Merge branch 'i2c/for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux

Pull i2c updates from Wolfram Sang:
 "Here is the I2C pull request for 4.8:

   - the core and i801 driver gained support for SMBus Host Notify

   - core support for more than one address in DT

   - i2c_add_adapter() has now better error messages.  We can remove all
     error messages from drivers calling it as a next step.

   - bigger updates to rk3x driver to support rk3399 SoC

   - the at24 eeprom driver got refactored and can now read special
     variants with unique serials or fixed MAC addresses.

  The rest is regular driver updates and bugfixes"

* 'i2c/for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux: (66 commits)
  i2c: i801: use IS_ENABLED() instead of checking for built-in or module
  Documentation: i2c: slave: give proper example for pm usage
  Documentation: i2c: slave: describe buffer problems a bit better
  i2c: bcm2835: Don't complain on -EPROBE_DEFER from getting our clock
  i2c: i2c-smbus: drop useless stubs
  i2c: efm32: fix a failure path in efm32_i2c_probe()
  Revert "i2c: core: Cleanup I2C ACPI namespace"
  Revert "i2c: core: Add function for finding the bus speed from ACPI"
  i2c: Update the description of I2C_SMBUS
  i2c: i2c-smbus: fix i2c_handle_smbus_host_notify documentation
  eeprom: at24: tweak the loop_until_timeout() macro
  eeprom: at24: add support for at24mac series
  eeprom: at24: support reading the serial number for 24csxx
  eeprom: at24: platform_data: use BIT() macro
  eeprom: at24: split at24_eeprom_write() into specialized functions
  eeprom: at24: split at24_eeprom_read() into specialized functions
  eeprom: at24: hide the read/write loop behind a macro
  eeprom: at24: call read/write functions via function pointers
  eeprom: at24: coding style fixes
  eeprom: at24: move at24_read() below at24_eeprom_write()
  ...
This commit is contained in:
Linus Torvalds
2016-07-27 14:19:25 -07:00
31 ha cambiato i file con 1431 aggiunte e 565 eliminazioni

