Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
Conflicts: drivers/net/bonding/bond_alb.c drivers/net/ethernet/altera/altera_msgdma.c drivers/net/ethernet/altera/altera_sgdma.c net/ipv6/xfrm6_output.c Several cases of overlapping changes. The xfrm6_output.c has a bug fix which overlaps the renaming of skb->local_df to skb->ignore_df. In the Altera TSE driver cases, the register access cleanups in net-next overlapped with bug fixes done in net. Similarly a bug fix to send ALB packets in the bonding driver using the right source address overlaps with cleanups in net-next. Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
@@ -348,7 +348,7 @@ struct cgrp_cset_link {
|
||||
* reference-counted, to improve performance when child cgroups
|
||||
* haven't been created.
|
||||
*/
|
||||
static struct css_set init_css_set = {
|
||||
struct css_set init_css_set = {
|
||||
.refcount = ATOMIC_INIT(1),
|
||||
.cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
|
||||
.tasks = LIST_HEAD_INIT(init_css_set.tasks),
|
||||
@@ -1495,7 +1495,7 @@ static struct dentry *cgroup_mount(struct file_system_type *fs_type,
|
||||
*/
|
||||
if (!use_task_css_set_links)
|
||||
cgroup_enable_task_cg_lists();
|
||||
retry:
|
||||
|
||||
mutex_lock(&cgroup_tree_mutex);
|
||||
mutex_lock(&cgroup_mutex);
|
||||
|
||||
@@ -1503,7 +1503,7 @@ retry:
|
||||
ret = parse_cgroupfs_options(data, &opts);
|
||||
if (ret)
|
||||
goto out_unlock;
|
||||
|
||||
retry:
|
||||
/* look for a matching existing root */
|
||||
if (!opts.subsys_mask && !opts.none && !opts.name) {
|
||||
cgrp_dfl_root_visible = true;
|
||||
@@ -1562,9 +1562,9 @@ retry:
|
||||
if (!atomic_inc_not_zero(&root->cgrp.refcnt)) {
|
||||
mutex_unlock(&cgroup_mutex);
|
||||
mutex_unlock(&cgroup_tree_mutex);
|
||||
kfree(opts.release_agent);
|
||||
kfree(opts.name);
|
||||
msleep(10);
|
||||
mutex_lock(&cgroup_tree_mutex);
|
||||
mutex_lock(&cgroup_mutex);
|
||||
goto retry;
|
||||
}
|
||||
|
||||
|
@@ -21,6 +21,7 @@
|
||||
#include <linux/uaccess.h>
|
||||
#include <linux/freezer.h>
|
||||
#include <linux/seq_file.h>
|
||||
#include <linux/mutex.h>
|
||||
|
||||
/*
|
||||
* A cgroup is freezing if any FREEZING flags are set. FREEZING_SELF is
|
||||
@@ -42,9 +43,10 @@ enum freezer_state_flags {
|
||||
struct freezer {
|
||||
struct cgroup_subsys_state css;
|
||||
unsigned int state;
|
||||
spinlock_t lock;
|
||||
};
|
||||
|
||||
static DEFINE_MUTEX(freezer_mutex);
|
||||
|
||||
static inline struct freezer *css_freezer(struct cgroup_subsys_state *css)
|
||||
{
|
||||
return css ? container_of(css, struct freezer, css) : NULL;
|
||||
@@ -93,7 +95,6 @@ freezer_css_alloc(struct cgroup_subsys_state *parent_css)
|
||||
if (!freezer)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
spin_lock_init(&freezer->lock);
|
||||
return &freezer->css;
|
||||
}
|
||||
|
||||
@@ -110,14 +111,7 @@ static int freezer_css_online(struct cgroup_subsys_state *css)
|
||||
struct freezer *freezer = css_freezer(css);
|
||||
struct freezer *parent = parent_freezer(freezer);
|
||||
|
||||
/*
|
||||
* The following double locking and freezing state inheritance
|
||||
* guarantee that @cgroup can never escape ancestors' freezing
|
||||
* states. See css_for_each_descendant_pre() for details.
|
||||
*/
|
||||
if (parent)
|
||||
spin_lock_irq(&parent->lock);
|
||||
spin_lock_nested(&freezer->lock, SINGLE_DEPTH_NESTING);
|
||||
mutex_lock(&freezer_mutex);
|
||||
|
||||
freezer->state |= CGROUP_FREEZER_ONLINE;
|
||||
|
||||
@@ -126,10 +120,7 @@ static int freezer_css_online(struct cgroup_subsys_state *css)
|
||||
atomic_inc(&system_freezing_cnt);
|
||||
}
|
||||
|
||||
spin_unlock(&freezer->lock);
|
||||
if (parent)
|
||||
spin_unlock_irq(&parent->lock);
|
||||
|
||||
mutex_unlock(&freezer_mutex);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -144,14 +135,14 @@ static void freezer_css_offline(struct cgroup_subsys_state *css)
|
||||
{
|
||||
struct freezer *freezer = css_freezer(css);
|
||||
|
||||
spin_lock_irq(&freezer->lock);
|
||||
mutex_lock(&freezer_mutex);
|
||||
|
||||
if (freezer->state & CGROUP_FREEZING)
|
||||
atomic_dec(&system_freezing_cnt);
|
||||
|
||||
freezer->state = 0;
|
||||
|
||||
spin_unlock_irq(&freezer->lock);
|
||||
mutex_unlock(&freezer_mutex);
|
||||
}
|
||||
|
||||
static void freezer_css_free(struct cgroup_subsys_state *css)
|
||||
@@ -175,7 +166,7 @@ static void freezer_attach(struct cgroup_subsys_state *new_css,
|
||||
struct task_struct *task;
|
||||
bool clear_frozen = false;
|
||||
|
||||
spin_lock_irq(&freezer->lock);
|
||||
mutex_lock(&freezer_mutex);
|
||||
|
||||
/*
|
||||
* Make the new tasks conform to the current state of @new_css.
|
||||
@@ -197,21 +188,13 @@ static void freezer_attach(struct cgroup_subsys_state *new_css,
|
||||
}
|
||||
}
|
||||
|
||||
spin_unlock_irq(&freezer->lock);
|
||||
|
||||
/*
|
||||
* Propagate FROZEN clearing upwards. We may race with
|
||||
* update_if_frozen(), but as long as both work bottom-up, either
|
||||
* update_if_frozen() sees child's FROZEN cleared or we clear the
|
||||
* parent's FROZEN later. No parent w/ !FROZEN children can be
|
||||
* left FROZEN.
