Merge branch 'slab/next' into slab/for-linus
This commit is contained in:
221
mm/slub.c
221
mm/slub.c
@@ -1005,7 +1005,7 @@ static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
|
||||
* dilemma by deferring the increment of the count during
|
||||
* bootstrap (see early_kmem_cache_node_alloc).
|
||||
*/
|
||||
if (n) {
|
||||
if (likely(n)) {
|
||||
atomic_long_inc(&n->nr_slabs);
|
||||
atomic_long_add(objects, &n->total_objects);
|
||||
}
|
||||
@@ -1493,7 +1493,7 @@ static inline void remove_partial(struct kmem_cache_node *n,
|
||||
*/
|
||||
static inline void *acquire_slab(struct kmem_cache *s,
|
||||
struct kmem_cache_node *n, struct page *page,
|
||||
int mode)
|
||||
int mode, int *objects)
|
||||
{
|
||||
void *freelist;
|
||||
unsigned long counters;
|
||||
@@ -1507,6 +1507,7 @@ static inline void *acquire_slab(struct kmem_cache *s,
|
||||
freelist = page->freelist;
|
||||
counters = page->counters;
|
||||
new.counters = counters;
|
||||
*objects = new.objects - new.inuse;
|
||||
if (mode) {
|
||||
new.inuse = page->objects;
|
||||
new.freelist = NULL;
|
||||
@@ -1528,7 +1529,7 @@ static inline void *acquire_slab(struct kmem_cache *s,
|
||||
return freelist;
|
||||
}
|
||||
|
||||
static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
|
||||
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
|
||||
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
|
||||
|
||||
/*
|
||||
@@ -1539,6 +1540,8 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
|
||||
{
|
||||
struct page *page, *page2;
|
||||
void *object = NULL;
|
||||
int available = 0;
|
||||
int objects;
|
||||
|
||||
/*
|
||||
* Racy check. If we mistakenly see no partial slabs then we
|
||||
@@ -1552,22 +1555,21 @@ static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
|
||||
spin_lock(&n->list_lock);
|
||||
list_for_each_entry_safe(page, page2, &n->partial, lru) {
|
||||
void *t;
|
||||
int available;
|
||||
|
||||
if (!pfmemalloc_match(page, flags))
|
||||
continue;
|
||||
|
||||
t = acquire_slab(s, n, page, object == NULL);
|
||||
t = acquire_slab(s, n, page, object == NULL, &objects);
|
||||
if (!t)
|
||||
break;
|
||||
|
||||
available += objects;
|
||||
if (!object) {
|
||||
c->page = page;
|
||||
stat(s, ALLOC_FROM_PARTIAL);
|
||||
object = t;
|
||||
available = page->objects - page->inuse;
|
||||
} else {
|
||||
available = put_cpu_partial(s, page, 0);
|
||||
put_cpu_partial(s, page, 0);
|
||||
stat(s, CPU_PARTIAL_NODE);
|
||||
}
|
||||
if (kmem_cache_debug(s) || available > s->cpu_partial / 2)
|
||||
@@ -1946,7 +1948,7 @@ static void unfreeze_partials(struct kmem_cache *s,
|
||||
* If we did not find a slot then simply move all the partials to the
|
||||
* per node partial list.
|
||||
*/
|
||||
static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
|
||||
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
|
||||
{
|
||||
struct page *oldpage;
|
||||
int pages;
|
||||
@@ -1984,7 +1986,6 @@ static int put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
|
||||
page->next = oldpage;
|
||||
|
||||
} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) != oldpage);
|
||||
return pobjects;
|
||||
}
|
||||
|
||||
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
|
||||
@@ -2041,7 +2042,7 @@ static void flush_all(struct kmem_cache *s)
|
||||
static inline int node_match(struct page *page, int node)
|
||||
{
|
||||
#ifdef CONFIG_NUMA
|
||||
if (node != NUMA_NO_NODE && page_to_nid(page) != node)
|
||||
if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
|
||||
return 0;
|
||||
#endif
|
||||
return 1;
|
||||
@@ -2331,13 +2332,18 @@ static __always_inline void *slab_alloc_node(struct kmem_cache *s,
|
||||
|
||||
s = memcg_kmem_get_cache(s, gfpflags);
|
||||
redo:
|
||||
|
||||
/*
|
||||
* Must read kmem_cache cpu data via this cpu ptr. Preemption is
|
||||
* enabled. We may switch back and forth between cpus while
|
||||
* reading from one cpu area. That does not matter as long
|
||||
* as we end up on the original cpu again when doing the cmpxchg.
