Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net

Conflicts:
	drivers/net/bonding/bond_alb.c
	drivers/net/ethernet/altera/altera_msgdma.c
	drivers/net/ethernet/altera/altera_sgdma.c
	net/ipv6/xfrm6_output.c

Several cases of overlapping changes.

The xfrm6_output.c has a bug fix which overlaps the renaming
of skb->local_df to skb->ignore_df.

In the Altera TSE driver cases, the register access cleanups
in net-next overlapped with bug fixes done in net.

Similarly a bug fix to send ALB packets in the bonding driver using
the right source address overlaps with cleanups in net-next.

Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
David S. Miller
2014-05-24 00:32:30 -04:00
528 changed files with 6235 additions and 3741 deletions

View File

@@ -348,7 +348,7 @@ struct cgrp_cset_link {
* reference-counted, to improve performance when child cgroups
* haven't been created.
*/
static struct css_set init_css_set = {
struct css_set init_css_set = {
.refcount = ATOMIC_INIT(1),
.cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
.tasks = LIST_HEAD_INIT(init_css_set.tasks),
@@ -1495,7 +1495,7 @@ static struct dentry *cgroup_mount(struct file_system_type *fs_type,
*/
if (!use_task_css_set_links)
cgroup_enable_task_cg_lists();
retry:
mutex_lock(&cgroup_tree_mutex);
mutex_lock(&cgroup_mutex);
@@ -1503,7 +1503,7 @@ retry:
ret = parse_cgroupfs_options(data, &opts);
if (ret)
goto out_unlock;
retry:
/* look for a matching existing root */
if (!opts.subsys_mask && !opts.none && !opts.name) {
cgrp_dfl_root_visible = true;
@@ -1562,9 +1562,9 @@ retry:
if (!atomic_inc_not_zero(&root->cgrp.refcnt)) {
mutex_unlock(&cgroup_mutex);
mutex_unlock(&cgroup_tree_mutex);
kfree(opts.release_agent);
kfree(opts.name);
msleep(10);
mutex_lock(&cgroup_tree_mutex);
mutex_lock(&cgroup_mutex);
goto retry;
}

