Merge commit 'origin'

Manual fixup of conflicts on:

	arch/powerpc/include/asm/dcr-regs.h
	drivers/net/ibm_newemac/core.h
This commit is contained in:
Benjamin Herrenschmidt
2008-10-15 11:31:54 +11:00
5097 changed files with 278765 additions and 138501 deletions

View File

@@ -80,9 +80,9 @@ struct corgikbd {
#define KB_ACTIVATE_DELAY 10
/* Helper functions for reading the keyboard matrix
* Note: We should really be using pxa_gpio_mode to alter GPDR but it
* requires a function call per GPIO bit which is excessive
* when we need to access 12 bits at once multiple times.
* Note: We should really be using the generic gpio functions to alter
* GPDR but it requires a function call per GPIO bit which is
* excessive when we need to access 12 bits at once, multiple times.
* These functions must be called within local_irq_save()/local_irq_restore()
* or similar.
*/

View File

@@ -101,9 +101,9 @@ struct spitzkbd {
#define KB_ACTIVATE_DELAY 10
/* Helper functions for reading the keyboard matrix
* Note: We should really be using pxa_gpio_mode to alter GPDR but it
* requires a function call per GPIO bit which is excessive
* when we need to access 11 bits at once, multiple times.
* Note: We should really be using the generic gpio functions to alter
* GPDR but it requires a function call per GPIO bit which is
* excessive when we need to access 11 bits at once, multiple times.
* These functions must be called within local_irq_save()/local_irq_restore()
* or similar.
*/

View File

@@ -59,9 +59,9 @@ struct tosakbd {
/* Helper functions for reading the keyboard matrix
* Note: We should really be using pxa_gpio_mode to alter GPDR but it
* requires a function call per GPIO bit which is excessive
* when we need to access 12 bits at once, multiple times.
* Note: We should really be using the generic gpio functions to alter
* GPDR but it requires a function call per GPIO bit which is
* excessive when we need to access 12 bits at once, multiple times.
* These functions must be called within local_irq_save()/local_irq_restore()
* or similar.
*/

View File

@@ -458,35 +458,35 @@ static int hp_sdc_rtc_proc_output (char *buf)
p += sprintf(p, "i8042 rtc\t: READ FAILED!\n");
} else {
p += sprintf(p, "i8042 rtc\t: %ld.%02d seconds\n",
tv.tv_sec, tv.tv_usec/1000);
tv.tv_sec, (int)tv.tv_usec/1000);
}
if (hp_sdc_rtc_read_fhs(&tv)) {
p += sprintf(p, "handshake\t: READ FAILED!\n");
} else {
p += sprintf(p, "handshake\t: %ld.%02d seconds\n",
tv.tv_sec, tv.tv_usec/1000);
tv.tv_sec, (int)tv.tv_usec/1000);
}
if (hp_sdc_rtc_read_mt(&tv)) {
p += sprintf(p, "alarm\t\t: READ FAILED!\n");
} else {
p += sprintf(p, "alarm\t\t: %ld.%02d seconds\n",
tv.tv_sec, tv.tv_usec/1000);
tv.tv_sec, (int)tv.tv_usec/1000);
}
if (hp_sdc_rtc_read_dt(&tv)) {
p += sprintf(p, "delay\t\t: READ FAILED!\n");
} else {
p += sprintf(p, "delay\t\t: %ld.%02d seconds\n",
tv.tv_sec, tv.tv_usec/1000);
tv.tv_sec, (int)tv.tv_usec/1000);
}
if (hp_sdc_rtc_read_ct(&tv)) {
p += sprintf(p, "periodic\t: READ FAILED!\n");
} else {
p += sprintf(p, "periodic\t: %ld.%02d seconds\n",
tv.tv_sec, tv.tv_usec/1000);
tv.tv_sec, (int)tv.tv_usec/1000);
}
p += sprintf(p,

View File

@@ -249,7 +249,7 @@ static int bbc_remove(struct of_device *op)
return 0;
}
static struct of_device_id bbc_beep_match[] = {
static const struct of_device_id bbc_beep_match[] = {
{
.name = "beep",
.compatible = "SUNW,bbc-beep",
@@ -328,7 +328,7 @@ static int grover_remove(struct of_device *op)
return 0;
}
static struct of_device_id grover_beep_match[] = {
static const struct of_device_id grover_beep_match[] = {
{
.name = "beep",
.compatible = "SUNW,smbus-beep",