|
||||
*
|
||||
* Preemption is disabled for the retrieval of the tid because that
|
||||
* must occur from the current processor. We cannot allow rescheduling
|
||||
* on a different processor between the determination of the pointer
|
||||
* and the retrieval of the tid.
|
||||
*/
|
||||
preempt_disable();
|
||||
c = __this_cpu_ptr(s->cpu_slab);
|
||||
|
||||
/*
|
||||
@@ -2347,7 +2353,7 @@ redo:
|
||||
* linked list in between.
|
||||
*/
|
||||
tid = c->tid;
|
||||
barrier();
|
||||
preempt_enable();
|
||||
|
||||
object = c->freelist;
|
||||
page = c->page;
|
||||
@@ -2594,10 +2600,11 @@ redo:
|
||||
* data is retrieved via this pointer. If we are on the same cpu
|
||||
* during the cmpxchg then the free will succedd.
|
||||
*/
|
||||
preempt_disable();
|
||||
c = __this_cpu_ptr(s->cpu_slab);
|
||||
|
||||
tid = c->tid;
|
||||
barrier();
|
||||
preempt_enable();
|
||||
|
||||
if (likely(page == c->page)) {
|
||||
set_freepointer(s, object, c->freelist);
|
||||
@@ -2775,7 +2782,7 @@ init_kmem_cache_node(struct kmem_cache_node *n)
|
||||
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
|
||||
{
|
||||
BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
|
||||
SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
|
||||
KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
|
||||
|
||||
/*
|
||||
* Must align to double word boundary for the double cmpxchg
|
||||
@@ -2982,7 +2989,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
|
||||
s->allocflags |= __GFP_COMP;
|
||||
|
||||
if (s->flags & SLAB_CACHE_DMA)
|
||||
s->allocflags |= SLUB_DMA;
|
||||
s->allocflags |= GFP_DMA;
|
||||
|
||||
if (s->flags & SLAB_RECLAIM_ACCOUNT)
|
||||
s->allocflags |= __GFP_RECLAIMABLE;
|
||||
@@ -3174,13 +3181,6 @@ int __kmem_cache_shutdown(struct kmem_cache *s)
|
||||
* Kmalloc subsystem
|
||||
*******************************************************************/
|
||||
|
||||
struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
|
||||
EXPORT_SYMBOL(kmalloc_caches);
|
||||
|
||||
#ifdef CONFIG_ZONE_DMA
|
||||
static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
|
||||
#endif
|
||||
|
||||
static int __init setup_slub_min_order(char *str)
|
||||
{
|
||||
get_option(&str, &slub_min_order);
|
||||
@@ -3217,73 +3217,15 @@ static int __init setup_slub_nomerge(char *str)
|
||||
|
||||
__setup("slub_nomerge", setup_slub_nomerge);
|
||||
|
||||
/*
|
||||
* Conversion table for small slabs sizes / 8 to the index in the
|
||||
* kmalloc array. This is necessary for slabs < 192 since we have non power
|
||||
* of two cache sizes there. The size of larger slabs can be determined using
|
||||
* fls.
