Merge tag 'char-misc-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc

Pull char/misc driver updates from Greg KH:
 "Here is the big char/misc driver pull request for 5.4-rc1.

  As has been happening in previous releases, more and more individual
  driver subsystem trees are ending up in here. Now if that is good or
  bad I can't tell, but hopefully it makes your life easier as it's more
  of an aggregation of trees together to one merge point for you.

  Anyway, lots of stuff in here:
     - habanalabs driver updates
     - thunderbolt driver updates
     - misc driver updates
     - coresight and intel_th hwtracing driver updates
     - fpga driver updates
     - extcon driver updates
     - some dma driver updates
     - char driver updates
     - android binder driver updates
     - nvmem driver updates
     - phy driver updates
     - parport driver fixes
     - pcmcia driver fix
     - uio driver updates
     - w1 driver updates
     - configfs fixes
     - other assorted driver updates

  All of these have been in linux-next for a long time with no reported
  issues"

* tag 'char-misc-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (200 commits)
  misc: mic: Use PTR_ERR_OR_ZERO rather than its implementation
  habanalabs: correctly cast variable to __le32
  habanalabs: show correct id in error print
  habanalabs: stop using the acronym KMD
  habanalabs: display card name as sensors header
  habanalabs: add uapi to retrieve aggregate H/W events
  habanalabs: add uapi to retrieve device utilization
  habanalabs: Make the Coresight timestamp perpetual
  habanalabs: explicitly set the queue-id enumerated numbers
  habanalabs: print to kernel log when reset is finished
  habanalabs: replace __le32_to_cpu with le32_to_cpu
  habanalabs: replace __cpu_to_le32/64 with cpu_to_le32/64
  habanalabs: Handle HW_IP_INFO if device disabled or in reset
  habanalabs: Expose devices after initialization is done
  habanalabs: improve security in Debug IOCTL
  habanalabs: use default structure for user input in Debug IOCTL
  habanalabs: Add descriptive name to PSOC app status register
  habanalabs: Add descriptive names to PSOC scratch-pad registers
  habanalabs: create two char devices per ASIC
  habanalabs: change device_setup_cdev() to be more generic
  ...
This commit is contained in:
Linus Torvalds
2019-09-18 11:14:31 -07:00
190 changed files with 10379 additions and 2314 deletions

View File

@@ -12,7 +12,8 @@ Description: (RW) Configure MSC operating mode:
- "single", for contiguous buffer mode (high-order alloc);
- "multi", for multiblock mode;
- "ExI", for DCI handler mode;
- "debug", for debug mode.
- "debug", for debug mode;
- any of the currently loaded buffer sinks.
If operating mode changes, existing buffer is deallocated,
provided there are no active users and tracing is not enabled,
otherwise the write will fail.