View File

@@ -351,8 +351,9 @@ static int report_tp_state(struct bcm5974 *dev, int size)
#define BCM5974_WELLSPRING_MODE_REQUEST_VALUE 0x300
#define BCM5974_WELLSPRING_MODE_REQUEST_INDEX 0
#define BCM5974_WELLSPRING_MODE_VENDOR_VALUE 0x01
#define BCM5974_WELLSPRING_MODE_NORMAL_VALUE 0x08
static int bcm5974_wellspring_mode(struct bcm5974 *dev)
static int bcm5974_wellspring_mode(struct bcm5974 *dev, bool on)
{
char *data = kmalloc(8, GFP_KERNEL);
int retval = 0, size;
@@ -377,7 +378,9 @@ static int bcm5974_wellspring_mode(struct bcm5974 *dev)
}
/* apply the mode switch */
data[0] = BCM5974_WELLSPRING_MODE_VENDOR_VALUE;
data[0] = on ?
BCM5974_WELLSPRING_MODE_VENDOR_VALUE :
BCM5974_WELLSPRING_MODE_NORMAL_VALUE;
/* write configuration */
size = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, 0),
@@ -392,7 +395,8 @@ static int bcm5974_wellspring_mode(struct bcm5974 *dev)
goto out;
}
dprintk(2, "bcm5974: switched to wellspring mode.\n");
dprintk(2, "bcm5974: switched to %s mode.\n",
on ? "wellspring" : "normal");
out:
kfree(data);
@@ -481,7 +485,7 @@ exit:
*/
static int bcm5974_start_traffic(struct bcm5974 *dev)
{
if (bcm5974_wellspring_mode(dev)) {
if (bcm5974_wellspring_mode(dev, true)) {
dprintk(1, "bcm5974: mode switch failed\n");
goto error;
}
@@ -504,6 +508,7 @@ static void bcm5974_pause_traffic(struct bcm5974 *dev)
{
usb_kill_urb(dev->tp_urb);
usb_kill_urb(dev->bt_urb);
bcm5974_wellspring_mode(dev, false);
}
/*

View File

@@ -323,7 +323,7 @@ static void hp_sdc_tasklet(unsigned long foo)
* it back to the application. and be less verbose.
*/
printk(KERN_WARNING PREFIX "read timeout (%ius)!\n",
tv.tv_usec - hp_sdc.rtv.tv_usec);
(int)(tv.tv_usec - hp_sdc.rtv.tv_usec));
curr->idx += hp_sdc.rqty;
hp_sdc.rqty = 0;
tmp = curr->seq[curr->actidx];

View File

@@ -87,7 +87,7 @@ static int __devexit sparc_i8042_remove(struct of_device *op)
return 0;
}
static struct of_device_id sparc_i8042_match[] = {
static const struct of_device_id sparc_i8042_match[] = {
{
.name = "8042",
},

View File

@@ -220,6 +220,7 @@ config TOUCHSCREEN_ATMEL_TSADCC
config TOUCHSCREEN_UCB1400
tristate "Philips UCB1400 touchscreen"
select AC97_BUS
depends on UCB1400_CORE
help
This enables support for the Philips UCB1400 touchscreen interface.
The UCB1400 is an AC97 audio codec. The touchscreen interface