|
||||
*/
|
||||
static s8 size_index[24] = {
|
||||
3, /* 8 */
|
||||
4, /* 16 */
|
||||
5, /* 24 */
|
||||
5, /* 32 */
|
||||
6, /* 40 */
|
||||
6, /* 48 */
|
||||
6, /* 56 */
|
||||
6, /* 64 */
|
||||
1, /* 72 */
|
||||
1, /* 80 */
|
||||
1, /* 88 */
|
||||
1, /* 96 */
|
||||
7, /* 104 */
|
||||
7, /* 112 */
|
||||
7, /* 120 */
|
||||
7, /* 128 */
|
||||
2, /* 136 */
|
||||
2, /* 144 */
|
||||
2, /* 152 */
|
||||
2, /* 160 */
|
||||
2, /* 168 */
|
||||
2, /* 176 */
|
||||
2, /* 184 */
|
||||
2 /* 192 */
|
||||
};
|
||||
|
||||
static inline int size_index_elem(size_t bytes)
|
||||
{
|
||||
return (bytes - 1) / 8;
|
||||
}
|
||||
|
||||
static struct kmem_cache *get_slab(size_t size, gfp_t flags)
|
||||
{
|
||||
int index;
|
||||
|
||||
if (size <= 192) {
|
||||
if (!size)
|
||||
return ZERO_SIZE_PTR;
|
||||
|
||||
index = size_index[size_index_elem(size)];
|
||||
} else
|
||||
index = fls(size - 1);
|
||||
|
||||
#ifdef CONFIG_ZONE_DMA
|
||||
if (unlikely((flags & SLUB_DMA)))
|
||||
return kmalloc_dma_caches[index];
|
||||
|
||||
#endif
|
||||
return kmalloc_caches[index];
|
||||
}
|
||||
|
||||
void *__kmalloc(size_t size, gfp_t flags)
|
||||
{
|
||||
struct kmem_cache *s;
|
||||
void *ret;
|
||||
|
||||
if (unlikely(size > SLUB_MAX_SIZE))
|
||||
if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
|
||||
return kmalloc_large(size, flags);
|
||||
|
||||
s = get_slab(size, flags);
|
||||
s = kmalloc_slab(size, flags);
|
||||
|
||||
if (unlikely(ZERO_OR_NULL_PTR(s)))
|
||||
return s;
|
||||
@@ -3316,7 +3258,7 @@ void *__kmalloc_node(size_t size, gfp_t flags, int node)
|
||||
struct kmem_cache *s;
|
||||
void *ret;
|
||||
|
||||
if (unlikely(size > SLUB_MAX_SIZE)) {
|
||||
if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
|
||||
ret = kmalloc_large_node(size, flags, node);
|
||||
|
||||
trace_kmalloc_node(_RET_IP_, ret,
|
||||
@@ -3326,7 +3268,7 @@ void *__kmalloc_node(size_t size, gfp_t flags, int node)
|
||||
return ret;
|
||||
}
|
||||
|
||||
s = get_slab(size, flags);
|
||||
s = kmalloc_slab(size, flags);
|
||||
|
||||
if (unlikely(ZERO_OR_NULL_PTR(s)))
|
||||
return s;
|
||||
@@ -3617,6 +3559,12 @@ static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
|
||||
|
||||
memcpy(s, static_cache, kmem_cache->object_size);
|
||||
|
||||
/*
|
||||
* This runs very early, and only the boot processor is supposed to be
|
||||
* up. Even if it weren't true, IRQs are not up so we couldn't fire
|
||||
* IPIs around.
|
||||
*/
|
||||
__flush_cpu_slab(s, smp_processor_id());
|
||||
for_each_node_state(node, N_NORMAL_MEMORY) {
|
||||
struct kmem_cache_node *n = get_node(s, node);
|
||||
struct page *p;
|
||||
@@ -3639,8 +3587,6 @@ void __init kmem_cache_init(void)
|
||||
{
|
||||
static __initdata struct kmem_cache boot_kmem_cache,
|
||||
boot_kmem_cache_node;
|
||||
int i;
|
||||
int caches = 2;
|
||||
|
||||
if (debug_guardpage_minorder())
|
||||
slub_max_order = 0;
|
||||
@@ -3671,103 +3617,16 @@ void __init kmem_cache_init(void)
|
||||
kmem_cache_node = bootstrap(&boot_kmem_cache_node);
|
||||
|
||||
/* Now we can use the kmem_cache to allocate kmalloc slabs */
|
||||
|
||||
/*
|
||||
* Patch up the size_index table if we have strange large alignment
|
||||
* requirements for the kmalloc array. This is only the case for
|
||||
* MIPS it seems. The standard arches will not generate any code here.
|
||||
*
|
||||
* Largest permitted alignment is 256 bytes due to the way we
|
||||
* handle the index determination for the smaller caches.
|
||||
*
|
||||
* Make sure that nothing crazy happens if someone starts tinkering
|
||||
* around with ARCH_KMALLOC_MINALIGN
|
||||
*/
|
||||
BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
|
||||
(KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
|
||||
|
||||
for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
|
||||
int elem = size_index_elem(i);
|
||||
if (elem >= ARRAY_SIZE(size_index))
|
||||
break;
|
||||
size_index[elem] = KMALLOC_SHIFT_LOW;
|
||||
}
|
||||
|
||||
if (KMALLOC_MIN_SIZE == 64) {
|
||||
/*
|
||||
* The 96 byte size cache is not used if the alignment
|
||||
* is 64 byte.