|
||||
*/
|
||||
/* propagate FROZEN clearing upwards */
|
||||
while (clear_frozen && (freezer = parent_freezer(freezer))) {
|
||||
spin_lock_irq(&freezer->lock);
|
||||
freezer->state &= ~CGROUP_FROZEN;
|
||||
clear_frozen = freezer->state & CGROUP_FREEZING;
|
||||
spin_unlock_irq(&freezer->lock);
|
||||
}
|
||||
|
||||
mutex_unlock(&freezer_mutex);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -228,9 +211,6 @@ static void freezer_fork(struct task_struct *task)
|
||||
{
|
||||
struct freezer *freezer;
|
||||
|
||||
rcu_read_lock();
|
||||
freezer = task_freezer(task);
|
||||
|
||||
/*
|
||||
* The root cgroup is non-freezable, so we can skip locking the
|
||||
* freezer. This is safe regardless of race with task migration.
|
||||
@@ -238,24 +218,18 @@ static void freezer_fork(struct task_struct *task)
|
||||
* to do. If we lost and root is the new cgroup, noop is still the
|
||||
* right thing to do.
|
||||
*/
|
||||
if (!parent_freezer(freezer))
|
||||
goto out;
|
||||
if (task_css_is_root(task, freezer_cgrp_id))
|
||||
return;
|
||||
|
||||
/*
|
||||
* Grab @freezer->lock and freeze @task after verifying @task still
|
||||
* belongs to @freezer and it's freezing. The former is for the
|
||||
* case where we have raced against task migration and lost and
|
||||
* @task is already in a different cgroup which may not be frozen.
|
||||
* This isn't strictly necessary as freeze_task() is allowed to be
|
||||
* called spuriously but let's do it anyway for, if nothing else,
|
||||
* documentation.
|
||||
*/
|
||||
spin_lock_irq(&freezer->lock);
|
||||
if (freezer == task_freezer(task) && (freezer->state & CGROUP_FREEZING))
|
||||
mutex_lock(&freezer_mutex);
|
||||
rcu_read_lock();
|
||||
|
||||
freezer = task_freezer(task);
|
||||
if (freezer->state & CGROUP_FREEZING)
|
||||
freeze_task(task);
|
||||
spin_unlock_irq(&freezer->lock);
|
||||
out:
|
||||
|
||||
rcu_read_unlock();
|
||||
mutex_unlock(&freezer_mutex);
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -281,22 +255,24 @@ static void update_if_frozen(struct cgroup_subsys_state *css)
|
||||
struct css_task_iter it;
|
||||
struct task_struct *task;
|
||||
|
||||
WARN_ON_ONCE(!rcu_read_lock_held());
|
||||
|
||||
spin_lock_irq(&freezer->lock);
|
||||
lockdep_assert_held(&freezer_mutex);
|
||||
|
||||
if (!(freezer->state & CGROUP_FREEZING) ||
|
||||
(freezer->state & CGROUP_FROZEN))
|
||||
goto out_unlock;
|
||||
return;
|
||||
|
||||
/* are all (live) children frozen? */
|
||||
rcu_read_lock();
|
||||
css_for_each_child(pos, css) {
|
||||
struct freezer *child = css_freezer(pos);
|
||||
|
||||
if ((child->state & CGROUP_FREEZER_ONLINE) &&
|
||||
!(child->state & CGROUP_FROZEN))
|
||||
goto out_unlock;
|
||||
!(child->state & CGROUP_FROZEN)) {
|
||||
rcu_read_unlock();
|
||||
return;
|
||||
}
|
||||
}
|
||||
rcu_read_unlock();
|
||||
|
||||
/* are all tasks frozen? */
|
||||
css_task_iter_start(css, &it);
|
||||
@@ -317,21 +293,29 @@ static void update_if_frozen(struct cgroup_subsys_state *css)
|
||||
freezer->state |= CGROUP_FROZEN;
|
||||
out_iter_end:
|
||||
css_task_iter_end(&it);
|
||||
out_unlock:
|
||||
spin_unlock_irq(&freezer->lock);
|
||||
}
|
||||
|
||||
static int freezer_read(struct seq_file *m, void *v)
|
||||
{
|
||||
struct cgroup_subsys_state *css = seq_css(m), *pos;
|
||||
|
||||
mutex_lock(&freezer_mutex);
|
||||
rcu_read_lock();
|
||||
|
||||
/* update states bottom-up */
|
||||
css_for_each_descendant_post(pos, css)
|
||||
css_for_each_descendant_post(pos, css) {
|
||||
if (!css_tryget(pos))
|
||||
continue;
|
||||
rcu_read_unlock();
|
||||
|
||||
update_if_frozen(pos);
|
||||
|
||||
rcu_read_lock();
|
||||
css_put(pos);
|
||||
}
|
||||
|
||||
rcu_read_unlock();
|
||||
mutex_unlock(&freezer_mutex);
|
||||
|
||||
seq_puts(m, freezer_state_strs(css_freezer(css)->state));
|
||||
seq_putc(m, '\n');
|
||||
@@ -373,7 +357,7 @@ static void freezer_apply_state(struct freezer *freezer, bool freeze,
|
||||
unsigned int state)
|
||||
{
|
||||
/* also synchronizes against task migration, see freezer_attach() */
|
||||
lockdep_assert_held(&freezer->lock);
|
||||
lockdep_assert_held(&freezer_mutex);
|
||||
|
||||
if (!(freezer->state & CGROUP_FREEZER_ONLINE))
|
||||
return;
|
||||
@@ -414,31 +398,29 @@ static void freezer_change_state(struct freezer *freezer, bool freeze)
|
||||
* descendant will try to inherit its parent's FREEZING state as
|
||||
* CGROUP_FREEZING_PARENT.
|
||||
*/
|
||||
mutex_lock(&freezer_mutex);
|
||||
rcu_read_lock();
|
||||
css_for_each_descendant_pre(pos, &freezer->css) {
|
||||
struct freezer *pos_f = css_freezer(pos);
|
||||
struct freezer *parent = parent_freezer(pos_f);
|
||||
|
||||
spin_lock_irq(&pos_f->lock);
|
||||
if (!css_tryget(pos))
|
||||
continue;
|
||||
rcu_read_unlock();
|
||||
|
||||
if (pos_f == freezer) {
|
||||
if (pos_f == freezer)
|
||||
freezer_apply_state(pos_f, freeze,
|
||||
CGROUP_FREEZING_SELF);
|
||||
} else {
|
||||
/*
|
||||
* Our update to @parent->state is already visible
|
||||
* which is all we need. No need to lock @parent.
