Drop flex_arrays
All existing users have been converted to generic radix trees Link: http://lkml.kernel.org/r/20181217131929.11727-8-kent.overstreet@gmail.com Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> Acked-by: Dave Hansen <dave.hansen@intel.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Eric Paris <eparis@parisplace.org> Cc: Marcelo Ricardo Leitner <marcelo.leitner@gmail.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Neil Horman <nhorman@tuxdriver.com> Cc: Paul Moore <paul@paul-moore.com> Cc: Pravin B Shelar <pshelar@ovn.org> Cc: Shaohua Li <shli@kernel.org> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Vlad Yasevich <vyasevich@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:

committed by
Linus Torvalds

parent
2075e50caf
commit
586187d7de
@@ -1,130 +0,0 @@
|
||||
|
||||
===================================
|
||||
Using flexible arrays in the kernel
|
||||
===================================
|
||||
|
||||
Large contiguous memory allocations can be unreliable in the Linux kernel.
|
||||
Kernel programmers will sometimes respond to this problem by allocating
|
||||
pages with :c:func:`vmalloc()`. This solution not ideal, though. On 32-bit
|
||||
systems, memory from vmalloc() must be mapped into a relatively small address
|
||||
space; it's easy to run out. On SMP systems, the page table changes required
|
||||
by vmalloc() allocations can require expensive cross-processor interrupts on
|
||||
all CPUs. And, on all systems, use of space in the vmalloc() range increases
|
||||
pressure on the translation lookaside buffer (TLB), reducing the performance
|
||||
of the system.
|
||||
|
||||
In many cases, the need for memory from vmalloc() can be eliminated by piecing
|
||||
together an array from smaller parts; the flexible array library exists to make
|
||||
this task easier.
|
||||
|
||||
A flexible array holds an arbitrary (within limits) number of fixed-sized
|
||||
objects, accessed via an integer index. Sparse arrays are handled
|
||||
reasonably well. Only single-page allocations are made, so memory
|
||||
allocation failures should be relatively rare. The down sides are that the
|
||||
arrays cannot be indexed directly, individual object size cannot exceed the
|
||||
system page size, and putting data into a flexible array requires a copy
|
||||
operation. It's also worth noting that flexible arrays do no internal
|
||||
locking at all; if concurrent access to an array is possible, then the
|
||||
caller must arrange for appropriate mutual exclusion.
|
||||
|
||||
The creation of a flexible array is done with :c:func:`flex_array_alloc()`::
|
||||
|
||||
#include <linux/flex_array.h>
|
||||
|
||||
struct flex_array *flex_array_alloc(int element_size,
|
||||
unsigned int total,
|
||||
gfp_t flags);
|
||||
|
||||
The individual object size is provided by ``element_size``, while total is the
|
||||
maximum number of objects which can be stored in the array. The flags
|
||||
argument is passed directly to the internal memory allocation calls. With
|
||||
the current code, using flags to ask for high memory is likely to lead to
|
||||
notably unpleasant side effects.
|
||||
|
||||
It is also possible to define flexible arrays at compile time with::
|
||||
|
||||
DEFINE_FLEX_ARRAY(name, element_size, total);
|
||||
|
||||
This macro will result in a definition of an array with the given name; the
|
||||
element size and total will be checked for validity at compile time.
|
||||
|
||||
Storing data into a flexible array is accomplished with a call to
|
||||
:c:func:`flex_array_put()`::
|
||||
|
||||
int flex_array_put(struct flex_array *array, unsigned int element_nr,
|
||||
void *src, gfp_t flags);
|
||||
|
||||
This call will copy the data from src into the array, in the position
|
||||
indicated by ``element_nr`` (which must be less than the maximum specified when
|
||||
the array was created). If any memory allocations must be performed, flags
|
||||
will be used. The return value is zero on success, a negative error code
|
||||
otherwise.
|
||||
|
||||
There might possibly be a need to store data into a flexible array while
|
||||
running in some sort of atomic context; in this situation, sleeping in the
|
||||
memory allocator would be a bad thing. That can be avoided by using
|
||||
``GFP_ATOMIC`` for the flags value, but, often, there is a better way. The
|
||||
trick is to ensure that any needed memory allocations are done before
|
||||
entering atomic context, using :c:func:`flex_array_prealloc()`::
|
||||
|
||||
int flex_array_prealloc(struct flex_array *array, unsigned int start,
|
||||
unsigned int nr_elements, gfp_t flags);
|
||||
|
||||
This function will ensure that memory for the elements indexed in the range
|
||||
defined by ``start`` and ``nr_elements`` has been allocated. Thereafter, a
|
||||
``flex_array_put()`` call on an element in that range is guaranteed not to
|
||||
block.
|
||||
|
||||
Getting data back out of the array is done with :c:func:`flex_array_get()`::
|
||||
|
||||
void *flex_array_get(struct flex_array *fa, unsigned int element_nr);
|
||||
|
||||
The return value is a pointer to the data element, or NULL if that
|
||||
particular element has never been allocated.
|
||||
|
||||
Note that it is possible to get back a valid pointer for an element which
|
||||
has never been stored in the array. Memory for array elements is allocated
|
||||
one page at a time; a single allocation could provide memory for several
|
||||
adjacent elements. Flexible array elements are normally initialized to the
|
||||
value ``FLEX_ARRAY_FREE`` (defined as 0x6c in <linux/poison.h>), so errors
|
||||
involving that number probably result from use of unstored array entries.
|
||||
Note that, if array elements are allocated with ``__GFP_ZERO``, they will be
|
||||
initialized to zero and this poisoning will not happen.
|
||||
|
||||
Individual elements in the array can be cleared with
|
||||
:c:func:`flex_array_clear()`::
|
||||
|
||||
int flex_array_clear(struct flex_array *array, unsigned int element_nr);
|
||||
|
||||
This function will set the given element to ``FLEX_ARRAY_FREE`` and return
|
||||
zero. If storage for the indicated element is not allocated for the array,
|
||||
``flex_array_clear()`` will return ``-EINVAL`` instead. Note that clearing an
|
||||
element does not release the storage associated with it; to reduce the
|
||||
allocated size of an array, call :c:func:`flex_array_shrink()`::
|
||||
|
||||
int flex_array_shrink(struct flex_array *array);
|
||||
|
||||
The return value will be the number of pages of memory actually freed.
|
||||
This function works by scanning the array for pages containing nothing but
|
||||
``FLEX_ARRAY_FREE`` bytes, so (1) it can be expensive, and (2) it will not work
|
||||
if the array's pages are allocated with ``__GFP_ZERO``.
|
||||
|
||||
It is possible to remove all elements of an array with a call to
|
||||
:c:func:`flex_array_free_parts()`::
|
||||
|
||||
void flex_array_free_parts(struct flex_array *array);
|
||||
|
||||
This call frees all elements, but leaves the array itself in place.
|
||||
Freeing the entire array is done with :c:func:`flex_array_free()`::
|
||||
|
||||
void flex_array_free(struct flex_array *array);
|
||||
|
||||
As of this writing, there are no users of flexible arrays in the mainline
|
||||
kernel. The functions described here are also not exported to modules;
|
||||
that will probably be fixed when somebody comes up with a need for it.
|
||||
|
||||
|
||||
Flexible array functions
|
||||
------------------------
|
||||
|
||||
.. kernel-doc:: include/linux/flex_array.h
|
Reference in New Issue
Block a user