View File

@@ -0,0 +1,128 @@
Intel Stratix10 Remote System Update (RSU) device attributes
What: /sys/devices/platform/stratix10-rsu.0/current_image
Date: August 2019
KernelVersion: 5.4
Contact: Richard Gong <richard.gong@linux.intel.com>
Description:
(RO) the address in flash of currently running image.
What: /sys/devices/platform/stratix10-rsu.0/fail_image
Date: August 2019
KernelVersion: 5.4
Contact: Richard Gong <richard.gong@linux.intel.com>
Description:
(RO) the address in flash of failed image.
What: /sys/devices/platform/stratix10-rsu.0/state
Date: August 2019
KernelVersion: 5.4
Contact: Richard Gong <richard.gong@linux.intel.com>
Description:
(RO) the state of RSU system.
The state field has two parts: major error code in
upper 16 bits and minor error code in lower 16 bits.
b[15:0]
Currently used only when major error is 0xF006
(CPU watchdog timeout), in which case the minor
error code is the value reported by CPU to
firmware through the RSU notify command before
the watchdog timeout occurs.
b[31:16]
0xF001 bitstream error
0xF002 hardware access failure
0xF003 bitstream corruption
0xF004 internal error
0xF005 device error
0xF006 CPU watchdog timeout
0xF007 internal unknown error
What: /sys/devices/platform/stratix10-rsu.0/version
Date: August 2019
KernelVersion: 5.4
Contact: Richard Gong <richard.gong@linux.intel.com>
Description:
(RO) the version number of RSU firmware. 19.3 or late
version includes information about the firmware which
reported the error.
pre 19.3:
b[31:0]
0x0 version number
19.3 or late:
b[15:0]
0x1 version number
b[31:16]
0x0 no error
0x0DCF Decision CMF error
0x0ACF Application CMF error
What: /sys/devices/platform/stratix10-rsu.0/error_location
Date: August 2019
KernelVersion: 5.4
Contact: Richard Gong <richard.gong@linux.intel.com>
Description:
(RO) the error offset inside the image that failed.
What: /sys/devices/platform/stratix10-rsu.0/error_details
Date: August 2019
KernelVersion: 5.4
Contact: Richard Gong <richard.gong@linux.intel.com>
Description:
(RO) error code.
What: /sys/devices/platform/stratix10-rsu.0/retry_counter
Date: August 2019
KernelVersion: 5.4
Contact: Richard Gong <richard.gong@linux.intel.com>
Description:
(RO) the current image's retry counter, which is used by
user to know how many times the images is still allowed
to reload itself before giving up and starting RSU
fail-over flow.
What: /sys/devices/platform/stratix10-rsu.0/reboot_image
Date: August 2019
KernelVersion: 5.4
Contact: Richard Gong <richard.gong@linux.intel.com>
Description:
(WO) the address in flash of image to be loaded on next
reboot command.
What: /sys/devices/platform/stratix10-rsu.0/notify
Date: August 2019
KernelVersion: 5.4
Contact: Richard Gong <richard.gong@linux.intel.com>
Description:
(WO) client to notify firmware with different actions.
b[15:0]
inform firmware the current software execution
stage.
0 the first stage bootloader didn't run or
didn't reach the point of launching second
stage bootloader.
1 failed in second bootloader or didn't get
to the point of launching the operating
system.
2 both first and second stage bootloader ran
and the operating system launch was
attempted.
b[16]
1 firmware to reset current image retry
counter.
0 no action.
b[17]
1 firmware to clear RSU log
0 no action.
b[18]
this is negative logic
1 no action
0 firmware record the notify code defined
in b[15:0].

View File

@@ -57,6 +57,7 @@ KernelVersion: 5.1
Contact: oded.gabbay@gmail.com
Description: Allows the user to set the maximum clock frequency for MME, TPC
and IC when the power management profile is set to "automatic".
This property is valid only for the Goya ASIC family
What: /sys/class/habanalabs/hl<n>/ic_clk
Date: Jan 2019
@@ -127,8 +128,8 @@ Description: Power management profile. Values are "auto", "manual". In "auto"
the max clock frequency to a low value when there are no user
processes that are opened on the device's file. In "manual"
mode, the user sets the maximum clock frequency by writing to
ic_clk, mme_clk and tpc_clk
ic_clk, mme_clk and tpc_clk. This property is valid only for
the Goya ASIC family
What: /sys/class/habanalabs/hl<n>/preboot_btl_ver
Date: Jan 2019
@@ -186,11 +187,4 @@ What: /sys/class/habanalabs/hl<n>/uboot_ver
Date: Jan 2019
KernelVersion: 5.1
Contact: oded.gabbay@gmail.com
Description: Version of the u-boot running on the device's CPU
What: /sys/class/habanalabs/hl<n>/write_open_cnt
Date: Jan 2019
KernelVersion: 5.1
Contact: oded.gabbay@gmail.com
Description: Displays the total number of user processes that are currently
opened on the device's file
Description: Version of the u-boot running on the device's CPU