|
||||
* For more info on synchronization, see
|
||||
* freezer_post_create().
|
||||
*/
|
||||
else
|
||||
freezer_apply_state(pos_f,
|
||||
parent->state & CGROUP_FREEZING,
|
||||
CGROUP_FREEZING_PARENT);
|
||||
}
|
||||
|
||||
spin_unlock_irq(&pos_f->lock);
|
||||
rcu_read_lock();
|
||||
css_put(pos);
|
||||
}
|
||||
rcu_read_unlock();
|
||||
mutex_unlock(&freezer_mutex);
|
||||
}
|
||||
|
||||
static int freezer_write(struct cgroup_subsys_state *css, struct cftype *cft,
|
||||
|
@@ -120,7 +120,7 @@ void context_tracking_user_enter(void)
|
||||
* instead of preempt_schedule() to exit user context if needed before
|
||||
* calling the scheduler.
|
||||
*/
|
||||
asmlinkage void __sched notrace preempt_schedule_context(void)
|
||||
asmlinkage __visible void __sched notrace preempt_schedule_context(void)
|
||||
{
|
||||
enum ctx_state prev_ctx;
|
||||
|
||||
|
@@ -1443,6 +1443,11 @@ group_sched_out(struct perf_event *group_event,
|
||||
cpuctx->exclusive = 0;
|
||||
}
|
||||
|
||||
struct remove_event {
|
||||
struct perf_event *event;
|
||||
bool detach_group;
|
||||
};
|
||||
|
||||
/*
|
||||
* Cross CPU call to remove a performance event
|
||||
*
|
||||
@@ -1451,12 +1456,15 @@ group_sched_out(struct perf_event *group_event,
|
||||
*/
|
||||
static int __perf_remove_from_context(void *info)
|
||||
{
|
||||
struct perf_event *event = info;
|
||||
struct remove_event *re = info;
|
||||
struct perf_event *event = re->event;
|
||||
struct perf_event_context *ctx = event->ctx;
|
||||
struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
|
||||
|
||||
raw_spin_lock(&ctx->lock);
|
||||
event_sched_out(event, cpuctx, ctx);
|
||||
if (re->detach_group)
|
||||
perf_group_detach(event);
|
||||
list_del_event(event, ctx);
|
||||
if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
|
||||
ctx->is_active = 0;
|
||||
@@ -1481,10 +1489,14 @@ static int __perf_remove_from_context(void *info)
|
||||
* When called from perf_event_exit_task, it's OK because the
|
||||
* context has been detached from its task.
|
||||
*/
|
||||
static void perf_remove_from_context(struct perf_event *event)
|
||||
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
|
||||
{
|
||||
struct perf_event_context *ctx = event->ctx;
|
||||
struct task_struct *task = ctx->task;
|
||||
struct remove_event re = {
|
||||
.event = event,
|
||||
.detach_group = detach_group,
|
||||
};
|
||||
|
||||
lockdep_assert_held(&ctx->mutex);
|
||||
|
||||
@@ -1493,12 +1505,12 @@ static void perf_remove_from_context(struct perf_event *event)
|
||||
* Per cpu events are removed via an smp call and
|
||||
* the removal is always successful.
|
||||
*/
|
||||
cpu_function_call(event->cpu, __perf_remove_from_context, event);
|
||||
cpu_function_call(event->cpu, __perf_remove_from_context, &re);
|
||||
return;
|
||||
}
|
||||
|
||||
retry:
|
||||
if (!task_function_call(task, __perf_remove_from_context, event))
|
||||
if (!task_function_call(task, __perf_remove_from_context, &re))
|
||||
return;
|
||||
|
||||
raw_spin_lock_irq(&ctx->lock);
|
||||
@@ -1515,6 +1527,8 @@ retry:
|
||||
* Since the task isn't running, its safe to remove the event, us
|
||||
* holding the ctx->lock ensures the task won't get scheduled in.
|
||||
*/
|
||||
if (detach_group)
|
||||
perf_group_detach(event);
|
||||
list_del_event(event, ctx);
|
||||
raw_spin_unlock_irq(&ctx->lock);
|
||||
}
|
||||
@@ -3178,7 +3192,8 @@ static void free_event_rcu(struct rcu_head *head)
|
||||
}
|
||||
|
||||
static void ring_buffer_put(struct ring_buffer *rb);
|
||||
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
|
||||
static void ring_buffer_attach(struct perf_event *event,
|
||||
struct ring_buffer *rb);
|
||||
|
||||
static void unaccount_event_cpu(struct perf_event *event, int cpu)
|
||||
{
|
||||
@@ -3238,8 +3253,6 @@ static void free_event(struct perf_event *event)
|
||||
unaccount_event(event);
|
||||
|
||||
if (event->rb) {
|
||||
struct ring_buffer *rb;
|
||||
|
||||
/*
|
||||
* Can happen when we close an event with re-directed output.
|
||||
*
|
||||
@@ -3247,12 +3260,7 @@ static void free_event(struct perf_event *event)
|
||||
* over us; possibly making our ring_buffer_put() the last.
|
||||
*/
|
||||
mutex_lock(&event->mmap_mutex);
|
||||
rb = event->rb;
|
||||
if (rb) {
|
||||
rcu_assign_pointer(event->rb, NULL);
|
||||
ring_buffer_detach(event, rb);
|
||||
ring_buffer_put(rb); /* could be last */
|
||||
}
|
||||
ring_buffer_attach(event, NULL);
|
||||
mutex_unlock(&event->mmap_mutex);
|
||||
}
|
||||
|
||||
@@ -3281,10 +3289,7 @@ int perf_event_release_kernel(struct perf_event *event)
|
||||
* to trigger the AB-BA case.