Vedi File

@@ -58,6 +58,10 @@ struct at24_data {
int use_smbus;
int use_smbus_write;
ssize_t (*read_func)(struct at24_data *, char *, unsigned int, size_t);
ssize_t (*write_func)(struct at24_data *,
const char *, unsigned int, size_t);
/*
* Lock protects against activities from other Linux tasks,
* but not from changes by other I2C masters.
@@ -109,25 +113,63 @@ MODULE_PARM_DESC(write_timeout, "Time (in ms) to try writes (default 25)");
((1 << AT24_SIZE_FLAGS | (_flags)) \
<< AT24_SIZE_BYTELEN | ilog2(_len))
/*
* Both reads and writes fail if the previous write didn't complete yet. This
* macro loops a few times waiting at least long enough for one entire page
* write to work while making sure that at least one iteration is run before
* checking the break condition.
*
* It takes two parameters: a variable in which the future timeout in jiffies
* will be stored and a temporary variable holding the time of the last
* iteration of processing the request. Both should be unsigned integers
* holding at least 32 bits.
*/
#define loop_until_timeout(tout, op_time) \
for (tout = jiffies + msecs_to_jiffies(write_timeout), op_time = 0; \
op_time ? time_before(op_time, tout) : true; \
usleep_range(1000, 1500), op_time = jiffies)
static const struct i2c_device_id at24_ids[] = {
/* needs 8 addresses as A0-A2 are ignored */
{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
{ "24c00", AT24_DEVICE_MAGIC(128 / 8, AT24_FLAG_TAKE8ADDR) },
/* old variants can't be handled with this generic entry! */
{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
{ "24c01", AT24_DEVICE_MAGIC(1024 / 8, 0) },
{ "24cs01", AT24_DEVICE_MAGIC(16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
{ "24c02", AT24_DEVICE_MAGIC(2048 / 8, 0) },
{ "24cs02", AT24_DEVICE_MAGIC(16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
{ "24mac402", AT24_DEVICE_MAGIC(48 / 8,
AT24_FLAG_MAC | AT24_FLAG_READONLY) },
{ "24mac602", AT24_DEVICE_MAGIC(64 / 8,
AT24_FLAG_MAC | AT24_FLAG_READONLY) },
/* spd is a 24c02 in memory DIMMs */
{ "spd", AT24_DEVICE_MAGIC(2048 / 8,
AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
{ "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
{ "spd", AT24_DEVICE_MAGIC(2048 / 8,
AT24_FLAG_READONLY | AT24_FLAG_IRUGO) },
{ "24c04", AT24_DEVICE_MAGIC(4096 / 8, 0) },
{ "24cs04", AT24_DEVICE_MAGIC(16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
/* 24rf08 quirk is handled at i2c-core */
{ "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
{ "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
{ "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
{ "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
{ "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
{ "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
{ "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
{ "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
{ "24c08", AT24_DEVICE_MAGIC(8192 / 8, 0) },
{ "24cs08", AT24_DEVICE_MAGIC(16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
{ "24c16", AT24_DEVICE_MAGIC(16384 / 8, 0) },
{ "24cs16", AT24_DEVICE_MAGIC(16,
AT24_FLAG_SERIAL | AT24_FLAG_READONLY) },
{ "24c32", AT24_DEVICE_MAGIC(32768 / 8, AT24_FLAG_ADDR16) },
{ "24cs32", AT24_DEVICE_MAGIC(16,
AT24_FLAG_ADDR16 |
AT24_FLAG_SERIAL |
AT24_FLAG_READONLY) },
{ "24c64", AT24_DEVICE_MAGIC(65536 / 8, AT24_FLAG_ADDR16) },
{ "24cs64", AT24_DEVICE_MAGIC(16,
AT24_FLAG_ADDR16 |
AT24_FLAG_SERIAL |
AT24_FLAG_READONLY) },
{ "24c128", AT24_DEVICE_MAGIC(131072 / 8, AT24_FLAG_ADDR16) },
{ "24c256", AT24_DEVICE_MAGIC(262144 / 8, AT24_FLAG_ADDR16) },
{ "24c512", AT24_DEVICE_MAGIC(524288 / 8, AT24_FLAG_ADDR16) },
{ "24c1024", AT24_DEVICE_MAGIC(1048576 / 8, AT24_FLAG_ADDR16) },
{ "at24", 0 },
{ /* END OF LIST */ }
};
@@ -145,9 +187,22 @@ MODULE_DEVICE_TABLE(acpi, at24_acpi_ids);
* This routine supports chips which consume multiple I2C addresses. It
* computes the addressing information to be used for a given r/w request.
* Assumes that sanity checks for offset happened at sysfs-layer.
*
* Slave address and byte offset derive from the offset. Always
* set the byte address; on a multi-master board, another master
* may have changed the chip's "current" address pointer.
*
* REVISIT some multi-address chips don't rollover page reads to
* the next slave address, so we may need to truncate the count.
* Those chips might need another quirk flag.
*