View File

@@ -21,3 +21,88 @@ Contact: Wu Hao <hao.wu@intel.com>
Description: Read-only. It returns Bitstream (static FPGA region) meta
data, which includes the synthesis date, seed and other
information of this static FPGA region.
What: /sys/bus/platform/devices/dfl-fme.0/cache_size
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-only. It returns cache size of this FPGA device.
What: /sys/bus/platform/devices/dfl-fme.0/fabric_version
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-only. It returns fabric version of this FPGA device.
Userspace applications need this information to select
best data channels per different fabric design.
What: /sys/bus/platform/devices/dfl-fme.0/socket_id
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-only. It returns socket_id to indicate which socket
this FPGA belongs to, only valid for integrated solution.
User only needs this information, in case standard numa node
can't provide correct information.
What: /sys/bus/platform/devices/dfl-fme.0/errors/pcie0_errors
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-Write. Read this file for errors detected on pcie0 link.
Write this file to clear errors logged in pcie0_errors. Write
fails with -EINVAL if input parsing fails or input error code
doesn't match.
What: /sys/bus/platform/devices/dfl-fme.0/errors/pcie1_errors
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-Write. Read this file for errors detected on pcie1 link.
Write this file to clear errors logged in pcie1_errors. Write
fails with -EINVAL if input parsing fails or input error code
doesn't match.
What: /sys/bus/platform/devices/dfl-fme.0/errors/nonfatal_errors
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-only. It returns non-fatal errors detected.
What: /sys/bus/platform/devices/dfl-fme.0/errors/catfatal_errors
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-only. It returns catastrophic and fatal errors detected.
What: /sys/bus/platform/devices/dfl-fme.0/errors/inject_errors
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-Write. Read this file to check errors injected. Write this
file to inject errors for testing purpose. Write fails with
-EINVAL if input parsing fails or input inject error code isn't
supported.
What: /sys/bus/platform/devices/dfl-fme.0/errors/fme_errors
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-Write. Read this file to get errors detected on FME.
Write this file to clear errors logged in fme_errors. Write
fials with -EINVAL if input parsing fails or input error code
doesn't match.
What: /sys/bus/platform/devices/dfl-fme.0/errors/first_error
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-only. Read this file to get the first error detected by
hardware.
What: /sys/bus/platform/devices/dfl-fme.0/errors/next_error
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-only. Read this file to get the second error detected by
hardware.

View File

@@ -14,3 +14,88 @@ Description: Read-only. User can program different PR bitstreams to FPGA
Accelerator Function Unit (AFU) for different functions. It
returns uuid which could be used to identify which PR bitstream
is programmed in this AFU.
What: /sys/bus/platform/devices/dfl-port.0/power_state
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-only. It reports the APx (AFU Power) state, different APx
means different throttling level. When reading this file, it
returns "0" - Normal / "1" - AP1 / "2" - AP2 / "6" - AP6.
What: /sys/bus/platform/devices/dfl-port.0/ap1_event
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-write. Read this file for AP1 (AFU Power State 1) event.
It's used to indicate transient AP1 state. Write 1 to this
file to clear AP1 event.
What: /sys/bus/platform/devices/dfl-port.0/ap2_event
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-write. Read this file for AP2 (AFU Power State 2) event.
It's used to indicate transient AP2 state. Write 1 to this
file to clear AP2 event.
What: /sys/bus/platform/devices/dfl-port.0/ltr
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-write. Read or set AFU latency tolerance reporting value.
Set ltr to 1 if the AFU can tolerate latency >= 40us or set it
to 0 if it is latency sensitive.
What: /sys/bus/platform/devices/dfl-port.0/userclk_freqcmd
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Write-only. User writes command to this interface to set
userclock to AFU.
What: /sys/bus/platform/devices/dfl-port.0/userclk_freqsts
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-only. Read this file to get the status of issued command
to userclck_freqcmd.
What: /sys/bus/platform/devices/dfl-port.0/userclk_freqcntrcmd
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Write-only. User writes command to this interface to set
userclock counter.
What: /sys/bus/platform/devices/dfl-port.0/userclk_freqcntrsts
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-only. Read this file to get the status of issued command
to userclck_freqcntrcmd.
What: /sys/bus/platform/devices/dfl-port.0/errors/errors
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-Write. Read this file to get errors detected on port and
Accelerated Function Unit (AFU). Write error code to this file
to clear errors. Write fails with -EINVAL if input parsing
fails or input error code doesn't match. Write fails with
-EBUSY or -ETIMEDOUT if error can't be cleared as hardware
in low power state (-EBUSY) or not respoding (-ETIMEDOUT).
What: /sys/bus/platform/devices/dfl-port.0/errors/first_error
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-only. Read this file to get the first error detected by
hardware.
What: /sys/bus/platform/devices/dfl-port.0/errors/first_malformed_req
Date: August 2019
KernelVersion: 5.4
Contact: Wu Hao <hao.wu@intel.com>
Description: Read-only. Read this file to get the first malformed request
captured by hardware.