|
||||
*/
|
||||
mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
|
||||
raw_spin_lock_irq(&ctx->lock);
|
||||
perf_group_detach(event);
|
||||
raw_spin_unlock_irq(&ctx->lock);
|
||||
perf_remove_from_context(event);
|
||||
perf_remove_from_context(event, true);
|
||||
mutex_unlock(&ctx->mutex);
|
||||
|
||||
free_event(event);
|
||||
@@ -3839,28 +3844,47 @@ unlock:
|
||||
static void ring_buffer_attach(struct perf_event *event,
|
||||
struct ring_buffer *rb)
|
||||
{
|
||||
struct ring_buffer *old_rb = NULL;
|
||||
unsigned long flags;
|
||||
|
||||
if (!list_empty(&event->rb_entry))
|
||||
return;
|
||||
if (event->rb) {
|
||||
/*
|
||||
* Should be impossible, we set this when removing
|
||||
* event->rb_entry and wait/clear when adding event->rb_entry.
|
||||
*/
|
||||
WARN_ON_ONCE(event->rcu_pending);
|
||||
|
||||
spin_lock_irqsave(&rb->event_lock, flags);
|
||||
if (list_empty(&event->rb_entry))
|
||||
list_add(&event->rb_entry, &rb->event_list);
|
||||
spin_unlock_irqrestore(&rb->event_lock, flags);
|
||||
}
|
||||
old_rb = event->rb;
|
||||
event->rcu_batches = get_state_synchronize_rcu();
|
||||
event->rcu_pending = 1;
|
||||
|
||||
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
|
||||
{
|
||||
unsigned long flags;
|
||||
spin_lock_irqsave(&old_rb->event_lock, flags);
|
||||
list_del_rcu(&event->rb_entry);
|
||||
spin_unlock_irqrestore(&old_rb->event_lock, flags);
|
||||
}
|
||||
|
||||
if (list_empty(&event->rb_entry))
|
||||
return;
|
||||
if (event->rcu_pending && rb) {
|
||||
cond_synchronize_rcu(event->rcu_batches);
|
||||
event->rcu_pending = 0;
|
||||
}
|
||||
|
||||
spin_lock_irqsave(&rb->event_lock, flags);
|
||||
list_del_init(&event->rb_entry);
|
||||
wake_up_all(&event->waitq);
|
||||
spin_unlock_irqrestore(&rb->event_lock, flags);
|
||||
if (rb) {
|
||||
spin_lock_irqsave(&rb->event_lock, flags);
|
||||
list_add_rcu(&event->rb_entry, &rb->event_list);
|
||||
spin_unlock_irqrestore(&rb->event_lock, flags);
|
||||
}
|
||||
|
||||
rcu_assign_pointer(event->rb, rb);
|
||||
|
||||
if (old_rb) {
|
||||
ring_buffer_put(old_rb);
|
||||
/*
|
||||
* Since we detached before setting the new rb, so that we
|
||||
* could attach the new rb, we could have missed a wakeup.
|
||||
* Provide it now.
|
||||
*/
|
||||
wake_up_all(&event->waitq);
|
||||
}
|
||||
}
|
||||
|
||||
static void ring_buffer_wakeup(struct perf_event *event)
|
||||
@@ -3929,7 +3953,7 @@ static void perf_mmap_close(struct vm_area_struct *vma)
|
||||
{
|
||||
struct perf_event *event = vma->vm_file->private_data;
|
||||
|
||||
struct ring_buffer *rb = event->rb;
|
||||
struct ring_buffer *rb = ring_buffer_get(event);
|
||||
struct user_struct *mmap_user = rb->mmap_user;
|
||||
int mmap_locked = rb->mmap_locked;
|
||||
unsigned long size = perf_data_size(rb);
|
||||
@@ -3937,18 +3961,14 @@ static void perf_mmap_close(struct vm_area_struct *vma)
|
||||
atomic_dec(&rb->mmap_count);
|
||||
|
||||
if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
|
||||
return;
|
||||
goto out_put;
|
||||
|
||||
/* Detach current event from the buffer. */
|
||||
rcu_assign_pointer(event->rb, NULL);
|
||||
ring_buffer_detach(event, rb);
|
||||
ring_buffer_attach(event, NULL);
|
||||
mutex_unlock(&event->mmap_mutex);
|
||||
|
||||
/* If there's still other mmap()s of this buffer, we're done. */
|
||||
if (atomic_read(&rb->mmap_count)) {
|
||||
ring_buffer_put(rb); /* can't be last */
|
||||
return;
|
||||
}
|
||||
if (atomic_read(&rb->mmap_count))
|
||||
goto out_put;
|
||||
|
||||
/*
|
||||
* No other mmap()s, detach from all other events that might redirect
|
||||
@@ -3978,11 +3998,9 @@ again:
|
||||
* still restart the iteration to make sure we're not now
|
||||
* iterating the wrong list.
|
||||
*/
|
||||
if (event->rb == rb) {
|
||||
rcu_assign_pointer(event->rb, NULL);
|
||||
ring_buffer_detach(event, rb);
|
||||
ring_buffer_put(rb); /* can't be last, we still have one */
|
||||
}
|
||||
if (event->rb == rb)
|
||||
ring_buffer_attach(event, NULL);
|
||||
|
||||
mutex_unlock(&event->mmap_mutex);
|
||||
put_event(event);
|
||||
|
||||
@@ -4007,6 +4025,7 @@ again:
|
||||
vma->vm_mm->pinned_vm -= mmap_locked;
|
||||
free_uid(mmap_user);
|
||||
|
||||
out_put:
|
||||
ring_buffer_put(rb); /* could be last */
|
||||
}
|
||||
|
||||
@@ -4124,7 +4143,6 @@ again:
|
||||
vma->vm_mm->pinned_vm += extra;
|
||||
|
||||
ring_buffer_attach(event, rb);
|
||||
rcu_assign_pointer(event->rb, rb);
|
||||
|
||||
perf_event_init_userpage(event);
|
||||
perf_event_update_userpage(event);
|
||||
@@ -5408,6 +5426,9 @@ struct swevent_htable {
|
||||
|
||||
/* Recursion avoidance in each contexts */
|
||||
int recursion[PERF_NR_CONTEXTS];
|
||||
|
||||
/* Keeps track of cpu being initialized/exited */
|
||||
bool online;
|
||||
};
|
||||
|
||||
static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
|
||||
@@ -5654,8 +5675,14 @@ static int perf_swevent_add(struct perf_event *event, int flags)
|
||||
hwc->state = !(flags & PERF_EF_START);
|
||||
|
||||
head = find_swevent_head(swhash, event);
|
||||
if (WARN_ON_ONCE(!head))
|
||||
if (!head) {
|
||||
/*
|
||||
* We can race with cpu hotplug code. Do not
|
||||
* WARN if the cpu just got unplugged.