View File

@@ -24,6 +24,7 @@
#include <linux/input.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/gpio.h>
#include <linux/spi/spi.h>
#include <linux/spi/ads7846.h>
#include <asm/irq.h>
@@ -116,6 +117,7 @@ struct ads7846 {
void *filter_data;
void (*filter_cleanup)(void *data);
int (*get_pendown_state)(void);
int gpio_pendown;
};
/* leave chip selected when we're done, for quicker re-select? */
@@ -491,6 +493,14 @@ static struct attribute_group ads784x_attr_group = {
/*--------------------------------------------------------------------------*/
static int get_pendown_state(struct ads7846 *ts)
{
if (ts->get_pendown_state)
return ts->get_pendown_state();
return !gpio_get_value(ts->gpio_pendown);
}
/*
* PENIRQ only kicks the timer. The timer only reissues the SPI transfer,
* to retrieve touchscreen status.
@@ -550,7 +560,7 @@ static void ads7846_rx(void *ads)
*/
if (ts->penirq_recheck_delay_usecs) {
udelay(ts->penirq_recheck_delay_usecs);
if (!ts->get_pendown_state())
if (!get_pendown_state(ts))
Rt = 0;
}
@@ -677,7 +687,7 @@ static enum hrtimer_restart ads7846_timer(struct hrtimer *handle)
spin_lock_irq(&ts->lock);
if (unlikely(!ts->get_pendown_state() ||
if (unlikely(!get_pendown_state(ts) ||
device_suspended(&ts->spi->dev))) {
if (ts->pendown) {
struct input_dev *input = ts->input;
@@ -716,7 +726,7 @@ static irqreturn_t ads7846_irq(int irq, void *handle)
unsigned long flags;
spin_lock_irqsave(&ts->lock, flags);
if (likely(ts->get_pendown_state())) {
if (likely(get_pendown_state(ts))) {
if (!ts->irq_disabled) {
/* The ARM do_simple_IRQ() dispatcher doesn't act
* like the other dispatchers: it will report IRQs
@@ -806,6 +816,36 @@ static int ads7846_resume(struct spi_device *spi)
return 0;
}
static int __devinit setup_pendown(struct spi_device *spi, struct ads7846 *ts)
{
struct ads7846_platform_data *pdata = spi->dev.platform_data;
int err;
/* REVISIT when the irq can be triggered active-low, or if for some
* reason the touchscreen isn't hooked up, we don't need to access
* the pendown state.
*/
if (!pdata->get_pendown_state && !gpio_is_valid(pdata->gpio_pendown)) {
dev_err(&spi->dev, "no get_pendown_state nor gpio_pendown?\n");
return -EINVAL;
}
if (pdata->get_pendown_state) {
ts->get_pendown_state = pdata->get_pendown_state;
return 0;
}
err = gpio_request(pdata->gpio_pendown, "ads7846_pendown");
if (err) {
dev_err(&spi->dev, "failed to request pendown GPIO%d\n",
pdata->gpio_pendown);
return err;
}
ts->gpio_pendown = pdata->gpio_pendown;
return 0;
}
static int __devinit ads7846_probe(struct spi_device *spi)
{
struct ads7846 *ts;
@@ -833,15 +873,6 @@ static int __devinit ads7846_probe(struct spi_device *spi)
return -EINVAL;
}
/* REVISIT when the irq can be triggered active-low, or if for some
* reason the touchscreen isn't hooked up, we don't need to access
* the pendown state.
*/
if (pdata->get_pendown_state == NULL) {
dev_dbg(&spi->dev, "no get_pendown_state function?\n");
return -EINVAL;
}
/* We'd set TX wordsize 8 bits and RX wordsize to 13 bits ... except
* that even if the hardware can do that, the SPI controller driver
* may not. So we stick to very-portable 8 bit words, both RX and TX.
@@ -893,7 +924,10 @@ static int __devinit ads7846_probe(struct spi_device *spi)
ts->filter_data = ts;
} else
ts->filter = ads7846_no_filter;
ts->get_pendown_state = pdata->get_pendown_state;
err = setup_pendown(spi, ts);
if (err)
goto err_cleanup_filter;
if (pdata->penirq_recheck_delay_usecs)
ts->penirq_recheck_delay_usecs =
@@ -1085,7 +1119,7 @@ static int __devinit ads7846_probe(struct spi_device *spi)
spi->dev.driver->name, ts)) {
dev_dbg(&spi->dev, "irq %d busy?\n", spi->irq);
err = -EBUSY;
goto err_cleanup_filter;
goto err_free_gpio;
}
err = ads784x_hwmon_register(spi, ts);
@@ -1116,6 +1150,9 @@ static int __devinit ads7846_probe(struct spi_device *spi)
ads784x_hwmon_unregister(spi, ts);
err_free_irq:
free_irq(spi->irq, ts);
err_free_gpio:
if (ts->gpio_pendown != -1)
gpio_free(ts->gpio_pendown);
err_cleanup_filter:
if (ts->filter_cleanup)
ts->filter_cleanup(ts->filter_data);
@@ -1140,6 +1177,9 @@ static int __devexit ads7846_remove(struct spi_device *spi)
/* suspend left the IRQ disabled */
enable_irq(ts->spi->irq);
if (ts->gpio_pendown != -1)
gpio_free(ts->gpio_pendown);
if (ts->filter_cleanup)
ts->filter_cleanup(ts->filter_data);

View File

@@ -119,8 +119,8 @@ static int __devinit jornada720_ts_probe(struct platform_device *pdev)
input_dev->id.bustype = BUS_HOST;
input_dev->dev.parent = &pdev->dev;
input_dev->evbit[0] = BIT(EV_KEY) | BIT(EV_ABS);
input_dev->keybit[LONG(BTN_TOUCH)] = BIT(BTN_TOUCH);
input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_ABS);
input_dev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
input_set_abs_params(input_dev, ABS_X, 270, 3900, 0, 0);
input_set_abs_params(input_dev, ABS_Y, 180, 3700, 0, 0);