View File

@@ -136,7 +136,9 @@ Required properties:
OCOTP bindings based on SCU Message Protocol
------------------------------------------------------------
Required properties:
- compatible: Should be "fsl,imx8qxp-scu-ocotp"
- compatible: Should be one of:
"fsl,imx8qm-scu-ocotp",
"fsl,imx8qxp-scu-ocotp".
- #address-cells: Must be 1. Contains byte index
- #size-cells: Must be 1. Contains byte length

View File

@@ -72,5 +72,5 @@ codec: wm8280@0 {
1 2 1 /* MICDET2 MICBIAS2 GPIO=high */
>;
wlf,gpsw = <0>;
wlf,gpsw = <ARIZONA_GPSW_OPEN>;
};

View File

@@ -5,7 +5,9 @@ controlled using I2C and enables USB data, stereo and mono audio, video,
microphone, and UART data to use a common connector port.
Required properties:
- compatible : Must be "fcs,fsa9480"
- compatible : Must be one of
"fcs,fsa9480"
"fcs,fsa880"
- reg : Specifies i2c slave address. Must be 0x25.
- interrupts : Should contain one entry specifying interrupt signal of
interrupt parent to which interrupt pin of the chip is connected.

View File

@@ -3,10 +3,7 @@ Altera FPGA To SDRAM Bridge Driver
Required properties:
- compatible : Should contain "altr,socfpga-fpga2sdram-bridge"
Optional properties:
- bridge-enable : 0 if driver should disable bridge at startup
1 if driver should enable bridge at startup
Default is to leave bridge in current state.
See Documentation/devicetree/bindings/fpga/fpga-bridge.txt for generic bindings.
Example:
fpga_bridge3: fpga-bridge@ffc25080 {

View File

@@ -10,10 +10,7 @@ Required properties:
- compatible : Should contain "altr,freeze-bridge-controller"
- regs : base address and size for freeze bridge module
Optional properties:
- bridge-enable : 0 if driver should disable bridge at startup
1 if driver should enable bridge at startup
Default is to leave bridge in current state.
See Documentation/devicetree/bindings/fpga/fpga-bridge.txt for generic bindings.
Example:
freeze-controller@100000450 {

View File

@@ -9,10 +9,7 @@ Required properties:
- resets : Phandle and reset specifier for this bridge's reset
- clocks : Clocks used by this module.
Optional properties:
- bridge-enable : 0 if driver should disable bridge at startup.
1 if driver should enable bridge at startup.
Default is to leave bridge in its current state.
See Documentation/devicetree/bindings/fpga/fpga-bridge.txt for generic bindings.
Example:
fpga_bridge0: fpga-bridge@ff400000 {

View File

@@ -0,0 +1,13 @@
FPGA Bridge Device Tree Binding
Optional properties:
- bridge-enable : 0 if driver should disable bridge at startup
1 if driver should enable bridge at startup
Default is to leave bridge in current state.
Example:
fpga_bridge3: fpga-bridge@ffc25080 {
compatible = "altr,socfpga-fpga2sdram-bridge";
reg = <0xffc25080 0x4>;
bridge-enable = <0>;
};

View File

@@ -18,12 +18,8 @@ Required properties:
- clocks : input clock to IP
- clock-names : should contain "aclk"
Optional properties:
- bridge-enable : 0 if driver should disable bridge at startup
1 if driver should enable bridge at startup
Default is to leave bridge in current state.
See Documentation/devicetree/bindings/fpga/fpga-region.txt for generic bindings.
See Documentation/devicetree/bindings/fpga/fpga-region.txt and
Documentation/devicetree/bindings/fpga/fpga-bridge.txt for generic bindings.
Example:
fpga-bridge@100000450 {