|
||||
*/
|
||||
WARN_ON_ONCE(swhash->online);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
hlist_add_head_rcu(&event->hlist_entry, head);
|
||||
|
||||
@@ -6914,7 +6941,7 @@ err_size:
|
||||
static int
|
||||
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
|
||||
{
|
||||
struct ring_buffer *rb = NULL, *old_rb = NULL;
|
||||
struct ring_buffer *rb = NULL;
|
||||
int ret = -EINVAL;
|
||||
|
||||
if (!output_event)
|
||||
@@ -6942,8 +6969,6 @@ set:
|
||||
if (atomic_read(&event->mmap_count))
|
||||
goto unlock;
|
||||
|
||||
old_rb = event->rb;
|
||||
|
||||
if (output_event) {
|
||||
/* get the rb we want to redirect to */
|
||||
rb = ring_buffer_get(output_event);
|
||||
@@ -6951,23 +6976,7 @@ set:
|
||||
goto unlock;
|
||||
}
|
||||
|
||||
if (old_rb)
|
||||
ring_buffer_detach(event, old_rb);
|
||||
|
||||
if (rb)
|
||||
ring_buffer_attach(event, rb);
|
||||
|
||||
rcu_assign_pointer(event->rb, rb);
|
||||
|
||||
if (old_rb) {
|
||||
ring_buffer_put(old_rb);
|
||||
/*
|
||||
* Since we detached before setting the new rb, so that we
|
||||
* could attach the new rb, we could have missed a wakeup.
|
||||
* Provide it now.
|
||||
*/
|
||||
wake_up_all(&event->waitq);
|
||||
}
|
||||
ring_buffer_attach(event, rb);
|
||||
|
||||
ret = 0;
|
||||
unlock:
|
||||
@@ -7018,6 +7027,9 @@ SYSCALL_DEFINE5(perf_event_open,
|
||||
if (attr.freq) {
|
||||
if (attr.sample_freq > sysctl_perf_event_sample_rate)
|
||||
return -EINVAL;
|
||||
} else {
|
||||
if (attr.sample_period & (1ULL << 63))
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -7165,7 +7177,7 @@ SYSCALL_DEFINE5(perf_event_open,
|
||||
struct perf_event_context *gctx = group_leader->ctx;
|
||||
|
||||
mutex_lock(&gctx->mutex);
|
||||
perf_remove_from_context(group_leader);
|
||||
perf_remove_from_context(group_leader, false);
|
||||
|
||||
/*
|
||||
* Removing from the context ends up with disabled
|
||||
@@ -7175,7 +7187,7 @@ SYSCALL_DEFINE5(perf_event_open,
|
||||
perf_event__state_init(group_leader);
|
||||
list_for_each_entry(sibling, &group_leader->sibling_list,
|
||||
group_entry) {
|
||||
perf_remove_from_context(sibling);
|
||||
perf_remove_from_context(sibling, false);
|
||||
perf_event__state_init(sibling);
|
||||
put_ctx(gctx);
|
||||
}
|
||||
@@ -7305,7 +7317,7 @@ void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
|
||||
mutex_lock(&src_ctx->mutex);
|
||||
list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
|
||||
event_entry) {
|
||||
perf_remove_from_context(event);
|
||||
perf_remove_from_context(event, false);
|
||||
unaccount_event_cpu(event, src_cpu);
|
||||
put_ctx(src_ctx);
|
||||
list_add(&event->migrate_entry, &events);
|
||||
@@ -7367,13 +7379,7 @@ __perf_event_exit_task(struct perf_event *child_event,
|
||||
struct perf_event_context *child_ctx,
|
||||
struct task_struct *child)
|
||||
{
|
||||
if (child_event->parent) {
|
||||
raw_spin_lock_irq(&child_ctx->lock);
|
||||
perf_group_detach(child_event);
|
||||
raw_spin_unlock_irq(&child_ctx->lock);
|
||||
}
|
||||
|
||||
perf_remove_from_context(child_event);
|
||||
perf_remove_from_context(child_event, !!child_event->parent);
|
||||
|
||||
/*
|
||||
* It can happen that the parent exits first, and has events
|
||||
@@ -7724,6 +7730,8 @@ int perf_event_init_context(struct task_struct *child, int ctxn)
|
||||
* swapped under us.
|
||||
*/
|
||||
parent_ctx = perf_pin_task_context(parent, ctxn);
|
||||
if (!parent_ctx)
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* No need to check if parent_ctx != NULL here; since we saw
|
||||
@@ -7835,6 +7843,7 @@ static void perf_event_init_cpu(int cpu)
|
||||
struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
|
||||
|
||||
mutex_lock(&swhash->hlist_mutex);
|
||||
swhash->online = true;
|
||||
if (swhash->hlist_refcount > 0) {
|
||||
struct swevent_hlist *hlist;
|
||||
|
||||
@@ -7857,14 +7866,14 @@ static void perf_pmu_rotate_stop(struct pmu *pmu)
|
||||
|
||||
static void __perf_event_exit_context(void *__info)
|
||||
{
|
||||
struct remove_event re = { .detach_group = false };
|
||||
struct perf_event_context *ctx = __info;
|
||||
struct perf_event *event;
|
||||
|
||||
perf_pmu_rotate_stop(ctx->pmu);
|
||||
|
||||
rcu_read_lock();
|
||||
list_for_each_entry_rcu(event, &ctx->event_list, event_entry)
|
||||
__perf_remove_from_context(event);
|
||||
list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
|
||||
__perf_remove_from_context(&re);
|
||||
rcu_read_unlock();
|
||||
}
|
||||
|
||||
@@ -7892,6 +7901,7 @@ static void perf_event_exit_cpu(int cpu)
|
||||
perf_event_exit_cpu_context(cpu);
|
||||
|
||||
mutex_lock(&swhash->hlist_mutex);
|
||||
swhash->online = false;
|
||||
swevent_hlist_release(swhash);
|
||||
mutex_unlock(&swhash->hlist_mutex);
|
||||
}
|
||||
|
@@ -990,11 +990,8 @@ int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
|
||||
/* Remove an active timer from the queue: */
|
||||
ret = remove_hrtimer(timer, base);
|
||||
|
||||
/* Switch the timer base, if necessary: */
|
||||
new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
|
||||
|
||||
if (mode & HRTIMER_MODE_REL) {
|
||||
tim = ktime_add_safe(tim, new_base->get_time());
|
||||
tim = ktime_add_safe(tim, base->get_time());
|
||||
/*
|
||||
* CONFIG_TIME_LOW_RES is a temporary way for architectures
|
||||
* to signal that they simply return xtime in
|
||||
@@ -1009,6 +1006,9 @@ int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
|
||||
|
||||
hrtimer_set_expires_range_ns(timer, tim, delta_ns);
|
||||
|
||||
/* Switch the timer base, if necessary: */
|
||||
new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
|
||||
|
||||
timer_stats_hrtimer_set_start_info(timer);
|
||||
|
||||
leftmost = enqueue_hrtimer(timer, new_base);
|
||||
|
@@ -4188,7 +4188,7 @@ void debug_show_held_locks(struct task_struct *task)
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(debug_show_held_locks);
|
||||
|
||||
asmlinkage void lockdep_sys_exit(void)
|
||||
asmlinkage __visible void lockdep_sys_exit(void)
|
||||
{
|
||||
struct task_struct *curr = current;
|
||||
|
||||
|
@@ -1586,7 +1586,7 @@ swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
asmlinkage int swsusp_save(void)
|
||||
asmlinkage __visible int swsusp_save(void)
|
||||
{
|
||||
unsigned int nr_pages, nr_highmem;
|
||||
|
||||
|
@@ -1674,7 +1674,7 @@ EXPORT_SYMBOL(printk_emit);
|
||||
*
|
||||
* See the vsnprintf() documentation for format string extensions over C99.
