature clock mode will disable
synchronous load mode. In quadrature clock mode, the channel Y
scale attribute selects the encoder phase division (scale of 1
selects full-cycle, scale of 0.5 selects half-cycle, scale of
0.25 selects quarter-cycle) processed by the channel Y counter.
Non-quadrature:
The filter and decoder circuit are bypassed. Encoder A
input serves as the count input and B as the UP/DOWN
direction control input, with B = 1 selecting UP Count
mode and B = 0 selecting Down Count mode.
Quadrature:
Encoder A and B inputs are digitally filtered and
decoded for UP/DN clock.
What: /sys/bus/iio/devices/iio:deviceX/in_countY_set_to_preset_on_index
KernelVersion: 4.9
Contact: linux-iio@vger.kernel.org
Description:
Whether to set channel Y counter with channel Y preset value
when channel Y index input is active, or continuously count.
Valid attribute values are boolean.
What: /sys/bus/iio/devices/iio:deviceX/in_indexY_index_polarity
KernelVersion: 4.9
Contact: linux-iio@vger.kernel.org
Description:
Active level of channel Y index input; irrelevant in
non-synchronous load mode.
What: /sys/bus/iio/devices/iio:deviceX/in_indexY_synchronous_mode
KernelVersion: 4.9
Contact: linux-iio@vger.kernel.org
Description:
Configure channel Y counter for non-synchronous or synchronous
load mode. Synchronous load mode cannot be selected in
non-quadrature clock mode.
Non-synchronous:
A logic low level is the active level at this index
input. The index function (as enabled via
set_to_preset_on_index) is performed directly on the
active level of the index input.
Synchronous:
Intended for interfacing with encoder Index output in
quadrature clock mode. The active level is configured
via index_polarity. The index function (as enabled via
set_to_preset_on_index) is performed synchronously with
the quadrature clock on the active level of the index
input.

View File

@@ -0,0 +1,18 @@
What: /sys/bus/iio/devices/iio:deviceX/calibrate
Date: July 2015
KernelVersion: 4.7
Contact: linux-iio@vger.kernel.org
Description:
Writing '1' will perform a FOC (Fast Online Calibration). The
corresponding calibration offsets can be read from *_calibbias
entries.
What: /sys/bus/iio/devices/iio:deviceX/location
Date: July 2015
KernelVersion: 4.7
Contact: linux-iio@vger.kernel.org
Description:
This attribute returns a string with the physical location where
the motion sensor is placed. For example, in a laptop a motion
sensor can be located on the base or on the lid. Current valid
values are 'base' and 'lid'.

View File

@@ -0,0 +1,8 @@
What: /sys/bus/iio/devices/iio:deviceX/out_voltageY_raw_available
Date: October 2016
KernelVersion: 4.9
Contact: Peter Rosin <peda@axentia.se>
Description:
The range of available values represented as the minimum value,
the step and the maximum value, all enclosed in square brackets.
Example: [0 1 256]

View File

@@ -0,0 +1,19 @@
What: /sys/bus/iio/devices/iio:deviceX/proximity_on_chip_ambient_infrared_suppression
Date: January 2011
KernelVersion: 2.6.37
Contact: linux-iio@vger.kernel.org
Description:
From ISL29018 Data Sheet (FN6619.4, Oct 8, 2012) regarding the
infrared suppression:
Scheme 0, makes full n (4, 8, 12, 16) bits (unsigned) proximity
detection. The range of Scheme 0 proximity count is from 0 to
2^n. Logic 1 of this bit, Scheme 1, makes n-1 (3, 7, 11, 15)
bits (2's complementary) proximity_less_ambient detection. The
range of Scheme 1 proximity count is from -2^(n-1) to 2^(n-1).
The sign bit is extended for resolutions less than 16. While
Scheme 0 has wider dynamic range, Scheme 1 proximity detection
is less affected by the ambient IR noise variation.
0 Sensing IR from LED and ambient
1 Sensing IR from LED with ambient IR rejection

View File

@@ -0,0 +1,20 @@
What: /sys/bus/iio/devices/device[n]/in_illuminance_calibrate
KernelVersion: 2.6.37
Contact: linux-iio@vger.kernel.org
Description:
This property causes an internal calibration of the als gain trim
value which is later used in calculating illuminance in lux.
What: /sys/bus/iio/devices/device[n]/in_illuminance_lux_table
KernelVersion: 2.6.37
Contact: linux-iio@vger.kernel.org
Description:
This property gets/sets the table of coefficients
used in calculating illuminance in lux.
What: /sys/bus/iio/devices/device[n]/in_illuminance_input_target
KernelVersion: 2.6.37
Contact: linux-iio@vger.kernel.org
Description:
This property is the known externally illuminance (in lux).
It is used in the process of calibrating the device accuracy.