View File

@@ -5,6 +5,10 @@
* Created: September 25, 2006
* Copyright: MontaVista Software, Inc.
*
* Spliting done by: Marek Vasut <marek.vasut@gmail.com>
* If something doesnt work and it worked before spliting, e-mail me,
* dont bother Nicolas please ;-)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
@@ -25,124 +29,16 @@
#include <linux/slab.h>
#include <linux/kthread.h>
#include <linux/freezer.h>
#include <sound/core.h>
#include <sound/ac97_codec.h>
/*
* Interesting UCB1400 AC-link registers
*/
#define UCB_IE_RIS 0x5e
#define UCB_IE_FAL 0x60
#define UCB_IE_STATUS 0x62
#define UCB_IE_CLEAR 0x62
#define UCB_IE_ADC (1 << 11)
#define UCB_IE_TSPX (1 << 12)
#define UCB_TS_CR 0x64
#define UCB_TS_CR_TSMX_POW (1 << 0)
#define UCB_TS_CR_TSPX_POW (1 << 1)
#define UCB_TS_CR_TSMY_POW (1 << 2)
#define UCB_TS_CR_TSPY_POW (1 << 3)
#define UCB_TS_CR_TSMX_GND (1 << 4)
#define UCB_TS_CR_TSPX_GND (1 << 5)
#define UCB_TS_CR_TSMY_GND (1 << 6)
#define UCB_TS_CR_TSPY_GND (1 << 7)
#define UCB_TS_CR_MODE_INT (0 << 8)
#define UCB_TS_CR_MODE_PRES (1 << 8)
#define UCB_TS_CR_MODE_POS (2 << 8)
#define UCB_TS_CR_BIAS_ENA (1 << 11)
#define UCB_TS_CR_TSPX_LOW (1 << 12)
#define UCB_TS_CR_TSMX_LOW (1 << 13)
#define UCB_ADC_CR 0x66
#define UCB_ADC_SYNC_ENA (1 << 0)
#define UCB_ADC_VREFBYP_CON (1 << 1)
#define UCB_ADC_INP_TSPX (0 << 2)
#define UCB_ADC_INP_TSMX (1 << 2)
#define UCB_ADC_INP_TSPY (2 << 2)
#define UCB_ADC_INP_TSMY (3 << 2)
#define UCB_ADC_INP_AD0 (4 << 2)
#define UCB_ADC_INP_AD1 (5 << 2)
#define UCB_ADC_INP_AD2 (6 << 2)
#define UCB_ADC_INP_AD3 (7 << 2)
#define UCB_ADC_EXT_REF (1 << 5)
#define UCB_ADC_START (1 << 7)
#define UCB_ADC_ENA (1 << 15)
#define UCB_ADC_DATA 0x68
#define UCB_ADC_DAT_VALID (1 << 15)
#define UCB_ADC_DAT_VALUE(x) ((x) & 0x3ff)
#define UCB_ID 0x7e
#define UCB_ID_1400 0x4304
struct ucb1400 {
struct snd_ac97 *ac97;
struct input_dev *ts_idev;
int irq;
wait_queue_head_t ts_wait;
struct task_struct *ts_task;
unsigned int irq_pending; /* not bit field shared */
unsigned int ts_restart:1;
unsigned int adcsync:1;
};
#include <linux/ucb1400.h>
static int adcsync;
static int ts_delay = 55; /* us */
static int ts_delay_pressure; /* us */
static inline u16 ucb1400_reg_read(struct ucb1400 *ucb, u16 reg)
{
return ucb->ac97->bus->ops->read(ucb->ac97, reg);
}
static inline void ucb1400_reg_write(struct ucb1400 *ucb, u16 reg, u16 val)
{
ucb->ac97->bus->ops->write(ucb->ac97, reg, val);
}
static inline void ucb1400_adc_enable(struct ucb1400 *ucb)
{
ucb1400_reg_write(ucb, UCB_ADC_CR, UCB_ADC_ENA);
}
static unsigned int ucb1400_adc_read(struct ucb1400 *ucb, u16 adc_channel)
{
unsigned int val;
if (ucb->adcsync)
adc_channel |= UCB_ADC_SYNC_ENA;
ucb1400_reg_write(ucb, UCB_ADC_CR, UCB_ADC_ENA | adc_channel);
ucb1400_reg_write(ucb, UCB_ADC_CR, UCB_ADC_ENA | adc_channel | UCB_ADC_START);
for (;;) {
val = ucb1400_reg_read(ucb, UCB_ADC_DATA);
if (val & UCB_ADC_DAT_VALID)
break;
/* yield to other processes */
schedule_timeout_uninterruptible(1);
}
return UCB_ADC_DAT_VALUE(val);
}
static inline void ucb1400_adc_disable(struct ucb1400 *ucb)
{
ucb1400_reg_write(ucb, UCB_ADC_CR, 0);
}
/* Switch to interrupt mode. */
static inline void ucb1400_ts_mode_int(struct ucb1400 *ucb)
static inline void ucb1400_ts_mode_int(struct snd_ac97 *ac97)
{
ucb1400_reg_write(ucb, UCB_TS_CR,
ucb1400_reg_write(ac97, UCB_TS_CR,
UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
UCB_TS_CR_MODE_INT);
@@ -152,14 +48,14 @@ static inline void ucb1400_ts_mode_int(struct ucb1400 *ucb)
* Switch to pressure mode, and read pressure. We don't need to wait
* here, since both plates are being driven.
*/
static inline unsigned int ucb1400_ts_read_pressure(struct ucb1400 *ucb)
