Merge branch 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 EFI changes from Ingo Molnar: "Main changes: - Add support for earlyprintk=efi which uses the EFI framebuffer. Very useful for debugging boot problems. - EFI stub support for large memory maps (more than 128 entries) - EFI ARM support - this was mostly done by generalizing x86 <-> ARM platform differences, such as by moving x86 EFI code into drivers/firmware/efi/ and sharing it with ARM. - Documentation updates - misc fixes" * 'x86-efi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (26 commits) x86/efi: Add EFI framebuffer earlyprintk support boot, efi: Remove redundant memset() x86/efi: Fix config_table_type array termination x86 efi: bugfix interrupt disabling sequence x86: EFI stub support for large memory maps efi: resolve warnings found on ARM compile efi: Fix types in EFI calls to match EFI function definitions. efi: Renames in handle_cmdline_files() to complete generalization. efi: Generalize handle_ramdisks() and rename to handle_cmdline_files(). efi: Allow efi_free() to be called with size of 0 efi: use efi_get_memory_map() to get final map for x86 efi: generalize efi_get_memory_map() efi: Rename __get_map() to efi_get_memory_map() efi: Move unicode to ASCII conversion to shared function. efi: Generalize relocate_kernel() for use by other architectures. efi: Move relocate_kernel() to shared file. efi: Enforce minimum alignment of 1 page on allocations. efi: Rename memory allocation/free functions efi: Add system table pointer argument to shared functions. efi: Move common EFI stub code from x86 arch code to common location ...
This commit is contained in:
636
drivers/firmware/efi/efi-stub-helper.c
Normal file
636
drivers/firmware/efi/efi-stub-helper.c
Normal file
@@ -0,0 +1,636 @@
|
||||
/*
|
||||
* Helper functions used by the EFI stub on multiple
|
||||
* architectures. This should be #included by the EFI stub
|
||||
* implementation files.
|
||||
*
|
||||
* Copyright 2011 Intel Corporation; author Matt Fleming
|
||||
*
|
||||
* This file is part of the Linux kernel, and is made available
|
||||
* under the terms of the GNU General Public License version 2.
|
||||
*
|
||||
*/
|
||||
#define EFI_READ_CHUNK_SIZE (1024 * 1024)
|
||||
|
||||
struct file_info {
|
||||
efi_file_handle_t *handle;
|
||||
u64 size;
|
||||
};
|
||||
|
||||
|
||||
|
||||
|
||||
static void efi_char16_printk(efi_system_table_t *sys_table_arg,
|
||||
efi_char16_t *str)
|
||||
{
|
||||
struct efi_simple_text_output_protocol *out;
|
||||
|
||||
out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
|
||||
efi_call_phys2(out->output_string, out, str);
|
||||
}
|
||||
|
||||
static void efi_printk(efi_system_table_t *sys_table_arg, char *str)
|
||||
{
|
||||
char *s8;
|
||||
|
||||
for (s8 = str; *s8; s8++) {
|
||||
efi_char16_t ch[2] = { 0 };
|
||||
|
||||
ch[0] = *s8;
|
||||
if (*s8 == '\n') {
|
||||
efi_char16_t nl[2] = { '\r', 0 };
|
||||
efi_char16_printk(sys_table_arg, nl);
|
||||
}
|
||||
|
||||
efi_char16_printk(sys_table_arg, ch);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg,
|
||||
efi_memory_desc_t **map,
|
||||
unsigned long *map_size,
|
||||
unsigned long *desc_size,
|
||||
u32 *desc_ver,
|
||||
unsigned long *key_ptr)
|
||||
{
|
||||
efi_memory_desc_t *m = NULL;
|
||||
efi_status_t status;
|
||||
unsigned long key;
|
||||
u32 desc_version;
|
||||
|
||||
*map_size = sizeof(*m) * 32;
|
||||
again:
|
||||
/*
|
||||
* Add an additional efi_memory_desc_t because we're doing an
|
||||
* allocation which may be in a new descriptor region.