|
||||
*/
|
||||
for (i = 64 + 8; i <= 96; i += 8)
|
||||
size_index[size_index_elem(i)] = 7;
|
||||
} else if (KMALLOC_MIN_SIZE == 128) {
|
||||
/*
|
||||
* The 192 byte sized cache is not used if the alignment
|
||||
* is 128 byte. Redirect kmalloc to use the 256 byte cache
|
||||
* instead.
|
||||
*/
|
||||
for (i = 128 + 8; i <= 192; i += 8)
|
||||
size_index[size_index_elem(i)] = 8;
|
||||
}
|
||||
|
||||
/* Caches that are not of the two-to-the-power-of size */
|
||||
if (KMALLOC_MIN_SIZE <= 32) {
|
||||
kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
|
||||
caches++;
|
||||
}
|
||||
|
||||
if (KMALLOC_MIN_SIZE <= 64) {
|
||||
kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
|
||||
caches++;
|
||||
}
|
||||
|
||||
for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
|
||||
kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
|
||||
caches++;
|
||||
}
|
||||
|
||||
slab_state = UP;
|
||||
|
||||
/* Provide the correct kmalloc names now that the caches are up */
|
||||
if (KMALLOC_MIN_SIZE <= 32) {
|
||||
kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
|
||||
BUG_ON(!kmalloc_caches[1]->name);
|
||||
}
|
||||
|
||||
if (KMALLOC_MIN_SIZE <= 64) {
|
||||
kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
|
||||
BUG_ON(!kmalloc_caches[2]->name);
|
||||
}
|
||||
|
||||
for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
|
||||
char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
|
||||
|
||||
BUG_ON(!s);
|
||||
kmalloc_caches[i]->name = s;
|
||||
}
|
||||
create_kmalloc_caches(0);
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
register_cpu_notifier(&slab_notifier);
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_ZONE_DMA
|
||||
for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
|
||||
struct kmem_cache *s = kmalloc_caches[i];
|
||||
|
||||
if (s && s->size) {
|
||||
char *name = kasprintf(GFP_NOWAIT,
|
||||
"dma-kmalloc-%d", s->object_size);
|
||||
|
||||
BUG_ON(!name);
|
||||
kmalloc_dma_caches[i] = create_kmalloc_cache(name,
|
||||
s->object_size, SLAB_CACHE_DMA);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
printk(KERN_INFO
|
||||
"SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
|
||||
"SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d,"
|
||||
" CPUs=%d, Nodes=%d\n",
|
||||
caches, cache_line_size(),
|
||||
cache_line_size(),
|
||||
slub_min_order, slub_max_order, slub_min_objects,
|
||||
nr_cpu_ids, nr_node_ids);
|
||||
}
|
||||
@@ -3930,10 +3789,10 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
|
||||
struct kmem_cache *s;
|
||||
void *ret;
|
||||
|
||||
if (unlikely(size > SLUB_MAX_SIZE))
|
||||
if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
|
||||
return kmalloc_large(size, gfpflags);
|
||||
|
||||
s = get_slab(size, gfpflags);
|
||||
s = kmalloc_slab(size, gfpflags);
|
||||
|
||||
if (unlikely(ZERO_OR_NULL_PTR(s)))
|
||||
return s;
|
||||
@@ -3953,7 +3812,7 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
|
||||
struct kmem_cache *s;
|
||||
void *ret;
|
||||
|
||||
if (unlikely(size > SLUB_MAX_SIZE)) {
|
||||
if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
|
||||
ret = kmalloc_large_node(size, gfpflags, node);
|
||||
|
||||
trace_kmalloc_node(caller, ret,
|
||||
@@ -3963,7 +3822,7 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
|
||||
return ret;
|
||||
}
|
||||
|
||||
s = get_slab(size, gfpflags);
|
||||
s = kmalloc_slab(size, gfpflags);
|
||||
|
||||
if (unlikely(ZERO_OR_NULL_PTR(s)))
|
||||
return s;
|
||||
@@ -4312,7 +4171,7 @@ static void resiliency_test(void)
|
||||
{
|
||||
u8 *p;
|
||||
|
||||
BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
|
||||
BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
|
||||
|
||||
printk(KERN_ERR "SLUB resiliency testing\n");
|
||||
printk(KERN_ERR "-----------------------\n");
|
||||
|
Reference in New Issue
Block a user