static inline unsigned int ucb1400_ts_read_pressure(struct ucb1400_ts *ucb)
{
ucb1400_reg_write(ucb, UCB_TS_CR,
ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
udelay(ts_delay_pressure);
return ucb1400_adc_read(ucb, UCB_ADC_INP_TSPY);
return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPY, adcsync);
}
/*
@@ -168,21 +64,21 @@ static inline unsigned int ucb1400_ts_read_pressure(struct ucb1400 *ucb)
* gives a faster response time. Even so, we need to wait about 55us
* for things to stabilise.
*/
static inline unsigned int ucb1400_ts_read_xpos(struct ucb1400 *ucb)
static inline unsigned int ucb1400_ts_read_xpos(struct ucb1400_ts *ucb)
{
ucb1400_reg_write(ucb, UCB_TS_CR,
ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
ucb1400_reg_write(ucb, UCB_TS_CR,
ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
ucb1400_reg_write(ucb, UCB_TS_CR,
ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
udelay(ts_delay);
return ucb1400_adc_read(ucb, UCB_ADC_INP_TSPY);
return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPY, adcsync);
}
/*
@@ -191,63 +87,63 @@ static inline unsigned int ucb1400_ts_read_xpos(struct ucb1400 *ucb)
* gives a faster response time. Even so, we need to wait about 55us
* for things to stabilise.
*/
static inline unsigned int ucb1400_ts_read_ypos(struct ucb1400 *ucb)
static inline unsigned int ucb1400_ts_read_ypos(struct ucb1400_ts *ucb)
{
ucb1400_reg_write(ucb, UCB_TS_CR,
ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
ucb1400_reg_write(ucb, UCB_TS_CR,
ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
ucb1400_reg_write(ucb, UCB_TS_CR,
ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
udelay(ts_delay);
return ucb1400_adc_read(ucb, UCB_ADC_INP_TSPX);
return ucb1400_adc_read(ucb->ac97, UCB_ADC_INP_TSPX, adcsync);
}
/*
* Switch to X plate resistance mode. Set MX to ground, PX to
* supply. Measure current.
*/
static inline unsigned int ucb1400_ts_read_xres(struct ucb1400 *ucb)
static inline unsigned int ucb1400_ts_read_xres(struct ucb1400_ts *ucb)
{
ucb1400_reg_write(ucb, UCB_TS_CR,
ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
return ucb1400_adc_read(ucb, 0);
return ucb1400_adc_read(ucb->ac97, 0, adcsync);
}
/*
* Switch to Y plate resistance mode. Set MY to ground, PY to
* supply. Measure current.
*/
static inline unsigned int ucb1400_ts_read_yres(struct ucb1400 *ucb)
static inline unsigned int ucb1400_ts_read_yres(struct ucb1400_ts *ucb)
{
ucb1400_reg_write(ucb, UCB_TS_CR,
ucb1400_reg_write(ucb->ac97, UCB_TS_CR,
UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
return ucb1400_adc_read(ucb, 0);
return ucb1400_adc_read(ucb->ac97, 0, adcsync);
}
static inline int ucb1400_ts_pen_down(struct ucb1400 *ucb)
static inline int ucb1400_ts_pen_down(struct snd_ac97 *ac97)
{
unsigned short val = ucb1400_reg_read(ucb, UCB_TS_CR);
return (val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW));
unsigned short val = ucb1400_reg_read(ac97, UCB_TS_CR);
return val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW);
}
static inline void ucb1400_ts_irq_enable(struct ucb1400 *ucb)
static inline void ucb1400_ts_irq_enable(struct snd_ac97 *ac97)
{
ucb1400_reg_write(ucb, UCB_IE_CLEAR, UCB_IE_TSPX);
ucb1400_reg_write(ucb, UCB_IE_CLEAR, 0);
ucb1400_reg_write(ucb, UCB_IE_FAL, UCB_IE_TSPX);
ucb1400_reg_write(ac97, UCB_IE_CLEAR, UCB_IE_TSPX);
ucb1400_reg_write(ac97, UCB_IE_CLEAR, 0);
ucb1400_reg_write(ac97, UCB_IE_FAL, UCB_IE_TSPX);
}
static inline void ucb1400_ts_irq_disable(struct ucb1400 *ucb)
static inline void ucb1400_ts_irq_disable(struct snd_ac97 *ac97)
{
ucb1400_reg_write(ucb, UCB_IE_FAL, 0);
ucb1400_reg_write(ac97, UCB_IE_FAL, 0);
}
static void ucb1400_ts_evt_add(struct input_dev *idev, u16 pressure, u16 x, u16 y)