|
||||
*/
|
||||
*map_size += sizeof(*m);
|
||||
status = efi_call_phys3(sys_table_arg->boottime->allocate_pool,
|
||||
EFI_LOADER_DATA, *map_size, (void **)&m);
|
||||
if (status != EFI_SUCCESS)
|
||||
goto fail;
|
||||
|
||||
status = efi_call_phys5(sys_table_arg->boottime->get_memory_map,
|
||||
map_size, m, &key, desc_size, &desc_version);
|
||||
if (status == EFI_BUFFER_TOO_SMALL) {
|
||||
efi_call_phys1(sys_table_arg->boottime->free_pool, m);
|
||||
goto again;
|
||||
}
|
||||
|
||||
if (status != EFI_SUCCESS)
|
||||
efi_call_phys1(sys_table_arg->boottime->free_pool, m);
|
||||
if (key_ptr && status == EFI_SUCCESS)
|
||||
*key_ptr = key;
|
||||
if (desc_ver && status == EFI_SUCCESS)
|
||||
*desc_ver = desc_version;
|
||||
|
||||
fail:
|
||||
*map = m;
|
||||
return status;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate at the highest possible address that is not above 'max'.
|
||||
*/
|
||||
static efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg,
|
||||
unsigned long size, unsigned long align,
|
||||
unsigned long *addr, unsigned long max)
|
||||
{
|
||||
unsigned long map_size, desc_size;
|
||||
efi_memory_desc_t *map;
|
||||
efi_status_t status;
|
||||
unsigned long nr_pages;
|
||||
u64 max_addr = 0;
|
||||
int i;
|
||||
|
||||
status = efi_get_memory_map(sys_table_arg, &map, &map_size, &desc_size,
|
||||
NULL, NULL);
|
||||
if (status != EFI_SUCCESS)
|
||||
goto fail;
|
||||
|
||||
/*
|
||||
* Enforce minimum alignment that EFI requires when requesting
|
||||
* a specific address. We are doing page-based allocations,
|
||||
* so we must be aligned to a page.
|
||||
*/
|
||||
if (align < EFI_PAGE_SIZE)
|
||||
align = EFI_PAGE_SIZE;
|
||||
|
||||
nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
|
||||
again:
|
||||
for (i = 0; i < map_size / desc_size; i++) {
|
||||
efi_memory_desc_t *desc;
|
||||
unsigned long m = (unsigned long)map;
|
||||
u64 start, end;
|
||||
|
||||
desc = (efi_memory_desc_t *)(m + (i * desc_size));
|
||||
if (desc->type != EFI_CONVENTIONAL_MEMORY)
|
||||
continue;
|
||||
|
||||
if (desc->num_pages < nr_pages)
|
||||
continue;
|
||||
|
||||
start = desc->phys_addr;
|
||||
end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);
|
||||
|
||||
if ((start + size) > end || (start + size) > max)
|
||||
continue;
|
||||
|
||||
if (end - size > max)
|
||||
end = max;
|
||||
|
||||
if (round_down(end - size, align) < start)
|
||||
continue;
|
||||
|
||||
start = round_down(end - size, align);
|
||||
|
||||
/*
|
||||
* Don't allocate at 0x0. It will confuse code that
|
||||
* checks pointers against NULL.
|
||||
*/
|
||||
if (start == 0x0)
|
||||
continue;
|
||||
|
||||
if (start > max_addr)
|
||||
max_addr = start;
|
||||
}
|
||||
|
||||
if (!max_addr)
|
||||
status = EFI_NOT_FOUND;
|
||||
else {
|
||||
status = efi_call_phys4(sys_table_arg->boottime->allocate_pages,
|
||||
EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
|
||||
nr_pages, &max_addr);
|
||||
if (status != EFI_SUCCESS) {
|
||||
max = max_addr;
|
||||
max_addr = 0;
|
||||
goto again;
|
||||
}
|
||||
|
||||
*addr = max_addr;
|
||||
}
|
||||
|
||||
efi_call_phys1(sys_table_arg->boottime->free_pool, map);
|
||||
|
||||
fail:
|
||||
return status;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate at the lowest possible address.