* If the real hardware used four adjacent 24c02 chips and that
* were misconfigured as one 24c08, that would be a similar effect:
* one "eeprom" file not four, but larger reads would fail when
* they crossed certain pages.
*/
static struct i2c_client *at24_translate_offset(struct at24_data *at24,
unsigned *offset)
unsigned int *offset)
{
unsigned i;
@@ -162,89 +217,283 @@ static struct i2c_client *at24_translate_offset(struct at24_data *at24,
return at24->client[i];
}
static ssize_t at24_eeprom_read(struct at24_data *at24, char *buf,
unsigned offset, size_t count)
static ssize_t at24_eeprom_read_smbus(struct at24_data *at24, char *buf,
unsigned int offset, size_t count)
{
struct i2c_msg msg[2];
u8 msgbuf[2];
struct i2c_client *client;
unsigned long timeout, read_time;
int status, i;
struct i2c_client *client;
int status;
memset(msg, 0, sizeof(msg));
/*
* REVISIT some multi-address chips don't rollover page reads to
* the next slave address, so we may need to truncate the count.
* Those chips might need another quirk flag.
*
* If the real hardware used four adjacent 24c02 chips and that
* were misconfigured as one 24c08, that would be a similar effect:
* one "eeprom" file not four, but larger reads would fail when
* they crossed certain pages.
*/
/*
* Slave address and byte offset derive from the offset. Always
* set the byte address; on a multi-master board, another master
* may have changed the chip's "current" address pointer.
*/
client = at24_translate_offset(at24, &offset);
if (count > io_limit)
count = io_limit;
if (at24->use_smbus) {
/* Smaller eeproms can work given some SMBus extension calls */
if (count > I2C_SMBUS_BLOCK_MAX)
count = I2C_SMBUS_BLOCK_MAX;
} else {
/*
* When we have a better choice than SMBus calls, use a
* combined I2C message. Write address; then read up to
* io_limit data bytes. Note that read page rollover helps us
* here (unlike writes). msgbuf is u8 and will cast to our
* needs.
*/
i = 0;
if (at24->chip.flags & AT24_FLAG_ADDR16)
msgbuf[i++] = offset >> 8;
msgbuf[i++] = offset;
/* Smaller eeproms can work given some SMBus extension calls */
if (count > I2C_SMBUS_BLOCK_MAX)
count = I2C_SMBUS_BLOCK_MAX;
msg[0].addr = client->addr;
msg[0].buf = msgbuf;
msg[0].len = i;
loop_until_timeout(timeout, read_time) {
status = i2c_smbus_read_i2c_block_data_or_emulated(client,
offset,
count, buf);
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].buf = buf;
msg[1].len = count;
}
/*
* Reads fail if the previous write didn't complete yet. We may
* loop a few times until this one succeeds, waiting at least
* long enough for one entire page write to work.
*/
timeout = jiffies + msecs_to_jiffies(write_timeout);
do {
read_time = jiffies;
if (at24->use_smbus) {
status = i2c_smbus_read_i2c_block_data_or_emulated(client, offset,
count, buf);
} else {
status = i2c_transfer(client->adapter, msg, 2);
if (status == 2)
status = count;
}
dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
count, offset, status, jiffies);
if (status == count)
return count;
}
usleep_range(1000, 1500);
} while (time_before(read_time, timeout));
return -ETIMEDOUT;
}
static ssize_t at24_eeprom_read_i2c(struct at24_data *at24, char *buf,
unsigned int offset, size_t count)
{
unsigned long timeout, read_time;
struct i2c_client *client;
struct i2c_msg msg[2];
int status, i;
u8 msgbuf[2];
memset(msg, 0, sizeof(msg));
client = at24_translate_offset(at24, &offset);
if (count > io_limit)
count = io_limit;
/*
* When we have a better choice than SMBus calls, use a combined I2C
* message. Write address; then read up to io_limit data bytes. Note
* that read page rollover helps us here (unlike writes). msgbuf is
* u8 and will cast to our needs.
*/
i = 0;
if (at24->chip.flags & AT24_FLAG_ADDR16)
msgbuf[i++] = offset >> 8;
msgbuf[i++] = offset;
msg[0].addr = client->addr;
msg[0].buf = msgbuf;
msg[0].len = i;
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].buf = buf;
msg[1].len = count;
loop_until_timeout(timeout, read_time) {
status = i2c_transfer(client->adapter, msg, 2);
if (status == 2)
status = count;
dev_dbg(&client->dev, "read %zu@%d --> %d (%ld)\n",
count, offset, status, jiffies);
if (status == count)
return count;
}
return -ETIMEDOUT;
}
static ssize_t at24_eeprom_read_serial(struct at24_data *at24, char *buf,
unsigned int offset, size_t count)
{
unsigned long timeout, read_time;
struct i2c_client *client;