View File

@@ -0,0 +1,45 @@
Qualcomm QCS404 Network-On-Chip interconnect driver binding
-----------------------------------------------------------
Required properties :
- compatible : shall contain only one of the following:
"qcom,qcs404-bimc"
"qcom,qcs404-pcnoc"
"qcom,qcs404-snoc"
- #interconnect-cells : should contain 1
reg : specifies the physical base address and size of registers
clocks : list of phandles and specifiers to all interconnect bus clocks
clock-names : clock names should include both "bus" and "bus_a"
Example:
soc {
...
bimc: interconnect@400000 {
reg = <0x00400000 0x80000>;
compatible = "qcom,qcs404-bimc";
#interconnect-cells = <1>;
clock-names = "bus", "bus_a";
clocks = <&rpmcc RPM_SMD_BIMC_CLK>,
<&rpmcc RPM_SMD_BIMC_A_CLK>;
};
pnoc: interconnect@500000 {
reg = <0x00500000 0x15080>;
compatible = "qcom,qcs404-pcnoc";
#interconnect-cells = <1>;
clock-names = "bus", "bus_a";
clocks = <&rpmcc RPM_SMD_PNOC_CLK>,
<&rpmcc RPM_SMD_PNOC_A_CLK>;
};
snoc: interconnect@580000 {
reg = <0x00580000 0x23080>;
compatible = "qcom,qcs404-snoc";
#interconnect-cells = <1>;
clock-names = "bus", "bus_a";
clocks = <&rpmcc RPM_SMD_SNOC_CLK>,
<&rpmcc RPM_SMD_SNOC_A_CLK>;
};
};

View File

@@ -2,7 +2,7 @@ Freescale i.MX6 On-Chip OTP Controller (OCOTP) device tree bindings
This binding represents the on-chip eFuse OTP controller found on
i.MX6Q/D, i.MX6DL/S, i.MX6SL, i.MX6SX, i.MX6UL, i.MX6ULL/ULZ, i.MX6SLL,
i.MX7D/S, i.MX7ULP and i.MX8MQ SoCs.
i.MX7D/S, i.MX7ULP, i.MX8MQ, i.MX8MM and i.MX8MN SoCs.
Required properties:
- compatible: should be one of
@@ -16,6 +16,7 @@ Required properties:
"fsl,imx7ulp-ocotp" (i.MX7ULP),
"fsl,imx8mq-ocotp" (i.MX8MQ),
"fsl,imx8mm-ocotp" (i.MX8MM),
"fsl,imx8mn-ocotp" (i.MX8MN),
followed by "syscon".
- #address-cells : Should be 1
- #size-cells : Should be 1

View File

@@ -17,6 +17,14 @@ Required properties:
name must be "core" for the first clock and "reg" for the second
one
Optional properties:
- phys: phandle(s) to PHY node(s) following the generic PHY bindings.
Either 1, 2 or 4 PHYs might be needed depending on the number of
PCIe lanes.
- phy-names: names of the PHYs corresponding to the number of lanes.
Must be "cp0-pcie0-x4-lane0-phy", "cp0-pcie0-x4-lane1-phy" for
2 PHYs.
Example:
pcie@f2600000 {