|
||||
*/
|
||||
static efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg,
|
||||
unsigned long size, unsigned long align,
|
||||
unsigned long *addr)
|
||||
{
|
||||
unsigned long map_size, desc_size;
|
||||
efi_memory_desc_t *map;
|
||||
efi_status_t status;
|
||||
unsigned long nr_pages;
|
||||
int i;
|
||||
|
||||
status = efi_get_memory_map(sys_table_arg, &map, &map_size, &desc_size,
|
||||
NULL, NULL);
|
||||
if (status != EFI_SUCCESS)
|
||||
goto fail;
|
||||
|
||||
/*
|
||||
* Enforce minimum alignment that EFI requires when requesting
|
||||
* a specific address. We are doing page-based allocations,
|
||||
* so we must be aligned to a page.
|
||||
*/
|
||||
if (align < EFI_PAGE_SIZE)
|
||||
align = EFI_PAGE_SIZE;
|
||||
|
||||
nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
|
||||
for (i = 0; i < map_size / desc_size; i++) {
|
||||
efi_memory_desc_t *desc;
|
||||
unsigned long m = (unsigned long)map;
|
||||
u64 start, end;
|
||||
|
||||
desc = (efi_memory_desc_t *)(m + (i * desc_size));
|
||||
|
||||
if (desc->type != EFI_CONVENTIONAL_MEMORY)
|
||||
continue;
|
||||
|
||||
if (desc->num_pages < nr_pages)
|
||||
continue;
|
||||
|
||||
start = desc->phys_addr;
|
||||
end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);
|
||||
|
||||
/*
|
||||
* Don't allocate at 0x0. It will confuse code that
|
||||
* checks pointers against NULL. Skip the first 8
|
||||
* bytes so we start at a nice even number.
|
||||
*/
|
||||
if (start == 0x0)
|
||||
start += 8;
|
||||
|
||||
start = round_up(start, align);
|
||||
if ((start + size) > end)
|
||||
continue;
|
||||
|
||||
status = efi_call_phys4(sys_table_arg->boottime->allocate_pages,
|
||||
EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
|
||||
nr_pages, &start);
|
||||
if (status == EFI_SUCCESS) {
|
||||
*addr = start;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (i == map_size / desc_size)
|
||||
status = EFI_NOT_FOUND;
|
||||
|
||||
efi_call_phys1(sys_table_arg->boottime->free_pool, map);
|
||||
fail:
|
||||
return status;
|
||||
}
|
||||
|
||||
static void efi_free(efi_system_table_t *sys_table_arg, unsigned long size,
|
||||
unsigned long addr)
|
||||
{
|
||||
unsigned long nr_pages;
|
||||
|
||||
if (!size)
|
||||
return;
|
||||
|
||||
nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
|
||||
efi_call_phys2(sys_table_arg->boottime->free_pages, addr, nr_pages);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Check the cmdline for a LILO-style file= arguments.
|
||||
*
|
||||
* We only support loading a file from the same filesystem as
|
||||
* the kernel image.