View File

@@ -21,6 +21,7 @@
#include <linux/uaccess.h>
#include <linux/freezer.h>
#include <linux/seq_file.h>
#include <linux/mutex.h>
/*
* A cgroup is freezing if any FREEZING flags are set. FREEZING_SELF is
@@ -42,9 +43,10 @@ enum freezer_state_flags {
struct freezer {
struct cgroup_subsys_state css;
unsigned int state;
spinlock_t lock;
};
static DEFINE_MUTEX(freezer_mutex);
static inline struct freezer *css_freezer(struct cgroup_subsys_state *css)
{
return css ? container_of(css, struct freezer, css) : NULL;
@@ -93,7 +95,6 @@ freezer_css_alloc(struct cgroup_subsys_state *parent_css)
if (!freezer)
return ERR_PTR(-ENOMEM);
spin_lock_init(&freezer->lock);
return &freezer->css;
}
@@ -110,14 +111,7 @@ static int freezer_css_online(struct cgroup_subsys_state *css)
struct freezer *freezer = css_freezer(css);
struct freezer *parent = parent_freezer(freezer);
/*
* The following double locking and freezing state inheritance
* guarantee that @cgroup can never escape ancestors' freezing
* states. See css_for_each_descendant_pre() for details.
*/
if (parent)
spin_lock_irq(&parent->lock);
spin_lock_nested(&freezer->lock, SINGLE_DEPTH_NESTING);
mutex_lock(&freezer_mutex);
freezer->state |= CGROUP_FREEZER_ONLINE;
@@ -126,10 +120,7 @@ static int freezer_css_online(struct cgroup_subsys_state *css)
atomic_inc(&system_freezing_cnt);
}
spin_unlock(&freezer->lock);
if (parent)
spin_unlock_irq(&parent->lock);
mutex_unlock(&freezer_mutex);
return 0;
}
@@ -144,14 +135,14 @@ static void freezer_css_offline(struct cgroup_subsys_state *css)
{
struct freezer *freezer = css_freezer(css);
spin_lock_irq(&freezer->lock);
mutex_lock(&freezer_mutex);
if (freezer->state & CGROUP_FREEZING)
atomic_dec(&system_freezing_cnt);
freezer->state = 0;
spin_unlock_irq(&freezer->lock);
mutex_unlock(&freezer_mutex);
}
static void freezer_css_free(struct cgroup_subsys_state *css)
@@ -175,7 +166,7 @@ static void freezer_attach(struct cgroup_subsys_state *new_css,
struct task_struct *task;
bool clear_frozen = false;
spin_lock_irq(&freezer->lock);
mutex_lock(&freezer_mutex);
/*
* Make the new tasks conform to the current state of @new_css.
@@ -197,21 +188,13 @@ static void freezer_attach(struct cgroup_subsys_state *new_css,
}
}
spin_unlock_irq(&freezer->lock);
/*
* Propagate FROZEN clearing upwards. We may race with
* update_if_frozen(), but as long as both work bottom-up, either
* update_if_frozen() sees child's FROZEN cleared or we clear the
* parent's FROZEN later. No parent w/ !FROZEN children can be
* left FROZEN.
*/
/* propagate FROZEN clearing upwards */
while (clear_frozen && (freezer = parent_freezer(freezer))) {
spin_lock_irq(&freezer->lock);
freezer->state &= ~CGROUP_FROZEN;
clear_frozen = freezer->state & CGROUP_FREEZING;
spin_unlock_irq(&freezer->lock);
}
mutex_unlock(&freezer_mutex);
}
/**
@@ -228,9 +211,6 @@ static void freezer_fork(struct task_struct *task)
{
struct freezer *freezer;
rcu_read_lock();
freezer = task_freezer(task);
/*
* The root cgroup is non-freezable, so we can skip locking the
* freezer. This is safe regardless of race with task migration.
@@ -238,24 +218,18 @@ static void freezer_fork(struct task_struct *task)
* to do. If we lost and root is the new cgroup, noop is still the
* right thing to do.
*/
if (!parent_freezer(freezer))
goto out;
if (task_css_is_root(task, freezer_cgrp_id))
return;
/*
* Grab @freezer->lock and freeze @task after verifying @task still