View File

@@ -0,0 +1,8 @@
What: /sys/bus/iio/devices/iio:deviceX/out_resistance_raw_available
Date: October 2016
KernelVersion: 4.9
Contact: Peter Rosin <peda@axentia.se>
Description:
The range of available values represented as the minimum value,
the step and the maximum value, all enclosed in square brackets.
Example: [0 1 256]

View File

@@ -39,11 +39,13 @@ dallas,ds75 Digital Thermometer and Thermostat
dlg,da9053 DA9053: flexible system level PMIC with multicore support
dlg,da9063 DA9063: system PMIC for quad-core application processors
domintech,dmard09 DMARD09: 3-axis Accelerometer
domintech,dmard10 DMARD10: 3-axis Accelerometer
epson,rx8010 I2C-BUS INTERFACE REAL TIME CLOCK MODULE
epson,rx8025 High-Stability. I2C-Bus INTERFACE REAL TIME CLOCK MODULE
epson,rx8581 I2C-BUS INTERFACE REAL TIME CLOCK MODULE
fsl,mag3110 MAG3110: Xtrinsic High Accuracy, 3D Magnetometer
fsl,mc13892 MC13892: Power Management Integrated Circuit (PMIC) for i.MX35/51
fsl,mma7660 MMA7660FC: 3-Axis Orientation/Motion Detection Sensor
fsl,mma8450 MMA8450Q: Xtrinsic Low-power, 3-axis Xtrinsic Accelerometer
fsl,mpl3115 MPL3115: Absolute Digital Pressure Sensor
fsl,mpr121 MPR121: Proximity Capacitive Touch Sensor Controller
@@ -57,6 +59,7 @@ maxim,max1237 Low-Power, 4-/12-Channel, 2-Wire Serial, 12-Bit ADCs
maxim,max6625 9-Bit/12-Bit Temperature Sensors with I²C-Compatible Serial Interface
mc,rv3029c2 Real Time Clock Module with I2C-Bus
mcube,mc3230 mCube 3-axis 8-bit digital accelerometer
memsic,mxc6225 MEMSIC 2-axis 8-bit digital accelerometer
microchip,mcp4531-502 Microchip 7-bit Single I2C Digital Potentiometer (5k)
microchip,mcp4531-103 Microchip 7-bit Single I2C Digital Potentiometer (10k)
microchip,mcp4531-503 Microchip 7-bit Single I2C Digital Potentiometer (50k)
@@ -121,6 +124,9 @@ microchip,mcp4662-502 Microchip 8-bit Dual I2C Digital Potentiometer with NV Mem
microchip,mcp4662-103 Microchip 8-bit Dual I2C Digital Potentiometer with NV Memory (10k)
microchip,mcp4662-503 Microchip 8-bit Dual I2C Digital Potentiometer with NV Memory (50k)
microchip,mcp4662-104 Microchip 8-bit Dual I2C Digital Potentiometer with NV Memory (100k)
miramems,da226 MiraMEMS DA226 2-axis 14-bit digital accelerometer
miramems,da280 MiraMEMS DA280 3-axis 14-bit digital accelerometer
miramems,da311 MiraMEMS DA311 3-axis 12-bit digital accelerometer
national,lm63 Temperature sensor with integrated fan control
national,lm75 I2C TEMP SENSOR
national,lm80 Serial Interface ACPI-Compatible Microprocessor System Hardware Monitor
@@ -146,6 +152,7 @@ ricoh,rv5c387a I2C bus SERIAL INTERFACE REAL-TIME CLOCK IC
samsung,24ad0xd1 S524AD0XF1 (128K/256K-bit Serial EEPROM for Low Power)
sgx,vz89x SGX Sensortech VZ89X Sensors
sii,s35390a 2-wire CMOS real-time clock
silabs,si7020 Relative Humidity and Temperature Sensors
skyworks,sky81452 Skyworks SKY81452: Six-Channel White LED Driver with Touch Panel Bias Supply
st,24c256 i2c serial eeprom (24cxx)
st,m41t00 Serial real-time clock (RTC)