|
||||
*/
|
||||
static efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg,
|
||||
efi_loaded_image_t *image,
|
||||
char *cmd_line, char *option_string,
|
||||
unsigned long max_addr,
|
||||
unsigned long *load_addr,
|
||||
unsigned long *load_size)
|
||||
{
|
||||
struct file_info *files;
|
||||
unsigned long file_addr;
|
||||
efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
|
||||
u64 file_size_total;
|
||||
efi_file_io_interface_t *io;
|
||||
efi_file_handle_t *fh;
|
||||
efi_status_t status;
|
||||
int nr_files;
|
||||
char *str;
|
||||
int i, j, k;
|
||||
|
||||
file_addr = 0;
|
||||
file_size_total = 0;
|
||||
|
||||
str = cmd_line;
|
||||
|
||||
j = 0; /* See close_handles */
|
||||
|
||||
if (!load_addr || !load_size)
|
||||
return EFI_INVALID_PARAMETER;
|
||||
|
||||
*load_addr = 0;
|
||||
*load_size = 0;
|
||||
|
||||
if (!str || !*str)
|
||||
return EFI_SUCCESS;
|
||||
|
||||
for (nr_files = 0; *str; nr_files++) {
|
||||
str = strstr(str, option_string);
|
||||
if (!str)
|
||||
break;
|
||||
|
||||
str += strlen(option_string);
|
||||
|
||||
/* Skip any leading slashes */
|
||||
while (*str == '/' || *str == '\\')
|
||||
str++;
|
||||
|
||||
while (*str && *str != ' ' && *str != '\n')
|
||||
str++;
|
||||
}
|
||||
|
||||
if (!nr_files)
|
||||
return EFI_SUCCESS;
|
||||
|
||||
status = efi_call_phys3(sys_table_arg->boottime->allocate_pool,
|
||||
EFI_LOADER_DATA,
|
||||
nr_files * sizeof(*files),
|
||||
(void **)&files);
|
||||
if (status != EFI_SUCCESS) {
|
||||
efi_printk(sys_table_arg, "Failed to alloc mem for file handle list\n");
|
||||
goto fail;
|
||||
}
|
||||
|
||||
str = cmd_line;
|
||||
for (i = 0; i < nr_files; i++) {
|
||||
struct file_info *file;
|
||||
efi_file_handle_t *h;
|
||||
efi_file_info_t *info;
|
||||
efi_char16_t filename_16[256];
|
||||
unsigned long info_sz;
|
||||
efi_guid_t info_guid = EFI_FILE_INFO_ID;
|
||||
efi_char16_t *p;
|
||||
u64 file_sz;
|
||||
|
||||
str = strstr(str, option_string);
|
||||
if (!str)
|
||||
break;
|
||||
|
||||
str += strlen(option_string);
|
||||
|
||||
file = &files[i];
|
||||
p = filename_16;
|
||||
|
||||
/* Skip any leading slashes */
|
||||
while (*str == '/' || *str == '\\')
|
||||
str++;
|
||||
|
||||
while (*str && *str != ' ' && *str != '\n') {
|
||||
if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16))
|
||||
break;
|
||||
|
||||
if (*str == '/') {
|
||||
*p++ = '\\';
|
||||
str++;
|
||||
} else {
|
||||
*p++ = *str++;
|
||||
}
|
||||
}
|
||||
|
||||
*p = '\0';
|
||||
|
||||
/* Only open the volume once. */
|
||||
if (!i) {
|
||||
efi_boot_services_t *boottime;
|
||||
|
||||
boottime = sys_table_arg->boottime;
|
||||
|
||||
status = efi_call_phys3(boottime->handle_protocol,
|
||||
image->device_handle, &fs_proto,
|
||||
(void **)&io);
|
||||
if (status != EFI_SUCCESS) {
|
||||
efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
|
||||
goto free_files;
|
||||
}
|
||||
|
||||
status = efi_call_phys2(io->open_volume, io, &fh);
|
||||
if (status != EFI_SUCCESS) {
|
||||
efi_printk(sys_table_arg, "Failed to open volume\n");
|
||||
goto free_files;
|
||||
}
|
||||
}
|
||||
|
||||
status = efi_call_phys5(fh->open, fh, &h, filename_16,
|
||||
EFI_FILE_MODE_READ, (u64)0);
|
||||
if (status != EFI_SUCCESS) {
|
||||
efi_printk(sys_table_arg, "Failed to open file: ");
|
||||