|
||||
*/
|
||||
asmlinkage int printk(const char *fmt, ...)
|
||||
asmlinkage __visible int printk(const char *fmt, ...)
|
||||
{
|
||||
va_list args;
|
||||
int r;
|
||||
@@ -1737,7 +1737,7 @@ void early_vprintk(const char *fmt, va_list ap)
|
||||
}
|
||||
}
|
||||
|
||||
asmlinkage void early_printk(const char *fmt, ...)
|
||||
asmlinkage __visible void early_printk(const char *fmt, ...)
|
||||
{
|
||||
va_list ap;
|
||||
|
||||
|
@@ -2192,7 +2192,7 @@ static inline void post_schedule(struct rq *rq)
|
||||
* schedule_tail - first thing a freshly forked thread must call.
|
||||
* @prev: the thread we just switched away from.
|
||||
*/
|
||||
asmlinkage void schedule_tail(struct task_struct *prev)
|
||||
asmlinkage __visible void schedule_tail(struct task_struct *prev)
|
||||
__releases(rq->lock)
|
||||
{
|
||||
struct rq *rq = this_rq();
|
||||
@@ -2592,8 +2592,14 @@ pick_next_task(struct rq *rq, struct task_struct *prev)
|
||||
if (likely(prev->sched_class == class &&
|
||||
rq->nr_running == rq->cfs.h_nr_running)) {
|
||||
p = fair_sched_class.pick_next_task(rq, prev);
|
||||
if (likely(p && p != RETRY_TASK))
|
||||
return p;
|
||||
if (unlikely(p == RETRY_TASK))
|
||||
goto again;
|
||||
|
||||
/* assumes fair_sched_class->next == idle_sched_class */
|
||||
if (unlikely(!p))
|
||||
p = idle_sched_class.pick_next_task(rq, prev);
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
again:
|
||||
@@ -2741,7 +2747,7 @@ static inline void sched_submit_work(struct task_struct *tsk)
|
||||
blk_schedule_flush_plug(tsk);
|
||||
}
|
||||
|
||||
asmlinkage void __sched schedule(void)
|
||||
asmlinkage __visible void __sched schedule(void)
|
||||
{
|
||||
struct task_struct *tsk = current;
|
||||
|
||||
@@ -2751,7 +2757,7 @@ asmlinkage void __sched schedule(void)
|
||||
EXPORT_SYMBOL(schedule);
|
||||
|
||||
#ifdef CONFIG_CONTEXT_TRACKING
|
||||
asmlinkage void __sched schedule_user(void)
|
||||
asmlinkage __visible void __sched schedule_user(void)
|
||||
{
|
||||
/*
|
||||
* If we come here after a random call to set_need_resched(),
|
||||
@@ -2783,7 +2789,7 @@ void __sched schedule_preempt_disabled(void)
|
||||
* off of preempt_enable. Kernel preemptions off return from interrupt
|
||||
* occur there and call schedule directly.
|
||||
*/
|
||||
asmlinkage void __sched notrace preempt_schedule(void)
|
||||
asmlinkage __visible void __sched notrace preempt_schedule(void)
|
||||
{
|
||||
/*
|
||||
* If there is a non-zero preempt_count or interrupts are disabled,
|
||||
@@ -2813,7 +2819,7 @@ EXPORT_SYMBOL(preempt_schedule);
|
||||
* Note, that this is called and return with irqs disabled. This will
|
||||
* protect us against recursive calling from irq.
|
||||
*/
|
||||
asmlinkage void __sched preempt_schedule_irq(void)
|
||||
asmlinkage __visible void __sched preempt_schedule_irq(void)
|
||||
{
|
||||
enum ctx_state prev_state;
|
||||
|
||||
@@ -3124,6 +3130,7 @@ __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
|
||||
dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
|
||||
dl_se->dl_throttled = 0;
|
||||
dl_se->dl_new = 1;
|
||||
dl_se->dl_yielded = 0;
|
||||
}
|
||||
|
||||
static void __setscheduler_params(struct task_struct *p,
|
||||
@@ -3639,6 +3646,7 @@ SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
|
||||
* sys_sched_setattr - same as above, but with extended sched_attr
|
||||
* @pid: the pid in question.
|
||||
* @uattr: structure containing the extended parameters.
|
||||
* @flags: for future extension.
|
||||
*/
|
||||
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
|
||||
unsigned int, flags)
|
||||
@@ -3783,6 +3791,7 @@ err_size:
|
||||
* @pid: the pid in question.
|
||||
* @uattr: structure containing the extended parameters.
|
||||
* @size: sizeof(attr) for fwd/bwd comp.
|
||||
* @flags: for future extension.