struct i2c_msg msg[2];
u8 addrbuf[2];
int status;
client = at24_translate_offset(at24, &offset);
memset(msg, 0, sizeof(msg));
msg[0].addr = client->addr;
msg[0].buf = addrbuf;
/*
* The address pointer of the device is shared between the regular
* EEPROM array and the serial number block. The dummy write (part of
* the sequential read protocol) ensures the address pointer is reset
* to the desired position.
*/
if (at24->chip.flags & AT24_FLAG_ADDR16) {
/*
* For 16 bit address pointers, the word address must contain
* a '10' sequence in bits 11 and 10 regardless of the
* intended position of the address pointer.
*/
addrbuf[0] = 0x08;
addrbuf[1] = offset;
msg[0].len = 2;
} else {
/*
* Otherwise the word address must begin with a '10' sequence,
* regardless of the intended address.
*/
addrbuf[0] = 0x80 + offset;
msg[0].len = 1;
}
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].buf = buf;
msg[1].len = count;
loop_until_timeout(timeout, read_time) {
status = i2c_transfer(client->adapter, msg, 2);
if (status == 2)
return count;
}
return -ETIMEDOUT;
}
static ssize_t at24_eeprom_read_mac(struct at24_data *at24, char *buf,
unsigned int offset, size_t count)
{
unsigned long timeout, read_time;
struct i2c_client *client;
struct i2c_msg msg[2];
u8 addrbuf[2];
int status;
client = at24_translate_offset(at24, &offset);
memset(msg, 0, sizeof(msg));
msg[0].addr = client->addr;
msg[0].buf = addrbuf;
addrbuf[0] = 0x90 + offset;
msg[0].len = 1;
msg[1].addr = client->addr;
msg[1].flags = I2C_M_RD;
msg[1].buf = buf;
msg[1].len = count;
loop_until_timeout(timeout, read_time) {
status = i2c_transfer(client->adapter, msg, 2);
if (status == 2)
return count;
}
return -ETIMEDOUT;
}
/*
* Note that if the hardware write-protect pin is pulled high, the whole
* chip is normally write protected. But there are plenty of product
* variants here, including OTP fuses and partial chip protect.
*
* We only use page mode writes; the alternative is sloooow. These routines
* write at most one page.
*/
static size_t at24_adjust_write_count(struct at24_data *at24,
unsigned int offset, size_t count)
{
unsigned next_page;
/* write_max is at most a page */
if (count > at24->write_max)
count = at24->write_max;
/* Never roll over backwards, to the start of this page */
next_page = roundup(offset + 1, at24->chip.page_size);
if (offset + count > next_page)
count = next_page - offset;
return count;
}
static ssize_t at24_eeprom_write_smbus_block(struct at24_data *at24,
const char *buf,
unsigned int offset, size_t count)
{
unsigned long timeout, write_time;
struct i2c_client *client;
ssize_t status = 0;
client = at24_translate_offset(at24, &offset);
count = at24_adjust_write_count(at24, offset, count);
loop_until_timeout(timeout, write_time) {
status = i2c_smbus_write_i2c_block_data(client,
offset, count, buf);
if (status == 0)
status = count;
dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
count, offset, status, jiffies);
if (status == count)
return count;
}
return -ETIMEDOUT;
}
static ssize_t at24_eeprom_write_smbus_byte(struct at24_data *at24,
const char *buf,
unsigned int offset, size_t count)
{
unsigned long timeout, write_time;
struct i2c_client *client;
ssize_t status = 0;
client = at24_translate_offset(at24, &offset);
loop_until_timeout(timeout, write_time) {
status = i2c_smbus_write_byte_data(client, offset, buf[0]);
if (status == 0)
status = count;
dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
count, offset, status, jiffies);
if (status == count)
return count;
}
return -ETIMEDOUT;
}
static ssize_t at24_eeprom_write_i2c(struct at24_data *at24, const char *buf,
unsigned int offset, size_t count)
{
unsigned long timeout, write_time;
struct i2c_client *client;
struct i2c_msg msg;
ssize_t status = 0;
int i = 0;
client = at24_translate_offset(at24, &offset);
count = at24_adjust_write_count(at24, offset, count);
msg.addr = client->addr;
msg.flags = 0;
/* msg.buf is u8 and casts will mask the values */
msg.buf = at24->writebuf;
if (at24->chip.flags & AT24_FLAG_ADDR16)
msg.buf[i++] = offset >> 8;
msg.buf[i++] = offset;
memcpy(&msg.buf[i], buf, count);
msg.len = i + count;
loop_until_timeout(timeout, write_time) {
status = i2c_transfer(client->adapter, &msg, 1);
if (status == 1)
status = count;
dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
count, offset, status, jiffies);
if (status == count)
return count;
}
return -ETIMEDOUT;
}