efi_char16_printk(sys_table_arg, filename_16);
|
||||
efi_printk(sys_table_arg, "\n");
|
||||
goto close_handles;
|
||||
}
|
||||
|
||||
file->handle = h;
|
||||
|
||||
info_sz = 0;
|
||||
status = efi_call_phys4(h->get_info, h, &info_guid,
|
||||
&info_sz, NULL);
|
||||
if (status != EFI_BUFFER_TOO_SMALL) {
|
||||
efi_printk(sys_table_arg, "Failed to get file info size\n");
|
||||
goto close_handles;
|
||||
}
|
||||
|
||||
grow:
|
||||
status = efi_call_phys3(sys_table_arg->boottime->allocate_pool,
|
||||
EFI_LOADER_DATA, info_sz,
|
||||
(void **)&info);
|
||||
if (status != EFI_SUCCESS) {
|
||||
efi_printk(sys_table_arg, "Failed to alloc mem for file info\n");
|
||||
goto close_handles;
|
||||
}
|
||||
|
||||
status = efi_call_phys4(h->get_info, h, &info_guid,
|
||||
&info_sz, info);
|
||||
if (status == EFI_BUFFER_TOO_SMALL) {
|
||||
efi_call_phys1(sys_table_arg->boottime->free_pool,
|
||||
info);
|
||||
goto grow;
|
||||
}
|
||||
|
||||
file_sz = info->file_size;
|
||||
efi_call_phys1(sys_table_arg->boottime->free_pool, info);
|
||||
|
||||
if (status != EFI_SUCCESS) {
|
||||
efi_printk(sys_table_arg, "Failed to get file info\n");
|
||||
goto close_handles;
|
||||
}
|
||||
|
||||
file->size = file_sz;
|
||||
file_size_total += file_sz;
|
||||
}
|
||||
|
||||
if (file_size_total) {
|
||||
unsigned long addr;
|
||||
|
||||
/*
|
||||
* Multiple files need to be at consecutive addresses in memory,
|
||||
* so allocate enough memory for all the files. This is used
|
||||
* for loading multiple files.
|
||||
*/
|
||||
status = efi_high_alloc(sys_table_arg, file_size_total, 0x1000,
|
||||
&file_addr, max_addr);
|
||||
if (status != EFI_SUCCESS) {
|
||||
efi_printk(sys_table_arg, "Failed to alloc highmem for files\n");
|
||||
goto close_handles;
|
||||
}
|
||||
|
||||
/* We've run out of free low memory. */
|
||||
if (file_addr > max_addr) {
|
||||
efi_printk(sys_table_arg, "We've run out of free low memory\n");
|
||||
status = EFI_INVALID_PARAMETER;
|
||||
goto free_file_total;
|
||||
}
|
||||
|
||||
addr = file_addr;
|
||||
for (j = 0; j < nr_files; j++) {
|
||||
unsigned long size;
|
||||
|
||||
size = files[j].size;
|
||||
while (size) {
|
||||
unsigned long chunksize;
|
||||
if (size > EFI_READ_CHUNK_SIZE)
|
||||
chunksize = EFI_READ_CHUNK_SIZE;
|
||||
else
|
||||
chunksize = size;
|
||||
status = efi_call_phys3(fh->read,
|
||||
files[j].handle,
|
||||
&chunksize,
|
||||
(void *)addr);
|
||||
if (status != EFI_SUCCESS) {
|
||||
efi_printk(sys_table_arg, "Failed to read file\n");
|
||||
goto free_file_total;
|
||||
}
|
||||
addr += chunksize;
|
||||
size -= chunksize;
|
||||
}
|
||||
|
||||
efi_call_phys1(fh->close, files[j].handle);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
efi_call_phys1(sys_table_arg->boottime->free_pool, files);
|
||||
|
||||
*load_addr = file_addr;
|
||||
*load_size = file_size_total;
|
||||
|
||||
return status;
|
||||
|
||||
free_file_total:
|
||||
efi_free(sys_table_arg, file_size_total, file_addr);
|
||||
|
||||
close_handles:
|
||||
for (k = j; k < i; k++)
|
||||
efi_call_phys1(fh->close, files[k].handle);
|
||||
free_files:
|
||||
efi_call_phys1(sys_table_arg->boottime->free_pool, files);
|
||||
fail:
|
||||
*load_addr = 0;
|
||||
*load_size = 0;
|
||||
|
||||
return status;
|
||||
}
|
||||
/*
|
||||
* Relocate a kernel image, either compressed or uncompressed.
