security: Fix setting of PF_SUPERPRIV by __capable()
Fix the setting of PF_SUPERPRIV by __capable() as it could corrupt the flags the target process if that is not the current process and it is trying to change its own flags in a different way at the same time. __capable() is using neither atomic ops nor locking to protect t->flags. This patch removes __capable() and introduces has_capability() that doesn't set PF_SUPERPRIV on the process being queried. This patch further splits security_ptrace() in two: (1) security_ptrace_may_access(). This passes judgement on whether one process may access another only (PTRACE_MODE_ATTACH for ptrace() and PTRACE_MODE_READ for /proc), and takes a pointer to the child process. current is the parent. (2) security_ptrace_traceme(). This passes judgement on PTRACE_TRACEME only, and takes only a pointer to the parent process. current is the child. In Smack and commoncap, this uses has_capability() to determine whether the parent will be permitted to use PTRACE_ATTACH if normal checks fail. This does not set PF_SUPERPRIV. Two of the instances of __capable() actually only act on current, and so have been changed to calls to capable(). Of the places that were using __capable(): (1) The OOM killer calls __capable() thrice when weighing the killability of a process. All of these now use has_capability(). (2) cap_ptrace() and smack_ptrace() were using __capable() to check to see whether the parent was allowed to trace any process. As mentioned above, these have been split. For PTRACE_ATTACH and /proc, capable() is now used, and for PTRACE_TRACEME, has_capability() is used. (3) cap_safe_nice() only ever saw current, so now uses capable(). (4) smack_setprocattr() rejected accesses to tasks other than current just after calling __capable(), so the order of these two tests have been switched and capable() is used instead. (5) In smack_file_send_sigiotask(), we need to allow privileged processes to receive SIGIO on files they're manipulating. (6) In smack_task_wait(), we let a process wait for a privileged process, whether or not the process doing the waiting is privileged. I've tested this with the LTP SELinux and syscalls testscripts. Signed-off-by: David Howells <dhowells@redhat.com> Acked-by: Serge Hallyn <serue@us.ibm.com> Acked-by: Casey Schaufler <casey@schaufler-ca.com> Acked-by: Andrew G. Morgan <morgan@kernel.org> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: James Morris <jmorris@namei.org>
This commit is contained in:

committed by
James Morris

parent
8d0968abd0
commit
5cd9c58fbe
@@ -46,8 +46,8 @@ struct audit_krule;
|
||||
*/
|
||||
extern int cap_capable(struct task_struct *tsk, int cap);
|
||||
extern int cap_settime(struct timespec *ts, struct timezone *tz);
|
||||
extern int cap_ptrace(struct task_struct *parent, struct task_struct *child,
|
||||
unsigned int mode);
|
||||
extern int cap_ptrace_may_access(struct task_struct *child, unsigned int mode);
|
||||
extern int cap_ptrace_traceme(struct task_struct *parent);
|
||||
extern int cap_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
|
||||
extern int cap_capset_check(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
|
||||
extern void cap_capset_set(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
|
||||
@@ -1157,17 +1157,24 @@ static inline void security_free_mnt_opts(struct security_mnt_opts *opts)
|
||||
* @alter contains the flag indicating whether changes are to be made.
|
||||
* Return 0 if permission is granted.
|
||||
*
|
||||
* @ptrace:
|
||||
* Check permission before allowing the @parent process to trace the
|
||||
* @ptrace_may_access:
|
||||
* Check permission before allowing the current process to trace the
|
||||
* @child process.
|
||||
* Security modules may also want to perform a process tracing check
|
||||
* during an execve in the set_security or apply_creds hooks of
|
||||
* binprm_security_ops if the process is being traced and its security
|
||||
* attributes would be changed by the execve.
|
||||
* @parent contains the task_struct structure for parent process.
|
||||
* @child contains the task_struct structure for child process.
|
||||
* @child contains the task_struct structure for the target process.
|
||||
* @mode contains the PTRACE_MODE flags indicating the form of access.
|
||||
* Return 0 if permission is granted.
|
||||
* @ptrace_traceme:
|
||||
* Check that the @parent process has sufficient permission to trace the
|
||||
* current process before allowing the current process to present itself
|
||||
* to the @parent process for tracing.
|
||||
* The parent process will still have to undergo the ptrace_may_access
|
||||
* checks before it is allowed to trace this one.
|
||||
* @parent contains the task_struct structure for debugger process.
|
||||
* Return 0 if permission is granted.
|
||||
* @capget:
|
||||
* Get the @effective, @inheritable, and @permitted capability sets for
|
||||
* the @target process. The hook may also perform permission checking to
|
||||
@@ -1287,8 +1294,8 @@ static inline void security_free_mnt_opts(struct security_mnt_opts *opts)
|
||||
struct security_operations {
|
||||
char name[SECURITY_NAME_MAX + 1];
|
||||
|
||||
int (*ptrace) (struct task_struct *parent, struct task_struct *child,
|
||||
unsigned int mode);
|
||||
int (*ptrace_may_access) (struct task_struct *child, unsigned int mode);
|
||||
int (*ptrace_traceme) (struct task_struct *parent);
|
||||
int (*capget) (struct task_struct *target,
|
||||
kernel_cap_t *effective,
|
||||
kernel_cap_t *inheritable, kernel_cap_t *permitted);
|
||||
@@ -1560,8 +1567,8 @@ extern struct dentry *securityfs_create_dir(const char *name, struct dentry *par
|
||||
extern void securityfs_remove(struct dentry *dentry);
|
||||
|
||||
/* Security operations */
|
||||
int security_ptrace(struct task_struct *parent, struct task_struct *child,
|
||||
unsigned int mode);
|
||||
int security_ptrace_may_access(struct task_struct *child, unsigned int mode);
|
||||
int security_ptrace_traceme(struct task_struct *parent);
|
||||
int security_capget(struct task_struct *target,
|
||||
kernel_cap_t *effective,
|
||||
kernel_cap_t *inheritable,
|
||||
@@ -1742,11 +1749,15 @@ static inline int security_init(void)
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline int security_ptrace(struct task_struct *parent,
|
||||
struct task_struct *child,
|
||||
unsigned int mode)
|
||||
static inline int security_ptrace_may_access(struct task_struct *child,
|
||||
unsigned int mode)
|
||||
{
|
||||
return cap_ptrace(parent, child, mode);
|
||||
return cap_ptrace_may_access(child, mode);
|
||||
}
|
||||
|
||||
static inline int security_ptrace_traceme(struct task_struct *child)
|
||||
{
|
||||
return cap_ptrace_traceme(parent);
|
||||
}
|
||||
|
||||
static inline int security_capget(struct task_struct *target,
|
||||
|
Reference in New Issue
Block a user