|
||||
*/
|
||||
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
|
||||
unsigned int, size, unsigned int, flags)
|
||||
@@ -6017,6 +6026,8 @@ sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
|
||||
,
|
||||
.last_balance = jiffies,
|
||||
.balance_interval = sd_weight,
|
||||
.max_newidle_lb_cost = 0,
|
||||
.next_decay_max_lb_cost = jiffies,
|
||||
};
|
||||
SD_INIT_NAME(sd, NUMA);
|
||||
sd->private = &tl->data;
|
||||
|
@@ -210,7 +210,5 @@ int cpudl_init(struct cpudl *cp)
|
||||
*/
|
||||
void cpudl_cleanup(struct cpudl *cp)
|
||||
{
|
||||
/*
|
||||
* nothing to do for the moment
|
||||
*/
|
||||
free_cpumask_var(cp->free_cpus);
|
||||
}
|
||||
|
@@ -70,8 +70,7 @@ int cpupri_find(struct cpupri *cp, struct task_struct *p,
|
||||
int idx = 0;
|
||||
int task_pri = convert_prio(p->prio);
|
||||
|
||||
if (task_pri >= MAX_RT_PRIO)
|
||||
return 0;
|
||||
BUG_ON(task_pri >= CPUPRI_NR_PRIORITIES);
|
||||
|
||||
for (idx = 0; idx < task_pri; idx++) {
|
||||
struct cpupri_vec *vec = &cp->pri_to_cpu[idx];
|
||||
|
@@ -332,50 +332,50 @@ out:
|
||||
* softirq as those do not count in task exec_runtime any more.
|
||||
*/
|
||||
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
|
||||
struct rq *rq)
|
||||
struct rq *rq, int ticks)
|
||||
{
|
||||
cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
|
||||
cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
|
||||
u64 cputime = (__force u64) cputime_one_jiffy;
|
||||
u64 *cpustat = kcpustat_this_cpu->cpustat;
|
||||
|
||||
if (steal_account_process_tick())
|
||||
return;
|
||||
|
||||
cputime *= ticks;
|
||||
scaled *= ticks;
|
||||
|
||||
if (irqtime_account_hi_update()) {
|
||||
cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
|
||||
cpustat[CPUTIME_IRQ] += cputime;
|
||||
} else if (irqtime_account_si_update()) {
|
||||
cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
|
||||
cpustat[CPUTIME_SOFTIRQ] += cputime;
|
||||
} else if (this_cpu_ksoftirqd() == p) {
|
||||
/*
|
||||
* ksoftirqd time do not get accounted in cpu_softirq_time.
|
||||
* So, we have to handle it separately here.
|
||||
* Also, p->stime needs to be updated for ksoftirqd.
|
||||
*/
|
||||
__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
|
||||
CPUTIME_SOFTIRQ);
|
||||
__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
|
||||
} else if (user_tick) {
|
||||
account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
|
||||
account_user_time(p, cputime, scaled);
|
||||
} else if (p == rq->idle) {
|
||||
account_idle_time(cputime_one_jiffy);
|
||||
account_idle_time(cputime);
|
||||
} else if (p->flags & PF_VCPU) { /* System time or guest time */
|
||||
account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
|
||||
account_guest_time(p, cputime, scaled);
|
||||
} else {
|
||||
__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
|
||||
CPUTIME_SYSTEM);
|
||||
__account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
|
||||
}
|
||||
}
|
||||
|
||||
static void irqtime_account_idle_ticks(int ticks)
|
||||
{
|
||||
int i;
|
||||
struct rq *rq = this_rq();
|
||||
|
||||
for (i = 0; i < ticks; i++)
|
||||
irqtime_account_process_tick(current, 0, rq);
|
||||
irqtime_account_process_tick(current, 0, rq, ticks);
|
||||
}
|
||||
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
|
||||
static inline void irqtime_account_idle_ticks(int ticks) {}
|
||||
static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
|
||||
struct rq *rq) {}
|
||||
struct rq *rq, int nr_ticks) {}
|
||||
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
|
||||
|
||||
/*
|
||||
@@ -464,7 +464,7 @@ void account_process_tick(struct task_struct *p, int user_tick)
|
||||
return;
|
||||
|
||||
if (sched_clock_irqtime) {
|
||||
irqtime_account_process_tick(p, user_tick, rq);
|
||||
irqtime_account_process_tick(p, user_tick, rq, 1);
|
||||
return;
|
||||
}
|
||||
|
||||
|
@@ -528,6 +528,7 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
|
||||
sched_clock_tick();
|
||||
update_rq_clock(rq);
|
||||
dl_se->dl_throttled = 0;
|
||||
dl_se->dl_yielded = 0;
|
||||
if (p->on_rq) {
|
||||
enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
|
||||
if (task_has_dl_policy(rq->curr))
|
||||
@@ -893,10 +894,10 @@ static void yield_task_dl(struct rq *rq)
|
||||
* We make the task go to sleep until its current deadline by
|
||||
* forcing its runtime to zero. This way, update_curr_dl() stops
|
||||
* it and the bandwidth timer will wake it up and will give it
|
||||
* new scheduling parameters (thanks to dl_new=1).
|
||||
* new scheduling parameters (thanks to dl_yielded=1).
|
||||
*/
|
||||
if (p->dl.runtime > 0) {
|
||||
rq->curr->dl.dl_new = 1;
|
||||
rq->curr->dl.dl_yielded = 1;
|
||||
p->dl.runtime = 0;
|
||||
}
|
||||
update_curr_dl(rq);
|
||||
|
@@ -6653,6 +6653,7 @@ static int idle_balance(struct rq *this_rq)
|
||||
int this_cpu = this_rq->cpu;
|
||||
|
||||
idle_enter_fair(this_rq);
|
||||
|
||||
/*
|
||||
* We must set idle_stamp _before_ calling idle_balance(), such that we
|
||||
* measure the duration of idle_balance() as idle time.
|
||||
@@ -6705,14 +6706,16 @@ static int idle_balance(struct rq *this_rq)
|
||||
|
||||
raw_spin_lock(&this_rq->lock);
|
||||
|
||||
if (curr_cost > this_rq->max_idle_balance_cost)
|
||||
this_rq->max_idle_balance_cost = curr_cost;
|
||||
|
||||
/*
|
||||
* While browsing the domains, we released the rq lock.
|
||||
* A task could have be enqueued in the meantime
|
||||
* While browsing the domains, we released the rq lock, a task could
|
||||
* have been enqueued in the meantime. Since we're not going idle,
|
||||
* pretend we pulled a task.