|
||||
* In the ARM64 case, all kernel images are currently
|
||||
* uncompressed, and as such when we relocate it we need to
|
||||
* allocate additional space for the BSS segment. Any low
|
||||
* memory that this function should avoid needs to be
|
||||
* unavailable in the EFI memory map, as if the preferred
|
||||
* address is not available the lowest available address will
|
||||
* be used.
|
||||
*/
|
||||
static efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg,
|
||||
unsigned long *image_addr,
|
||||
unsigned long image_size,
|
||||
unsigned long alloc_size,
|
||||
unsigned long preferred_addr,
|
||||
unsigned long alignment)
|
||||
{
|
||||
unsigned long cur_image_addr;
|
||||
unsigned long new_addr = 0;
|
||||
efi_status_t status;
|
||||
unsigned long nr_pages;
|
||||
efi_physical_addr_t efi_addr = preferred_addr;
|
||||
|
||||
if (!image_addr || !image_size || !alloc_size)
|
||||
return EFI_INVALID_PARAMETER;
|
||||
if (alloc_size < image_size)
|
||||
return EFI_INVALID_PARAMETER;
|
||||
|
||||
cur_image_addr = *image_addr;
|
||||
|
||||
/*
|
||||
* The EFI firmware loader could have placed the kernel image
|
||||
* anywhere in memory, but the kernel has restrictions on the
|
||||
* max physical address it can run at. Some architectures
|
||||
* also have a prefered address, so first try to relocate
|
||||
* to the preferred address. If that fails, allocate as low
|
||||
* as possible while respecting the required alignment.
|
||||
*/
|
||||
nr_pages = round_up(alloc_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
|
||||
status = efi_call_phys4(sys_table_arg->boottime->allocate_pages,
|
||||
EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
|
||||
nr_pages, &efi_addr);
|
||||
new_addr = efi_addr;
|
||||
/*
|
||||
* If preferred address allocation failed allocate as low as
|
||||
* possible.
|
||||
*/
|
||||
if (status != EFI_SUCCESS) {
|
||||
status = efi_low_alloc(sys_table_arg, alloc_size, alignment,
|
||||
&new_addr);
|
||||
}
|
||||
if (status != EFI_SUCCESS) {
|
||||
efi_printk(sys_table_arg, "ERROR: Failed to allocate usable memory for kernel.\n");
|
||||
return status;
|
||||
}
|
||||
|
||||
/*
|
||||
* We know source/dest won't overlap since both memory ranges
|
||||
* have been allocated by UEFI, so we can safely use memcpy.
|
||||
*/
|
||||
memcpy((void *)new_addr, (void *)cur_image_addr, image_size);
|
||||
|
||||
/* Return the new address of the relocated image. */
|
||||
*image_addr = new_addr;
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert the unicode UEFI command line to ASCII to pass to kernel.
|
||||
* Size of memory allocated return in *cmd_line_len.
|
||||
* Returns NULL on error.
|
||||
*/
|
||||
static char *efi_convert_cmdline_to_ascii(efi_system_table_t *sys_table_arg,
|
||||
efi_loaded_image_t *image,
|
||||
int *cmd_line_len)
|
||||
{
|
||||
u16 *s2;
|
||||
u8 *s1 = NULL;
|
||||
unsigned long cmdline_addr = 0;
|
||||
int load_options_size = image->load_options_size / 2; /* ASCII */
|
||||
void *options = image->load_options;
|
||||
int options_size = 0;
|
||||
efi_status_t status;
|
||||
int i;
|
||||
u16 zero = 0;
|
||||
|
||||
if (options) {
|
||||
s2 = options;
|
||||
while (*s2 && *s2 != '\n' && options_size < load_options_size) {
|
||||
s2++;
|
||||
options_size++;
|
||||
}
|
||||
}
|
||||
|
||||
if (options_size == 0) {
|
||||
/* No command line options, so return empty string*/
|
||||
options_size = 1;
|
||||
options = &zero;
|
||||
}
|
||||
|
||||
options_size++; /* NUL termination */
|
||||
#ifdef CONFIG_ARM
|
||||
/*
|
||||
* For ARM, allocate at a high address to avoid reserved
|
||||
* regions at low addresses that we don't know the specfics of
|
||||
* at the time we are processing the command line.