@@ -266,7 +515,7 @@ static int at24_read(void *priv, unsigned int off, void *val, size_t count)
while (count) {
int status;
status = at24_eeprom_read(at24, buf, off, count);
status = at24->read_func(at24, buf, off, count);
if (status < 0) {
mutex_unlock(&at24->lock);
return status;
@@ -281,91 +530,6 @@ static int at24_read(void *priv, unsigned int off, void *val, size_t count)
return 0;
}
/*
* Note that if the hardware write-protect pin is pulled high, the whole
* chip is normally write protected. But there are plenty of product
* variants here, including OTP fuses and partial chip protect.
*
* We only use page mode writes; the alternative is sloooow. This routine
* writes at most one page.
*/
static ssize_t at24_eeprom_write(struct at24_data *at24, const char *buf,
unsigned offset, size_t count)
{
struct i2c_client *client;
struct i2c_msg msg;
ssize_t status = 0;
unsigned long timeout, write_time;
unsigned next_page;
/* Get corresponding I2C address and adjust offset */
client = at24_translate_offset(at24, &offset);
/* write_max is at most a page */
if (count > at24->write_max)
count = at24->write_max;
/* Never roll over backwards, to the start of this page */
next_page = roundup(offset + 1, at24->chip.page_size);
if (offset + count > next_page)
count = next_page - offset;
/* If we'll use I2C calls for I/O, set up the message */
if (!at24->use_smbus) {
int i = 0;
msg.addr = client->addr;
msg.flags = 0;
/* msg.buf is u8 and casts will mask the values */
msg.buf = at24->writebuf;
if (at24->chip.flags & AT24_FLAG_ADDR16)
msg.buf[i++] = offset >> 8;
msg.buf[i++] = offset;
memcpy(&msg.buf[i], buf, count);
msg.len = i + count;
}
/*
* Writes fail if the previous one didn't complete yet. We may
* loop a few times until this one succeeds, waiting at least
* long enough for one entire page write to work.
*/
timeout = jiffies + msecs_to_jiffies(write_timeout);
do {
write_time = jiffies;
if (at24->use_smbus_write) {
switch (at24->use_smbus_write) {
case I2C_SMBUS_I2C_BLOCK_DATA:
status = i2c_smbus_write_i2c_block_data(client,
offset, count, buf);
break;
case I2C_SMBUS_BYTE_DATA:
status = i2c_smbus_write_byte_data(client,
offset, buf[0]);
break;
}
if (status == 0)
status = count;
} else {
status = i2c_transfer(client->adapter, &msg, 1);
if (status == 1)
status = count;
}
dev_dbg(&client->dev, "write %zu@%d --> %zd (%ld)\n",
count, offset, status, jiffies);
if (status == count)
return count;
usleep_range(1000, 1500);
} while (time_before(write_time, timeout));
return -ETIMEDOUT;
}
static int at24_write(void *priv, unsigned int off, void *val, size_t count)
{
struct at24_data *at24 = priv;
@@ -383,7 +547,7 @@ static int at24_write(void *priv, unsigned int off, void *val, size_t count)
while (count) {
int status;
status = at24_eeprom_write(at24, buf, off, count);
status = at24->write_func(at24, buf, off, count);
if (status < 0) {
mutex_unlock(&at24->lock);
return status;
@@ -400,7 +564,7 @@ static int at24_write(void *priv, unsigned int off, void *val, size_t count)
#ifdef CONFIG_OF
static void at24_get_ofdata(struct i2c_client *client,
struct at24_platform_data *chip)
struct at24_platform_data *chip)
{
const __be32 *val;
struct device_node *node = client->dev.of_node;
@@ -415,7 +579,7 @@ static void at24_get_ofdata(struct i2c_client *client,
}
#else
static void at24_get_ofdata(struct i2c_client *client,
struct at24_platform_data *chip)
struct at24_platform_data *chip)
{ }
#endif /* CONFIG_OF */
@@ -518,6 +682,30 @@ static int at24_probe(struct i2c_client *client, const struct i2c_device_id *id)
at24->chip = chip;
at24->num_addresses = num_addresses;
if ((chip.flags & AT24_FLAG_SERIAL) && (chip.flags & AT24_FLAG_MAC)) {
dev_err(&client->dev,
"invalid device data - cannot have both AT24_FLAG_SERIAL & AT24_FLAG_MAC.");
return -EINVAL;
}
if (chip.flags & AT24_FLAG_SERIAL) {
at24->read_func = at24_eeprom_read_serial;
} else if (chip.flags & AT24_FLAG_MAC) {
at24->read_func = at24_eeprom_read_mac;
} else {
at24->read_func = at24->use_smbus ? at24_eeprom_read_smbus
: at24_eeprom_read_i2c;
}
if (at24->use_smbus) {
if (at24->use_smbus_write == I2C_SMBUS_I2C_BLOCK_DATA)
at24->write_func = at24_eeprom_write_smbus_block;
else
at24->write_func = at24_eeprom_write_smbus_byte;
} else {
at24->write_func = at24_eeprom_write_i2c;
}
writable = !(chip.flags & AT24_FLAG_READONLY);
if (writable) {
if (!use_smbus || use_smbus_write) {