View File

@@ -0,0 +1,54 @@
Bindings for ADC envelope detector using a DAC and a comparator
The DAC is used to find the peak level of an alternating voltage input
signal by a binary search using the output of a comparator wired to
an interrupt pin. Like so:
_
| \
input +------>-------|+ \
| \
.-------. | }---.
| | | / |
| dac|-->--|- / |
| | |_/ |
| | |
| | |
| irq|------<-------'
| |
'-------'
Required properties:
- compatible: Should be "axentia,tse850-envelope-detector"
- io-channels: Channel node of the dac to be used for comparator input.
- io-channel-names: Should be "dac".
- interrupt specification for one client interrupt,
see ../../interrupt-controller/interrupts.txt for details.
- interrupt-names: Should be "comp".
Example:
&i2c {
dpot: mcp4651-104@28 {
compatible = "microchip,mcp4651-104";
reg = <0x28>;
#io-channel-cells = <1>;
};
};
dac: dac {
compatible = "dpot-dac";
vref-supply = <&reg_3v3>;
io-channels = <&dpot 0>;
io-channel-names = "dpot";
#io-channel-cells = <1>;
};
envelope-detector {
compatible = "axentia,tse850-envelope-detector";
io-channels = <&dac 0>;
io-channel-names = "dac";
interrupt-parent = <&gpio>;
interrupts = <3 IRQ_TYPE_EDGE_FALLING>;
interrupt-names = "comp";
};

View File

@@ -0,0 +1,83 @@
STMicroelectronics STM32 ADC device driver
STM32 ADC is a successive approximation analog-to-digital converter.
It has several multiplexed input channels. Conversions can be performed
in single, continuous, scan or discontinuous mode. Result of the ADC is
stored in a left-aligned or right-aligned 32-bit data register.
Conversions can be launched in software or using hardware triggers.
The analog watchdog feature allows the application to detect if the input
voltage goes beyond the user-defined, higher or lower thresholds.
Each STM32 ADC block can have up to 3 ADC instances.
Each instance supports two contexts to manage conversions, each one has its
own configurable sequence and trigger:
- regular conversion can be done in sequence, running in background
- injected conversions have higher priority, and so have the ability to
interrupt regular conversion sequence (either triggered in SW or HW).
Regular sequence is resumed, in case it has been interrupted.
Contents of a stm32 adc root node:
-----------------------------------
Required properties:
- compatible: Should be "st,stm32f4-adc-core".
- reg: Offset and length of the ADC block register set.
- interrupts: Must contain the interrupt for ADC block.
- clocks: Clock for the analog circuitry (common to all ADCs).
- clock-names: Must be "adc".
- interrupt-controller: Identifies the controller node as interrupt-parent
- vref-supply: Phandle to the vref input analog reference voltage.
- #interrupt-cells = <1>;
- #address-cells = <1>;
- #size-cells = <0>;
Optional properties:
- A pinctrl state named "default" for each ADC channel may be defined to set
inX ADC pins in mode of operation for analog input on external pin.
Contents of a stm32 adc child node:
-----------------------------------
An ADC block node should contain at least one subnode, representing an
ADC instance available on the machine.
Required properties:
- compatible: Should be "st,stm32f4-adc".
- reg: Offset of ADC instance in ADC block (e.g. may be 0x0, 0x100, 0x200).
- clocks: Input clock private to this ADC instance.
- interrupt-parent: Phandle to the parent interrupt controller.
- interrupts: IRQ Line for the ADC (e.g. may be 0 for adc@0, 1 for adc@100 or
2 for adc@200).
- st,adc-channels: List of single-ended channels muxed for this ADC.
It can have up to 16 channels, numbered from 0 to 15 (resp. for in0..in15).
- #io-channel-cells = <1>: See the IIO bindings section "IIO consumers" in
Documentation/devicetree/bindings/iio/iio-bindings.txt
Example:
adc: adc@40012000 {
compatible = "st,stm32f4-adc-core";
reg = <0x40012000 0x400>;
interrupts = <18>;
clocks = <&rcc 0 168>;
clock-names = "adc";
vref-supply = <&reg_vref>;
interrupt-controller;
pinctrl-names = "default";
pinctrl-0 = <&adc3_in8_pin>;
#interrupt-cells = <1>;
#address-cells = <1>;
#size-cells = <0>;
adc@0 {
compatible = "st,stm32f4-adc";
#io-channel-cells = <1>;
reg = <0x0>;
clocks = <&rcc 0 168>;
interrupt-parent = <&adc>;
interrupts = <0>;
st,adc-channels = <8>;
};
...
other adc child nodes follow...
};