|
||||
*/
|
||||
status = efi_high_alloc(sys_table_arg, options_size, 0,
|
||||
&cmdline_addr, 0xfffff000);
|
||||
#else
|
||||
status = efi_low_alloc(sys_table_arg, options_size, 0,
|
||||
&cmdline_addr);
|
||||
#endif
|
||||
if (status != EFI_SUCCESS)
|
||||
return NULL;
|
||||
|
||||
s1 = (u8 *)cmdline_addr;
|
||||
s2 = (u16 *)options;
|
||||
|
||||
for (i = 0; i < options_size - 1; i++)
|
||||
*s1++ = *s2++;
|
||||
|
||||
*s1 = '\0';
|
||||
|
||||
*cmd_line_len = options_size;
|
||||
return (char *)cmdline_addr;
|
||||
}
|
@@ -13,11 +13,27 @@
|
||||
* This file is released under the GPLv2.
|
||||
*/
|
||||
|
||||
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||||
|
||||
#include <linux/kobject.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/device.h>
|
||||
#include <linux/efi.h>
|
||||
#include <linux/io.h>
|
||||
|
||||
struct efi __read_mostly efi = {
|
||||
.mps = EFI_INVALID_TABLE_ADDR,
|
||||
.acpi = EFI_INVALID_TABLE_ADDR,
|
||||
.acpi20 = EFI_INVALID_TABLE_ADDR,
|
||||
.smbios = EFI_INVALID_TABLE_ADDR,
|
||||
.sal_systab = EFI_INVALID_TABLE_ADDR,
|
||||
.boot_info = EFI_INVALID_TABLE_ADDR,
|
||||
.hcdp = EFI_INVALID_TABLE_ADDR,
|
||||
.uga = EFI_INVALID_TABLE_ADDR,
|
||||
.uv_systab = EFI_INVALID_TABLE_ADDR,
|
||||
};
|
||||
EXPORT_SYMBOL(efi);
|
||||
|
||||
static struct kobject *efi_kobj;
|
||||
static struct kobject *efivars_kobj;
|
||||
@@ -132,3 +148,127 @@ err_put:
|
||||
}
|
||||
|
||||
subsys_initcall(efisubsys_init);
|
||||
|
||||
|
||||
/*
|
||||
* We can't ioremap data in EFI boot services RAM, because we've already mapped
|
||||
* it as RAM. So, look it up in the existing EFI memory map instead. Only
|
||||
* callable after efi_enter_virtual_mode and before efi_free_boot_services.
|
||||
*/
|
||||
void __iomem *efi_lookup_mapped_addr(u64 phys_addr)
|
||||
{
|
||||
struct efi_memory_map *map;
|
||||
void *p;
|
||||
map = efi.memmap;
|
||||
if (!map)
|
||||
return NULL;
|
||||
if (WARN_ON(!map->map))
|
||||
return NULL;
|
||||
for (p = map->map; p < map->map_end; p += map->desc_size) {
|
||||
efi_memory_desc_t *md = p;
|
||||
u64 size = md->num_pages << EFI_PAGE_SHIFT;
|
||||
u64 end = md->phys_addr + size;
|
||||
if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
|
||||
md->type != EFI_BOOT_SERVICES_CODE &&
|
||||
md->type != EFI_BOOT_SERVICES_DATA)
|
||||
continue;
|
||||
if (!md->virt_addr)
|
||||
continue;
|
||||
if (phys_addr >= md->phys_addr && phys_addr < end) {
|
||||
phys_addr += md->virt_addr - md->phys_addr;
|
||||
return (__force void __iomem *)(unsigned long)phys_addr;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static __initdata efi_config_table_type_t common_tables[] = {
|
||||
{ACPI_20_TABLE_GUID, "ACPI 2.0", &efi.acpi20},
|
||||
{ACPI_TABLE_GUID, "ACPI", &efi.acpi},
|
||||
{HCDP_TABLE_GUID, "HCDP", &efi.hcdp},
|
||||