@@ -264,25 +160,24 @@ static void ucb1400_ts_event_release(struct input_dev *idev)
input_sync(idev);
}
static void ucb1400_handle_pending_irq(struct ucb1400 *ucb)
static void ucb1400_handle_pending_irq(struct ucb1400_ts *ucb)
{
unsigned int isr;
isr = ucb1400_reg_read(ucb, UCB_IE_STATUS);
ucb1400_reg_write(ucb, UCB_IE_CLEAR, isr);
ucb1400_reg_write(ucb, UCB_IE_CLEAR, 0);
isr = ucb1400_reg_read(ucb->ac97, UCB_IE_STATUS);
ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, isr);
ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
if (isr & UCB_IE_TSPX)
ucb1400_ts_irq_disable(ucb);
else
if (isr & UCB_IE_TSPX) {
ucb1400_ts_irq_disable(ucb->ac97);
enable_irq(ucb->irq);
} else
printk(KERN_ERR "ucb1400: unexpected IE_STATUS = %#x\n", isr);
enable_irq(ucb->irq);
}
static int ucb1400_ts_thread(void *_ucb)
{
struct ucb1400 *ucb = _ucb;
struct ucb1400_ts *ucb = _ucb;
struct task_struct *tsk = current;
int valid = 0;
struct sched_param param = { .sched_priority = 1 };
@@ -301,19 +196,19 @@ static int ucb1400_ts_thread(void *_ucb)
ucb1400_handle_pending_irq(ucb);
}
ucb1400_adc_enable(ucb);
ucb1400_adc_enable(ucb->ac97);
x = ucb1400_ts_read_xpos(ucb);
y = ucb1400_ts_read_ypos(ucb);
p = ucb1400_ts_read_pressure(ucb);
ucb1400_adc_disable(ucb);
ucb1400_adc_disable(ucb->ac97);
/* Switch back to interrupt mode. */
ucb1400_ts_mode_int(ucb);
ucb1400_ts_mode_int(ucb->ac97);
msleep(10);
if (ucb1400_ts_pen_down(ucb)) {
ucb1400_ts_irq_enable(ucb);
if (ucb1400_ts_pen_down(ucb->ac97)) {
ucb1400_ts_irq_enable(ucb->ac97);
/*
* If we spat out a valid sample set last time,
@@ -332,8 +227,8 @@ static int ucb1400_ts_thread(void *_ucb)
}
wait_event_freezable_timeout(ucb->ts_wait,
ucb->irq_pending || ucb->ts_restart || kthread_should_stop(),
timeout);
ucb->irq_pending || ucb->ts_restart ||
kthread_should_stop(), timeout);
}
/* Send the "pen off" if we are stopping with the pen still active */
@@ -356,7 +251,7 @@ static int ucb1400_ts_thread(void *_ucb)
*/
static irqreturn_t ucb1400_hard_irq(int irqnr, void *devid)
{
struct ucb1400 *ucb = devid;
struct ucb1400_ts *ucb = devid;
if (irqnr == ucb->irq) {
disable_irq(ucb->irq);
@@ -369,7 +264,7 @@ static irqreturn_t ucb1400_hard_irq(int irqnr, void *devid)
static int ucb1400_ts_open(struct input_dev *idev)
{
struct ucb1400 *ucb = input_get_drvdata(idev);
struct ucb1400_ts *ucb = input_get_drvdata(idev);
int ret = 0;
BUG_ON(ucb->ts_task);
@@ -385,19 +280,143 @@ static int ucb1400_ts_open(struct input_dev *idev)
static void ucb1400_ts_close(struct input_dev *idev)
{
struct ucb1400 *ucb = input_get_drvdata(idev);
struct ucb1400_ts *ucb = input_get_drvdata(idev);
if (ucb->ts_task)
kthread_stop(ucb->ts_task);
ucb1400_ts_irq_disable(ucb);
ucb1400_reg_write(ucb, UCB_TS_CR, 0);
ucb1400_ts_irq_disable(ucb->ac97);
ucb1400_reg_write(ucb->ac97, UCB_TS_CR, 0);
}
#ifndef NO_IRQ
#define NO_IRQ 0
#endif
/*
* Try to probe our interrupt, rather than relying on lots of
* hard-coded machine dependencies.
*/
static int ucb1400_ts_detect_irq(struct ucb1400_ts *ucb)
{
unsigned long mask, timeout;
mask = probe_irq_on();
/* Enable the ADC interrupt. */
ucb1400_reg_write(ucb->ac97, UCB_IE_RIS, UCB_IE_ADC);
ucb1400_reg_write(ucb->ac97, UCB_IE_FAL, UCB_IE_ADC);
ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0xffff);
ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
/* Cause an ADC interrupt. */
ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, UCB_ADC_ENA);
ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, UCB_ADC_ENA | UCB_ADC_START);
/* Wait for the conversion to complete. */
timeout = jiffies + HZ/2;
while (!(ucb1400_reg_read(ucb->ac97, UCB_ADC_DATA) &
UCB_ADC_DAT_VALID)) {