View File

@@ -3,6 +3,7 @@
Required properties:
- compatible: Should be "ti,adc141s626" or "ti,adc161s626"
- reg: spi chip select number for the device
- vdda-supply: supply voltage to VDDA pin
Recommended properties:
- spi-max-frequency: Definition as per
@@ -11,6 +12,7 @@ Recommended properties:
Example:
adc@0 {
compatible = "ti,adc161s626";
vdda-supply = <&vdda_fixed>;
reg = <0>;
spi-max-frequency = <4300000>;
};

View File

@@ -0,0 +1,41 @@
Bindings for DAC emulation using a digital potentiometer
It is assumed that the dpot is used as a voltage divider between the
current dpot wiper setting and the maximum resistance of the dpot. The
divided voltage is provided by a vref regulator.
.------.
.-----------. | |
| vref |--' .---.
| regulator |--. | |
'-----------' | | d |
| | p |
| | o | wiper
| | t |<---------+
| | |
| '---' dac output voltage
| |
'------+------------+
Required properties:
- compatible: Should be "dpot-dac"
- vref-supply: The regulator supplying the voltage divider.
- io-channels: Channel node of the dpot to be used for the voltage division.
- io-channel-names: Should be "dpot".
Example:
&i2c {
dpot: mcp4651-503@28 {
compatible = "microchip,mcp4651-503";
reg = <0x28>;
#io-channel-cells = <1>;
};
};
dac {
compatible = "dpot-dac";
vref-supply = <&reg_3v3>;
io-channels = <&dpot 0>;
io-channel-names = "dpot";
};

View File

@@ -0,0 +1,35 @@
Microchip mcp4725 and mcp4726 DAC device driver
Required properties:
- compatible: Must be "microchip,mcp4725" or "microchip,mcp4726"
- reg: Should contain the DAC I2C address
- vdd-supply: Phandle to the Vdd power supply. This supply is used as a
voltage reference on mcp4725. It is used as a voltage reference on
mcp4726 if there is no vref-supply specified.
Optional properties (valid only for mcp4726):
- vref-supply: Optional phandle to the Vref power supply. Vref pin is
used as a voltage reference when this supply is specified.
- microchip,vref-buffered: Boolean to enable buffering of the external
Vref pin. This boolean is not valid without the vref-supply. Quoting
the datasheet: This is offered in cases where the reference voltage
does not have the current capability not to drop its voltage when
connected to the internal resistor ladder circuit.
Examples:
/* simple mcp4725 */
mcp4725@60 {
compatible = "microchip,mcp4725";
reg = <0x60>;
vdd-supply = <&vdac_vdd>;
};
/* mcp4726 with the buffered external reference voltage */
mcp4726@60 {
compatible = "microchip,mcp4726";
reg = <0x60>;
vdd-supply = <&vdac_vdd>;
vref-supply = <&vdac_vref>;
microchip,vref-buffered;
};

View File

@@ -0,0 +1,46 @@
Invensense MPU-3050 Gyroscope device tree bindings
Required properties:
- compatible : should be "invensense,mpu3050"
- reg : the I2C address of the sensor
Optional properties:
- interrupt-parent : should be the phandle for the interrupt controller
- interrupts : interrupt mapping for the trigger interrupt from the
internal oscillator. The following IRQ modes are supported:
IRQ_TYPE_EDGE_RISING, IRQ_TYPE_EDGE_FALLING, IRQ_TYPE_LEVEL_HIGH and
IRQ_TYPE_LEVEL_LOW. The driver should detect and configure the hardware
for the desired interrupt type.
- vdd-supply : supply regulator for the main power voltage.
- vlogic-supply : supply regulator for the signal voltage.
- mount-matrix : see iio/mount-matrix.txt
Optional subnodes:
- The MPU-3050 will pass through and forward the I2C signals from the
incoming I2C bus, alternatively drive traffic to a slave device (usually
an accelerometer) on its own initiative. Therefore is supports a subnode
i2c gate node. For details see: i2c/i2c-gate.txt
Example:
mpu3050@68 {
compatible = "invensense,mpu3050";
reg = <0x68>;
interrupt-parent = <&foo>;
interrupts = <12 IRQ_TYPE_EDGE_FALLING>;
vdd-supply = <&bar>;
vlogic-supply = <&baz>;
/* External I2C interface */
i2c-gate {
#address-cells = <1>;
#size-cells = <0>;
fnord@18 {
compatible = "fnord";
reg = <0x18>;
interrupt-parent = <&foo>;
interrupts = <13 IRQ_TYPE_EDGE_FALLING>;
};
};
};