{MPS_TABLE_GUID, "MPS", &efi.mps},
|
||||
{SAL_SYSTEM_TABLE_GUID, "SALsystab", &efi.sal_systab},
|
||||
{SMBIOS_TABLE_GUID, "SMBIOS", &efi.smbios},
|
||||
{UGA_IO_PROTOCOL_GUID, "UGA", &efi.uga},
|
||||
{NULL_GUID, NULL, 0},
|
||||
};
|
||||
|
||||
static __init int match_config_table(efi_guid_t *guid,
|
||||
unsigned long table,
|
||||
efi_config_table_type_t *table_types)
|
||||
{
|
||||
u8 str[EFI_VARIABLE_GUID_LEN + 1];
|
||||
int i;
|
||||
|
||||
if (table_types) {
|
||||
efi_guid_unparse(guid, str);
|
||||
|
||||
for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) {
|
||||
efi_guid_unparse(&table_types[i].guid, str);
|
||||
|
||||
if (!efi_guidcmp(*guid, table_types[i].guid)) {
|
||||
*(table_types[i].ptr) = table;
|
||||
pr_cont(" %s=0x%lx ",
|
||||
table_types[i].name, table);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int __init efi_config_init(efi_config_table_type_t *arch_tables)
|
||||
{
|
||||
void *config_tables, *tablep;
|
||||
int i, sz;
|
||||
|
||||
if (efi_enabled(EFI_64BIT))
|
||||
sz = sizeof(efi_config_table_64_t);
|
||||
else
|
||||
sz = sizeof(efi_config_table_32_t);
|
||||
|
||||
/*
|
||||
* Let's see what config tables the firmware passed to us.
|
||||
*/
|
||||
config_tables = early_memremap(efi.systab->tables,
|
||||
efi.systab->nr_tables * sz);
|
||||
if (config_tables == NULL) {
|
||||
pr_err("Could not map Configuration table!\n");
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
tablep = config_tables;
|
||||
pr_info("");
|
||||
for (i = 0; i < efi.systab->nr_tables; i++) {
|
||||
efi_guid_t guid;
|
||||
unsigned long table;
|
||||
|
||||
if (efi_enabled(EFI_64BIT)) {
|
||||
u64 table64;
|
||||
guid = ((efi_config_table_64_t *)tablep)->guid;
|
||||
table64 = ((efi_config_table_64_t *)tablep)->table;
|
||||
table = table64;
|
||||
#ifndef CONFIG_64BIT
|
||||
if (table64 >> 32) {
|
||||
pr_cont("\n");
|
||||
pr_err("Table located above 4GB, disabling EFI.\n");
|
||||
early_iounmap(config_tables,
|
||||
efi.systab->nr_tables * sz);
|
||||
return -EINVAL;
|
||||
}
|
||||
#endif
|
||||
} else {
|
||||
guid = ((efi_config_table_32_t *)tablep)->guid;
|
||||
table = ((efi_config_table_32_t *)tablep)->table;
|
||||
}
|
||||
|
||||
if (!match_config_table(&guid, table, common_tables))
|
||||
match_config_table(&guid, table, arch_tables);
|
||||
|
||||
tablep += sz;
|
||||
}
|
||||
pr_cont("\n");
|
||||
early_iounmap(config_tables, efi.systab->nr_tables * sz);
|
||||
return 0;
|
||||
}
|
||||
|
@@ -564,7 +564,7 @@ static int efivar_sysfs_destroy(struct efivar_entry *entry, void *data)
|
||||
return 0;
|
||||
}
|
||||
|
||||
void efivars_sysfs_exit(void)
|
||||
static void efivars_sysfs_exit(void)
|
||||
{
|
||||
/* Remove all entries and destroy */
|
||||
__efivar_entry_iter(efivar_sysfs_destroy, &efivar_sysfs_list, NULL, NULL);
|
||||
|
Reference in New Issue
Block a user