View File

@@ -0,0 +1,95 @@
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
%YAML 1.2
---
$id: http://devicetree.org/schemas/phy/lantiq,vrx200-pcie-phy.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Lantiq VRX200 and ARX300 PCIe PHY Device Tree Bindings
maintainers:
- Martin Blumenstingl <martin.blumenstingl@googlemail.com>
properties:
"#phy-cells":
const: 1
description: selects the PHY mode as defined in <dt-bindings/phy/phy-lantiq-vrx200-pcie.h>
compatible:
enum:
- lantiq,vrx200-pcie-phy
- lantiq,arx300-pcie-phy
reg:
maxItems: 1
clocks:
items:
- description: PHY module clock
- description: PDI register clock
clock-names:
items:
- const: phy
- const: pdi
resets:
items:
- description: exclusive PHY reset line
- description: shared reset line between the PCIe PHY and PCIe controller
resets-names:
items:
- const: phy
- const: pcie
lantiq,rcu:
$ref: /schemas/types.yaml#/definitions/phandle
description: phandle to the RCU syscon
lantiq,rcu-endian-offset:
$ref: /schemas/types.yaml#/definitions/uint32
description: the offset of the endian registers for this PHY instance in the RCU syscon
lantiq,rcu-big-endian-mask:
$ref: /schemas/types.yaml#/definitions/uint32
description: the mask to set the PDI (PHY) registers for this PHY instance to big endian
big-endian:
description: Configures the PDI (PHY) registers in big-endian mode
type: boolean
little-endian:
description: Configures the PDI (PHY) registers in big-endian mode
type: boolean
required:
- "#phy-cells"
- compatible
- reg
- clocks
- clock-names
- resets
- reset-names
- lantiq,rcu
- lantiq,rcu-endian-offset
- lantiq,rcu-big-endian-mask
additionalProperties: false
examples:
- |
pcie0_phy: phy@106800 {
compatible = "lantiq,vrx200-pcie-phy";
reg = <0x106800 0x100>;
lantiq,rcu = <&rcu0>;
lantiq,rcu-endian-offset = <0x4c>;
lantiq,rcu-big-endian-mask = <0x80>; /* bit 7 */
big-endian;
clocks = <&pmu 32>, <&pmu 36>;
clock-names = "phy", "pdi";
resets = <&reset0 12 24>, <&reset0 22 22>;
reset-names = "phy", "pcie";
#phy-cells = <1>;
};
...

View File

@@ -25,6 +25,13 @@ Required properties:
- #address-cells: should be 1.
- #size-cells: should be 0.
Optional properlties:
- clocks: pointers to the reference clocks for this device (CP110 only),
consequently: MG clock, MG Core clock, AXI clock.
- clock-names: names of used clocks for CP110 only, must be :
"mg_clk", "mg_core_clk" and "axi_clk".
A sub-node is required for each comphy lane provided by the comphy.
Required properties (child nodes):
@@ -39,6 +46,9 @@ Examples:
compatible = "marvell,comphy-cp110";
reg = <0x120000 0x6000>;
marvell,system-controller = <&cpm_syscon0>;
clocks = <&CP110_LABEL(clk) 1 5>, <&CP110_LABEL(clk) 1 6>,
<&CP110_LABEL(clk) 1 18>;
clock-names = "mg_clk", "mg_core_clk", "axi_clk";
#address-cells = <1>;
#size-cells = <0>;

View File

@@ -408,6 +408,13 @@ handler code. You also do not need to know anything about the chip's
internal registers to create the kernel part of the driver. All you need
to know is the irq number of the pin the chip is connected to.
When used in a device-tree enabled system, the driver needs to be
probed with the ``"of_id"`` module parameter set to the ``"compatible"``
string of the node the driver is supposed to handle. By default, the
node's name (without the unit address) is exposed as name for the
UIO device in userspace. To set a custom name, a property named
``"linux,uio-name"`` may be specified in the DT node.
Using uio_dmem_genirq for platform devices
------------------------------------------