cpu_relax();
if (time_after(jiffies, timeout)) {
printk(KERN_ERR "ucb1400: timed out in IRQ probe\n");
probe_irq_off(mask);
return -ENODEV;
}
}
ucb1400_reg_write(ucb->ac97, UCB_ADC_CR, 0);
/* Disable and clear interrupt. */
ucb1400_reg_write(ucb->ac97, UCB_IE_RIS, 0);
ucb1400_reg_write(ucb->ac97, UCB_IE_FAL, 0);
ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0xffff);
ucb1400_reg_write(ucb->ac97, UCB_IE_CLEAR, 0);
/* Read triggered interrupt. */
ucb->irq = probe_irq_off(mask);
if (ucb->irq < 0 || ucb->irq == NO_IRQ)
return -ENODEV;
return 0;
}
static int ucb1400_ts_probe(struct platform_device *dev)
{
int error, x_res, y_res;
struct ucb1400_ts *ucb = dev->dev.platform_data;
ucb->ts_idev = input_allocate_device();
if (!ucb->ts_idev) {
error = -ENOMEM;
goto err;
}
error = ucb1400_ts_detect_irq(ucb);
if (error) {
printk(KERN_ERR "UCB1400: IRQ probe failed\n");
goto err_free_devs;
}
init_waitqueue_head(&ucb->ts_wait);
error = request_irq(ucb->irq, ucb1400_hard_irq, IRQF_TRIGGER_RISING,
"UCB1400", ucb);
if (error) {
printk(KERN_ERR "ucb1400: unable to grab irq%d: %d\n",
ucb->irq, error);
goto err_free_devs;
}
printk(KERN_DEBUG "UCB1400: found IRQ %d\n", ucb->irq);
input_set_drvdata(ucb->ts_idev, ucb);
ucb->ts_idev->dev.parent = &dev->dev;
ucb->ts_idev->name = "UCB1400 touchscreen interface";
ucb->ts_idev->id.vendor = ucb1400_reg_read(ucb->ac97,
AC97_VENDOR_ID1);
ucb->ts_idev->id.product = ucb->id;
ucb->ts_idev->open = ucb1400_ts_open;
ucb->ts_idev->close = ucb1400_ts_close;
ucb->ts_idev->evbit[0] = BIT_MASK(EV_ABS);
ucb1400_adc_enable(ucb->ac97);
x_res = ucb1400_ts_read_xres(ucb);
y_res = ucb1400_ts_read_yres(ucb);
ucb1400_adc_disable(ucb->ac97);
printk(KERN_DEBUG "UCB1400: x/y = %d/%d\n", x_res, y_res);
input_set_abs_params(ucb->ts_idev, ABS_X, 0, x_res, 0, 0);
input_set_abs_params(ucb->ts_idev, ABS_Y, 0, y_res, 0, 0);
input_set_abs_params(ucb->ts_idev, ABS_PRESSURE, 0, 0, 0, 0);
error = input_register_device(ucb->ts_idev);
if (error)
goto err_free_irq;
return 0;
err_free_irq:
free_irq(ucb->irq, ucb);
err_free_devs:
input_free_device(ucb->ts_idev);
err:
return error;
}
static int ucb1400_ts_remove(struct platform_device *dev)
{
struct ucb1400_ts *ucb = dev->dev.platform_data;
free_irq(ucb->irq, ucb);
input_unregister_device(ucb->ts_idev);
return 0;
}
#ifdef CONFIG_PM
static int ucb1400_ts_resume(struct device *dev)
static int ucb1400_ts_resume(struct platform_device *dev)
{
struct ucb1400 *ucb = dev_get_drvdata(dev);
struct ucb1400_ts *ucb = platform_get_drvdata(dev);
if (ucb->ts_task) {
/*
@@ -414,169 +433,36 @@ static int ucb1400_ts_resume(struct device *dev)
#define ucb1400_ts_resume NULL
#endif
#ifndef NO_IRQ
#define NO_IRQ 0
#endif
/*
* Try to probe our interrupt, rather than relying on lots of
* hard-coded machine dependencies.
*/
static int ucb1400_detect_irq(struct ucb1400 *ucb)
{
unsigned long mask, timeout;
mask = probe_irq_on();
/* Enable the ADC interrupt. */
ucb1400_reg_write(ucb, UCB_IE_RIS, UCB_IE_ADC);
ucb1400_reg_write(ucb, UCB_IE_FAL, UCB_IE_ADC);
ucb1400_reg_write(ucb, UCB_IE_CLEAR, 0xffff);
ucb1400_reg_write(ucb, UCB_IE_CLEAR, 0);
/* Cause an ADC interrupt. */
ucb1400_reg_write(ucb, UCB_ADC_CR, UCB_ADC_ENA);
ucb1400_reg_write(ucb, UCB_ADC_CR, UCB_ADC_ENA | UCB_ADC_START);
/* Wait for the conversion to complete. */
timeout = jiffies + HZ/2;
while (!(ucb1400_reg_read(ucb, UCB_ADC_DATA) & UCB_ADC_DAT_VALID)) {
cpu_relax();
if (time_after(jiffies, timeout)) {
printk(KERN_ERR "ucb1400: timed out in IRQ probe\n");
probe_irq_off(mask);
return -ENODEV;
}
}
ucb1400_reg_write(ucb, UCB_ADC_CR, 0);
/* Disable and clear interrupt. */
ucb1400_reg_write(ucb, UCB_IE_RIS, 0);
ucb1400_reg_write(ucb, UCB_IE_FAL, 0);
