arch/tile: adopt prepare_exit_to_usermode() model from x86

This change is a prerequisite change for TASK_ISOLATION but also
stands on its own for readability and maintainability.  The existing
tile do_work_pending() was called in a loop from assembly on
the slow path; this change moves the loop into C code as well.
For the x86 version see commit c5c46f59e4 ("x86/entry: Add new,
comprehensible entry and exit handlers written in C").

This change exposes a pre-existing bug on the older tilepro platform;
the singlestep processing is done last, but on tilepro (unlike tilegx)
we enable interrupts while doing that processing, so we could in
theory miss a signal or other asynchronous event.  A future change
could fix this by breaking the singlestep work into a "prepare"
step done in the main loop, and a "trigger" step done after exiting
the loop.  Since this change is intended as purely a restructuring
change, we call out the bug explicitly now, but don't yet fix it.

Signed-off-by: Chris Metcalf <cmetcalf@ezchip.com>
This commit is contained in:
Chris Metcalf
2015-09-22 14:49:41 -04:00
parent 65a792e84f
commit 583b24a210
5 changed files with 81 additions and 111 deletions

View File

@@ -462,54 +462,57 @@ struct task_struct *__sched _switch_to(struct task_struct *prev,
/*
* This routine is called on return from interrupt if any of the
* TIF_WORK_MASK flags are set in thread_info->flags. It is
* entered with interrupts disabled so we don't miss an event
* that modified the thread_info flags. If any flag is set, we
* handle it and return, and the calling assembly code will
* re-disable interrupts, reload the thread flags, and call back
* if more flags need to be handled.
*
* We return whether we need to check the thread_info flags again
* or not. Note that we don't clear TIF_SINGLESTEP here, so it's
* important that it be tested last, and then claim that we don't
* need to recheck the flags.
* TIF_ALLWORK_MASK flags are set in thread_info->flags. It is
* entered with interrupts disabled so we don't miss an event that
* modified the thread_info flags. We loop until all the tested flags
* are clear. Note that the function is called on certain conditions
* that are not listed in the loop condition here (e.g. SINGLESTEP)
* which guarantees we will do those things once, and redo them if any
* of the other work items is re-done, but won't continue looping if
* all the other work is done.
*/
int do_work_pending(struct pt_regs *regs, u32 thread_info_flags)
void prepare_exit_to_usermode(struct pt_regs *regs, u32 thread_info_flags)
{
/* If we enter in kernel mode, do nothing and exit the caller loop. */
if (!user_mode(regs))
return 0;
if (WARN_ON(!user_mode(regs)))
return;
user_exit();
do {
local_irq_enable();
/* Enable interrupts; they are disabled again on return to caller. */
local_irq_enable();
if (thread_info_flags & _TIF_NEED_RESCHED)
schedule();
if (thread_info_flags & _TIF_NEED_RESCHED) {
schedule();
return 1;
}
#if CHIP_HAS_TILE_DMA()
if (thread_info_flags & _TIF_ASYNC_TLB) {
do_async_page_fault(regs);
return 1;
}
if (thread_info_flags & _TIF_ASYNC_TLB)
do_async_page_fault(regs);
#endif
if (thread_info_flags & _TIF_SIGPENDING) {
do_signal(regs);
return 1;
}
if (thread_info_flags & _TIF_NOTIFY_RESUME) {
clear_thread_flag(TIF_NOTIFY_RESUME);
tracehook_notify_resume(regs);
return 1;
}
if (thread_info_flags & _TIF_SINGLESTEP)
if (thread_info_flags & _TIF_SIGPENDING)
do_signal(regs);
if (thread_info_flags & _TIF_NOTIFY_RESUME) {
clear_thread_flag(TIF_NOTIFY_RESUME);
tracehook_notify_resume(regs);
}
local_irq_disable();
thread_info_flags = READ_ONCE(current_thread_info()->flags);
} while (thread_info_flags & _TIF_WORK_MASK);
if (thread_info_flags & _TIF_SINGLESTEP) {
single_step_once(regs);
#ifndef __tilegx__
/*
* FIXME: on tilepro, since we enable interrupts in
* this routine, it's possible that we miss a signal
* or other asynchronous event.
*/
local_irq_disable();
#endif
}
user_enter();
return 0;
}
unsigned long get_wchan(struct task_struct *p)