* belongs to @freezer and it's freezing. The former is for the
* case where we have raced against task migration and lost and
* @task is already in a different cgroup which may not be frozen.
* This isn't strictly necessary as freeze_task() is allowed to be
* called spuriously but let's do it anyway for, if nothing else,
* documentation.
*/
spin_lock_irq(&freezer->lock);
if (freezer == task_freezer(task) && (freezer->state & CGROUP_FREEZING))
mutex_lock(&freezer_mutex);
rcu_read_lock();
freezer = task_freezer(task);
if (freezer->state & CGROUP_FREEZING)
freeze_task(task);
spin_unlock_irq(&freezer->lock);
out:
rcu_read_unlock();
mutex_unlock(&freezer_mutex);
}
/**
@@ -281,22 +255,24 @@ static void update_if_frozen(struct cgroup_subsys_state *css)
struct css_task_iter it;
struct task_struct *task;
WARN_ON_ONCE(!rcu_read_lock_held());
spin_lock_irq(&freezer->lock);
lockdep_assert_held(&freezer_mutex);
if (!(freezer->state & CGROUP_FREEZING) ||
(freezer->state & CGROUP_FROZEN))
goto out_unlock;
return;
/* are all (live) children frozen? */
rcu_read_lock();
css_for_each_child(pos, css) {
struct freezer *child = css_freezer(pos);
if ((child->state & CGROUP_FREEZER_ONLINE) &&
!(child->state & CGROUP_FROZEN))
goto out_unlock;
!(child->state & CGROUP_FROZEN)) {
rcu_read_unlock();
return;
}
}
rcu_read_unlock();
/* are all tasks frozen? */
css_task_iter_start(css, &it);
@@ -317,21 +293,29 @@ static void update_if_frozen(struct cgroup_subsys_state *css)
freezer->state |= CGROUP_FROZEN;
out_iter_end:
css_task_iter_end(&it);
out_unlock:
spin_unlock_irq(&freezer->lock);
}
static int freezer_read(struct seq_file *m, void *v)
{
struct cgroup_subsys_state *css = seq_css(m), *pos;
mutex_lock(&freezer_mutex);
rcu_read_lock();
/* update states bottom-up */
css_for_each_descendant_post(pos, css)
css_for_each_descendant_post(pos, css) {
if (!css_tryget(pos))
continue;
rcu_read_unlock();
update_if_frozen(pos);
rcu_read_lock();
css_put(pos);
}
rcu_read_unlock();
mutex_unlock(&freezer_mutex);
seq_puts(m, freezer_state_strs(css_freezer(css)->state));
seq_putc(m, '\n');
@@ -373,7 +357,7 @@ static void freezer_apply_state(struct freezer *freezer, bool freeze,
unsigned int state)
{
/* also synchronizes against task migration, see freezer_attach() */
lockdep_assert_held(&freezer->lock);
lockdep_assert_held(&freezer_mutex);
if (!(freezer->state & CGROUP_FREEZER_ONLINE))
return;
@@ -414,31 +398,29 @@ static void freezer_change_state(struct freezer *freezer, bool freeze)
* descendant will try to inherit its parent's FREEZING state as
* CGROUP_FREEZING_PARENT.
*/
mutex_lock(&freezer_mutex);
rcu_read_lock();
css_for_each_descendant_pre(pos, &freezer->css) {
struct freezer *pos_f = css_freezer(pos);
struct freezer *parent = parent_freezer(pos_f);
spin_lock_irq(&pos_f->lock);
if (!css_tryget(pos))
continue;
rcu_read_unlock();
if (pos_f == freezer) {
if (pos_f == freezer)
freezer_apply_state(pos_f, freeze,
CGROUP_FREEZING_SELF);
} else {
/*
* Our update to @parent->state is already visible
* which is all we need. No need to lock @parent.
* For more info on synchronization, see
* freezer_post_create().
*/
else
freezer_apply_state(pos_f,
parent->state & CGROUP_FREEZING,
CGROUP_FREEZING_PARENT);
}
spin_unlock_irq(&pos_f->lock);
rcu_read_lock();
css_put(pos);
}
rcu_read_unlock();
mutex_unlock(&freezer_mutex);
}
static int freezer_write(struct cgroup_subsys_state *css, struct cftype *cft,