View File

@@ -0,0 +1,22 @@
* HTS221 STM humidity + temperature sensor
Required properties:
- compatible: should be "st,hts221"
- reg: i2c address of the sensor / spi cs line
Optional properties:
- interrupt-parent: should be the phandle for the interrupt controller
- interrupts: interrupt mapping for IRQ. It should be configured with
flags IRQ_TYPE_LEVEL_HIGH or IRQ_TYPE_EDGE_RISING.
Refer to interrupt-controller/interrupts.txt for generic interrupt
client node bindings.
Example:
hts221@5f {
compatible = "st,hts221";
reg = <0x5f>;
interrupt-parent = <&gpio0>;
interrupts = <0 IRQ_TYPE_EDGE_RISING>;
};

View File

@@ -0,0 +1,28 @@
* ISL 29018/29023/29035 I2C ALS, Proximity, and Infrared sensor
Required properties:
- compatible: Should be one of
"isil,isl29018"
"isil,isl29023"
"isil,isl29035"
- reg: the I2C address of the device
Optional properties:
- interrupt-parent: should be the phandle for the interrupt controller
- interrupts: the sole interrupt generated by the device
Refer to interrupt-controller/interrupts.txt for generic interrupt client
node bindings.
- vcc-supply: phandle to the regulator that provides power to the sensor.
Example:
isl29018@44 {
compatible = "isil,isl29018";
reg = <0x44>;
interrupt-parent = <&gpio>;
interrupts = <TEGRA_GPIO(Z, 2) IRQ_TYPE_LEVEL_HIGH>;
};

View File

@@ -0,0 +1,26 @@
* TAOS TSL 2580/2581/2583 ALS sensor
Required properties:
- compatible: Should be one of
"amstaos,tsl2580"
"amstaos,tsl2581"
"amstaos,tsl2583"
- reg: the I2C address of the device
Optional properties:
- interrupt-parent: should be the phandle for the interrupt controller
- interrupts: the sole interrupt generated by the device
Refer to interrupt-controller/interrupts.txt for generic interrupt client
node bindings.
- vcc-supply: phandle to the regulator that provides power to the sensor.
Example:
tsl2581@29 {
compatible = "amstaos,tsl2581";
reg = <0x29>;
};

View File

@@ -0,0 +1,30 @@
* Texas Instruments LMP91000 potentiostat
http://www.ti.com/lit/ds/symlink/lmp91000.pdf
Required properties:
- compatible: should be "ti,lmp91000"
- reg: the I2C address of the device
- io-channels: the phandle of the iio provider
- ti,external-tia-resistor: if the property ti,tia-gain-ohm is not defined this
needs to be set to signal that an external resistor value is being used.
Optional properties:
- ti,tia-gain-ohm: ohm value of the internal resistor for the transimpedance
amplifier. Must be 2750, 3500, 7000, 14000, 35000, 120000, or 350000 ohms.
- ti,rload-ohm: ohm value of the internal resistor load applied to the gas
sensor. Must be 10, 33, 50, or 100 (default) ohms.
Example:
lmp91000@48 {
compatible = "ti,lmp91000";
reg = <0x48>;
ti,tia-gain-ohm = <7500>;
ti,rload = <100>;
io-channels = <&adc>;
};

View File

@@ -42,6 +42,7 @@ Accelerometers:
- st,lsm303agr-accel
- st,lis2dh12-accel
- st,h3lis331dl-accel
- st,lng2dm-accel
Gyroscopes:
- st,l3g4200d-gyro

View File

@@ -39,6 +39,7 @@ auo AU Optronics Corporation
auvidea Auvidea GmbH
avago Avago Technologies
avic Shanghai AVIC Optoelectronics Co., Ltd.
axentia Axentia Technologies AB
axis Axis Communications AB
boe BOE Technology Group Co., Ltd.
bosch Bosch Sensortec GmbH
@@ -160,16 +161,19 @@ lltc Linear Technology Corporation
lsi LSI Corp. (LSI Logic)
marvell Marvell Technology Group Ltd.
maxim Maxim Integrated Products
mcube mCube
meas Measurement Specialties
mediatek MediaTek Inc.
melexis Melexis N.V.
melfas MELFAS Inc.
memsic MEMSIC Inc.
merrii Merrii Technology Co., Ltd.
micrel Micrel Inc.
microchip Microchip Technology Inc.
microcrystal Micro Crystal AG
micron Micron Technology Inc.
minix MINIX Technology Ltd.
miramems MiraMEMS Sensing Technology Co., Ltd.
mitsubishi Mitsubishi Electric Corporation
mosaixtech Mosaix Technologies, Inc.
moxa Moxa