|
||||
*/
|
||||
if (this_rq->cfs.h_nr_running && !pulled_task) {
|
||||
if (this_rq->cfs.h_nr_running && !pulled_task)
|
||||
pulled_task = 1;
|
||||
goto out;
|
||||
}
|
||||
|
||||
if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
|
||||
/*
|
||||
@@ -6722,9 +6725,6 @@ static int idle_balance(struct rq *this_rq)
|
||||
this_rq->next_balance = next_balance;
|
||||
}
|
||||
|
||||
if (curr_cost > this_rq->max_idle_balance_cost)
|
||||
this_rq->max_idle_balance_cost = curr_cost;
|
||||
|
||||
out:
|
||||
/* Is there a task of a high priority class? */
|
||||
if (this_rq->nr_running != this_rq->cfs.h_nr_running &&
|
||||
|
@@ -223,7 +223,7 @@ static inline bool lockdep_softirq_start(void) { return false; }
|
||||
static inline void lockdep_softirq_end(bool in_hardirq) { }
|
||||
#endif
|
||||
|
||||
asmlinkage void __do_softirq(void)
|
||||
asmlinkage __visible void __do_softirq(void)
|
||||
{
|
||||
unsigned long end = jiffies + MAX_SOFTIRQ_TIME;
|
||||
unsigned long old_flags = current->flags;
|
||||
@@ -299,7 +299,7 @@ restart:
|
||||
tsk_restore_flags(current, old_flags, PF_MEMALLOC);
|
||||
}
|
||||
|
||||
asmlinkage void do_softirq(void)
|
||||
asmlinkage __visible void do_softirq(void)
|
||||
{
|
||||
__u32 pending;
|
||||
unsigned long flags;
|
||||
|
@@ -188,7 +188,6 @@ static int tracepoint_add_func(struct tracepoint *tp,
|
||||
WARN_ON_ONCE(1);
|
||||
return PTR_ERR(old);
|
||||
}
|
||||
release_probes(old);
|
||||
|
||||
/*
|
||||
* rcu_assign_pointer has a smp_wmb() which makes sure that the new
|
||||
@@ -200,6 +199,7 @@ static int tracepoint_add_func(struct tracepoint *tp,
|
||||
rcu_assign_pointer(tp->funcs, tp_funcs);
|
||||
if (!static_key_enabled(&tp->key))
|
||||
static_key_slow_inc(&tp->key);
|
||||
release_probes(old);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -221,7 +221,6 @@ static int tracepoint_remove_func(struct tracepoint *tp,
|
||||
WARN_ON_ONCE(1);
|
||||
return PTR_ERR(old);
|
||||
}
|
||||
release_probes(old);
|
||||
|
||||
if (!tp_funcs) {
|
||||
/* Removed last function */
|
||||
@@ -232,6 +231,7 @@ static int tracepoint_remove_func(struct tracepoint *tp,
|
||||
static_key_slow_dec(&tp->key);
|
||||
}
|
||||
rcu_assign_pointer(tp->funcs, tp_funcs);
|
||||
release_probes(old);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@@ -1916,6 +1916,12 @@ static void send_mayday(struct work_struct *work)
|
||||
|
||||
/* mayday mayday mayday */
|
||||
if (list_empty(&pwq->mayday_node)) {
|
||||
/*
|
||||
* If @pwq is for an unbound wq, its base ref may be put at
|
||||
* any time due to an attribute change. Pin @pwq until the
|
||||
* rescuer is done with it.
|
||||
*/
|
||||
get_pwq(pwq);
|
||||
list_add_tail(&pwq->mayday_node, &wq->maydays);
|
||||
wake_up_process(wq->rescuer->task);
|
||||
}
|
||||
@@ -2398,6 +2404,7 @@ static int rescuer_thread(void *__rescuer)
|
||||
struct worker *rescuer = __rescuer;
|
||||
struct workqueue_struct *wq = rescuer->rescue_wq;
|
||||
struct list_head *scheduled = &rescuer->scheduled;
|
||||
bool should_stop;
|
||||
|
||||
set_user_nice(current, RESCUER_NICE_LEVEL);
|
||||
|
||||
@@ -2409,11 +2416,15 @@ static int rescuer_thread(void *__rescuer)
|
||||
repeat:
|
||||
set_current_state(TASK_INTERRUPTIBLE);
|
||||
|
||||
if (kthread_should_stop()) {
|
||||
__set_current_state(TASK_RUNNING);
|
||||
rescuer->task->flags &= ~PF_WQ_WORKER;
|
||||
return 0;
|
||||
}
|
||||
/*
|
||||
* By the time the rescuer is requested to stop, the workqueue
|
||||
* shouldn't have any work pending, but @wq->maydays may still have
|
||||
* pwq(s) queued. This can happen by non-rescuer workers consuming
|
||||
* all the work items before the rescuer got to them. Go through
|
||||
* @wq->maydays processing before acting on should_stop so that the
|
||||
* list is always empty on exit.
|
||||
*/
|
||||
should_stop = kthread_should_stop();
|
||||
|
||||
/* see whether any pwq is asking for help */
|
||||
spin_lock_irq(&wq_mayday_lock);
|
||||
@@ -2444,6 +2455,12 @@ repeat:
|
||||
|
||||
process_scheduled_works(rescuer);
|
||||
|
||||
/*
|
||||
* Put the reference grabbed by send_mayday(). @pool won't
|
||||
* go away while we're holding its lock.
|
||||
*/
|
||||
put_pwq(pwq);
|
||||
|
||||
/*
|
||||
* Leave this pool. If keep_working() is %true, notify a
|
||||
* regular worker; otherwise, we end up with 0 concurrency
|
||||
@@ -2459,6 +2476,12 @@ repeat:
|
||||
|
||||
spin_unlock_irq(&wq_mayday_lock);
|
||||
|
||||
if (should_stop) {
|
||||
__set_current_state(TASK_RUNNING);
|
||||
rescuer->task->flags &= ~PF_WQ_WORKER;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* rescuers should never participate in concurrency management */
|
||||
WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
|
||||
schedule();
|
||||
@@ -4100,7 +4123,8 @@ static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
|
||||
if (!pwq) {
|
||||
pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
|
||||
wq->name);
|
||||
goto out_unlock;
|
||||
mutex_lock(&wq->mutex);
|
||||
goto use_dfl_pwq;
|
||||
}
|
||||
|
||||
/*
|
||||
|
Reference in New Issue
Block a user