ucb1400_reg_write(ucb, UCB_IE_CLEAR, 0xffff);
ucb1400_reg_write(ucb, UCB_IE_CLEAR, 0);
/* Read triggered interrupt. */
ucb->irq = probe_irq_off(mask);
if (ucb->irq < 0 || ucb->irq == NO_IRQ)
return -ENODEV;
return 0;
}
static int ucb1400_ts_probe(struct device *dev)
{
struct ucb1400 *ucb;
struct input_dev *idev;
int error, id, x_res, y_res;
ucb = kzalloc(sizeof(struct ucb1400), GFP_KERNEL);
idev = input_allocate_device();
if (!ucb || !idev) {
error = -ENOMEM;
goto err_free_devs;
}
ucb->ts_idev = idev;
ucb->adcsync = adcsync;
ucb->ac97 = to_ac97_t(dev);
init_waitqueue_head(&ucb->ts_wait);
id = ucb1400_reg_read(ucb, UCB_ID);
if (id != UCB_ID_1400) {
error = -ENODEV;
goto err_free_devs;
}
error = ucb1400_detect_irq(ucb);
if (error) {
printk(KERN_ERR "UCB1400: IRQ probe failed\n");
goto err_free_devs;
}
error = request_irq(ucb->irq, ucb1400_hard_irq, IRQF_TRIGGER_RISING,
"UCB1400", ucb);
if (error) {
printk(KERN_ERR "ucb1400: unable to grab irq%d: %d\n",
ucb->irq, error);
goto err_free_devs;
}
printk(KERN_DEBUG "UCB1400: found IRQ %d\n", ucb->irq);
input_set_drvdata(idev, ucb);
idev->dev.parent = dev;
idev->name = "UCB1400 touchscreen interface";
idev->id.vendor = ucb1400_reg_read(ucb, AC97_VENDOR_ID1);
idev->id.product = id;
idev->open = ucb1400_ts_open;
idev->close = ucb1400_ts_close;
idev->evbit[0] = BIT_MASK(EV_ABS);
ucb1400_adc_enable(ucb);
x_res = ucb1400_ts_read_xres(ucb);
y_res = ucb1400_ts_read_yres(ucb);
ucb1400_adc_disable(ucb);
printk(KERN_DEBUG "UCB1400: x/y = %d/%d\n", x_res, y_res);
input_set_abs_params(idev, ABS_X, 0, x_res, 0, 0);
input_set_abs_params(idev, ABS_Y, 0, y_res, 0, 0);
input_set_abs_params(idev, ABS_PRESSURE, 0, 0, 0, 0);
error = input_register_device(idev);
if (error)
goto err_free_irq;
dev_set_drvdata(dev, ucb);
return 0;
err_free_irq:
free_irq(ucb->irq, ucb);
err_free_devs:
input_free_device(idev);
kfree(ucb);
return error;
}
static int ucb1400_ts_remove(struct device *dev)
{
struct ucb1400 *ucb = dev_get_drvdata(dev);
free_irq(ucb->irq, ucb);
input_unregister_device(ucb->ts_idev);
dev_set_drvdata(dev, NULL);
kfree(ucb);
return 0;
}
static struct device_driver ucb1400_ts_driver = {
.name = "ucb1400_ts",
.owner = THIS_MODULE,
.bus = &ac97_bus_type,
.probe = ucb1400_ts_probe,
.remove = ucb1400_ts_remove,
.resume = ucb1400_ts_resume,
static struct platform_driver ucb1400_ts_driver = {
.probe = ucb1400_ts_probe,
.remove = ucb1400_ts_remove,
.resume = ucb1400_ts_resume,
.driver = {
.name = "ucb1400_ts",
},
};
static int __init ucb1400_ts_init(void)
{
return driver_register(&ucb1400_ts_driver);
return platform_driver_register(&ucb1400_ts_driver);
}
static void __exit ucb1400_ts_exit(void)
{
driver_unregister(&ucb1400_ts_driver);
platform_driver_unregister(&ucb1400_ts_driver);
}
module_param(adcsync, bool, 0444);
MODULE_PARM_DESC(adcsync, "Synchronize touch readings with ADCSYNC pin.");
module_param(ts_delay, int, 0444);
MODULE_PARM_DESC(ts_delay, "Delay between panel setup and position read. Default = 55us.");
MODULE_PARM_DESC(ts_delay, "Delay between panel setup and"
" position read. Default = 55us.");
module_param(ts_delay_pressure, int, 0444);
MODULE_PARM_DESC(ts_delay_pressure,
"delay between panel setup and pressure read. Default = 0us.");
"delay between panel setup and pressure read."
" Default = 0us.");
module_init(ucb1400_ts_init);
module_exit(ucb1400_ts_exit);

View File

@@ -335,11 +335,11 @@ static struct xenbus_driver xenkbd = {
static int __init xenkbd_init(void)
{
if (!is_running_on_xen())
if (!xen_domain())
return -ENODEV;
/* Nothing to do if running in dom0. */
if (is_initial_xendomain())
if (xen_initial_domain())
return -ENODEV;
return xenbus_register_frontend(&xenkbd);