View File

@@ -87,6 +87,8 @@ The following functions are exposed through ioctls:
- Get driver API version (DFL_FPGA_GET_API_VERSION)
- Check for extensions (DFL_FPGA_CHECK_EXTENSION)
- Program bitstream (DFL_FPGA_FME_PORT_PR)
- Assign port to PF (DFL_FPGA_FME_PORT_ASSIGN)
- Release port from PF (DFL_FPGA_FME_PORT_RELEASE)
More functions are exposed through sysfs
(/sys/class/fpga_region/regionX/dfl-fme.n/):
@@ -102,6 +104,10 @@ More functions are exposed through sysfs
one FPGA device may have more than one port, this sysfs interface indicates
how many ports the FPGA device has.
Global error reporting management (errors/)
error reporting sysfs interfaces allow user to read errors detected by the
hardware, and clear the logged errors.
FIU - PORT
==========
@@ -143,6 +149,10 @@ More functions are exposed through sysfs:
Read Accelerator GUID (afu_id)
afu_id indicates which PR bitstream is programmed to this AFU.
Error reporting (errors/)
error reporting sysfs interfaces allow user to read port/afu errors
detected by the hardware, and clear the logged errors.
DFL Framework Overview
======================
@@ -218,6 +228,101 @@ the compat_id exposed by the target FPGA region. This check is usually done by
userspace before calling the reconfiguration IOCTL.
FPGA virtualization - PCIe SRIOV
================================
This section describes the virtualization support on DFL based FPGA device to
enable accessing an accelerator from applications running in a virtual machine
(VM). This section only describes the PCIe based FPGA device with SRIOV support.
Features supported by the particular FPGA device are exposed through Device
Feature Lists, as illustrated below:
::
+-------------------------------+ +-------------+
| PF | | VF |
+-------------------------------+ +-------------+
^ ^ ^ ^
| | | |
+-----|------------|---------|--------------|-------+
| | | | | |
| +-----+ +-------+ +-------+ +-------+ |
| | FME | | Port0 | | Port1 | | Port2 | |
| +-----+ +-------+ +-------+ +-------+ |
| ^ ^ ^ |
| | | | |
| +-------+ +------+ +-------+ |
| | AFU | | AFU | | AFU | |
| +-------+ +------+ +-------+ |
| |
| DFL based FPGA PCIe Device |
+---------------------------------------------------+
FME is always accessed through the physical function (PF).
Ports (and related AFUs) are accessed via PF by default, but could be exposed
through virtual function (VF) devices via PCIe SRIOV. Each VF only contains
1 Port and 1 AFU for isolation. Users could assign individual VFs (accelerators)
created via PCIe SRIOV interface, to virtual machines.
The driver organization in virtualization case is illustrated below:
::
+-------++------++------+ |
| FME || FME || FME | |
| FPGA || FPGA || FPGA | |
|Manager||Bridge||Region| |
+-------++------++------+ |
+-----------------------+ +--------+ | +--------+
| FME | | AFU | | | AFU |
| Module | | Module | | | Module |
+-----------------------+ +--------+ | +--------+
+-----------------------+ | +-----------------------+
| FPGA Container Device | | | FPGA Container Device |
| (FPGA Base Region) | | | (FPGA Base Region) |
+-----------------------+ | +-----------------------+
+------------------+ | +------------------+
| FPGA PCIE Module | | Virtual | FPGA PCIE Module |
+------------------+ Host | Machine +------------------+
-------------------------------------- | ------------------------------
+---------------+ | +---------------+
| PCI PF Device | | | PCI VF Device |
+---------------+ | +---------------+
FPGA PCIe device driver is always loaded first once a FPGA PCIe PF or VF device
is detected. It:
* Finishes enumeration on both FPGA PCIe PF and VF device using common
interfaces from DFL framework.
* Supports SRIOV.
The FME device driver plays a management role in this driver architecture, it
provides ioctls to release Port from PF and assign Port to PF. After release
a port from PF, then it's safe to expose this port through a VF via PCIe SRIOV
sysfs interface.
To enable accessing an accelerator from applications running in a VM, the
respective AFU's port needs to be assigned to a VF using the following steps:
#. The PF owns all AFU ports by default. Any port that needs to be
reassigned to a VF must first be released through the
DFL_FPGA_FME_PORT_RELEASE ioctl on the FME device.
#. Once N ports are released from PF, then user can use command below
to enable SRIOV and VFs. Each VF owns only one Port with AFU.
::
echo N > $PCI_DEVICE_PATH/sriov_numvfs
#. Pass through the VFs to VMs
#. The AFU under VF is accessible from applications in VM (using the
same driver inside the VF).
Note that an FME can't be assigned to a VF, thus PR and other management
functions are only available via the PF.
Device enumeration
==================
This section introduces how applications enumerate the fpga device from

View File

@@ -20,3 +20,4 @@ fit into other categories.
isl29003
lis3lv02d
max6875
xilinx_sdfec