View File

@@ -120,7 +120,7 @@ void context_tracking_user_enter(void)
* instead of preempt_schedule() to exit user context if needed before
* calling the scheduler.
*/
asmlinkage void __sched notrace preempt_schedule_context(void)
asmlinkage __visible void __sched notrace preempt_schedule_context(void)
{
enum ctx_state prev_ctx;

View File

@@ -1443,6 +1443,11 @@ group_sched_out(struct perf_event *group_event,
cpuctx->exclusive = 0;
}
struct remove_event {
struct perf_event *event;
bool detach_group;
};
/*
* Cross CPU call to remove a performance event
*
@@ -1451,12 +1456,15 @@ group_sched_out(struct perf_event *group_event,
*/
static int __perf_remove_from_context(void *info)
{
struct perf_event *event = info;
struct remove_event *re = info;
struct perf_event *event = re->event;
struct perf_event_context *ctx = event->ctx;
struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
raw_spin_lock(&ctx->lock);
event_sched_out(event, cpuctx, ctx);
if (re->detach_group)
perf_group_detach(event);
list_del_event(event, ctx);
if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
ctx->is_active = 0;
@@ -1481,10 +1489,14 @@ static int __perf_remove_from_context(void *info)
* When called from perf_event_exit_task, it's OK because the
* context has been detached from its task.
*/
static void perf_remove_from_context(struct perf_event *event)
static void perf_remove_from_context(struct perf_event *event, bool detach_group)
{
struct perf_event_context *ctx = event->ctx;
struct task_struct *task = ctx->task;
struct remove_event re = {
.event = event,
.detach_group = detach_group,
};
lockdep_assert_held(&ctx->mutex);
@@ -1493,12 +1505,12 @@ static void perf_remove_from_context(struct perf_event *event)
* Per cpu events are removed via an smp call and
* the removal is always successful.
*/
cpu_function_call(event->cpu, __perf_remove_from_context, event);
cpu_function_call(event->cpu, __perf_remove_from_context, &re);
return;
}
retry:
if (!task_function_call(task, __perf_remove_from_context, event))
if (!task_function_call(task, __perf_remove_from_context, &re))
return;
raw_spin_lock_irq(&ctx->lock);
@@ -1515,6 +1527,8 @@ retry:
* Since the task isn't running, its safe to remove the event, us
* holding the ctx->lock ensures the task won't get scheduled in.
*/
if (detach_group)
perf_group_detach(event);
list_del_event(event, ctx);
raw_spin_unlock_irq(&ctx->lock);
}
@@ -3178,7 +3192,8 @@ static void free_event_rcu(struct rcu_head *head)
}
static void ring_buffer_put(struct ring_buffer *rb);
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb);
static void ring_buffer_attach(struct perf_event *event,
struct ring_buffer *rb);
static void unaccount_event_cpu(struct perf_event *event, int cpu)
{
@@ -3238,8 +3253,6 @@ static void free_event(struct perf_event *event)
unaccount_event(event);
if (event->rb) {
struct ring_buffer *rb;
/*
* Can happen when we close an event with re-directed output.
*
@@ -3247,12 +3260,7 @@ static void free_event(struct perf_event *event)
* over us; possibly making our ring_buffer_put() the last.
*/
mutex_lock(&event->mmap_mutex);
rb = event->rb;
if (rb) {
rcu_assign_pointer(event->rb, NULL);
ring_buffer_detach(event, rb);
ring_buffer_put(rb); /* could be last */
}
ring_buffer_attach(event, NULL);
mutex_unlock(&event->mmap_mutex);
}
@@ -3281,10 +3289,7 @@ int perf_event_release_kernel(struct perf_event *event)
* to trigger the AB-BA case.
*/
mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
raw_spin_lock_irq(&ctx->lock);
perf_group_detach(event);
raw_spin_unlock_irq(&ctx->lock);
perf_remove_from_context(event);
perf_remove_from_context(event, true);
mutex_unlock(&ctx->mutex);
free_event(event);
@@ -3839,28 +3844,47 @@ unlock:
static void ring_buffer_attach(struct perf_event *event,
struct ring_buffer *rb)
{
struct ring_buffer *old_rb = NULL;
unsigned long flags;
if (!list_empty(&event->rb_entry))
return;
if (event->rb) {
/*
* Should be impossible, we set this when removing
* event->rb_entry and wait/clear when adding event->rb_entry.
*/
WARN_ON_ONCE(event->rcu_pending);
spin_lock_irqsave(&rb->event_lock, flags);
if (list_empty(&event->rb_entry))
list_add(&event->rb_entry, &rb->event_list);
spin_unlock_irqrestore(&rb->event_lock, flags);
}
old_rb = event->rb;
event->rcu_batches = get_state_synchronize_rcu();
event->rcu_pending = 1;
static void ring_buffer_detach(struct perf_event *event, struct ring_buffer *rb)
{
unsigned long flags;
spin_lock_irqsave(&old_rb->event_lock, flags);
list_del_rcu(&event->rb_entry);
spin_unlock_irqrestore(&old_rb->event_lock, flags);
}
if (list_empty(&event->rb_entry))
return;
if (event->rcu_pending && rb) {
cond_synchronize_rcu(event->rcu_batches);
event->rcu_pending = 0;
}
spin_lock_irqsave(&rb->event_lock, flags);
list_del_init(&event->rb_entry);
wake_up_all(&event->waitq);
spin_unlock_irqrestore(&rb->event_lock, flags);
if (rb) {
spin_lock_irqsave(&rb->event_lock, flags);
list_add_rcu(&event->rb_entry, &rb->event_list);
spin_unlock_irqrestore(&rb->event_lock, flags);
}
rcu_assign_pointer(event->rb, rb);
if (old_rb) {
ring_buffer_put(old_rb);
/*
* Since we detached before setting the new rb, so that we
* could attach the new rb, we could have missed a wakeup.
* Provide it now.
*/
wake_up_all(&event->waitq);
}
}
static void ring_buffer_wakeup(struct perf_event *event)
@@ -3929,7 +3953,7 @@ static void perf_mmap_close(struct vm_area_struct *vma)
{
struct perf_event *event = vma->vm_file->private_data;
struct ring_buffer *rb = event->rb;
struct ring_buffer *rb = ring_buffer_get(event);
struct user_struct *mmap_user = rb->mmap_user;
int mmap_locked = rb->mmap_locked;
unsigned long size = perf_data_size(rb);
@@ -3937,18 +3961,14 @@ static void perf_mmap_close(struct vm_area_struct *vma)
atomic_dec(&rb->mmap_count);
if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
return;
goto out_put;
/* Detach current event from the buffer. */
rcu_assign_pointer(event->rb, NULL);
ring_buffer_detach(event, rb);
ring_buffer_attach(event, NULL);
mutex_unlock(&event->mmap_mutex);
/* If there's still other mmap()s of this buffer, we're done. */
if (atomic_read(&rb->mmap_count)) {
ring_buffer_put(rb); /* can't be last */
return;
}
if (atomic_read(&rb->mmap_count))
goto out_put;
/*
* No other mmap()s, detach from all other events that might redirect
@@ -3978,11 +3998,9 @@ again:
* still restart the iteration to make sure we're not now
* iterating the wrong list.
*/
if (event->rb == rb) {
rcu_assign_pointer(event->rb, NULL);
ring_buffer_detach(event, rb);
ring_buffer_put(rb); /* can't be last, we still have one */
}
if (event->rb == rb)
ring_buffer_attach(event, NULL);
mutex_unlock(&event->mmap_mutex);
put_event(event);
@@ -4007,6 +4025,7 @@ again:
vma->vm_mm->pinned_vm -= mmap_locked;
free_uid(mmap_user);
out_put:
ring_buffer_put(rb); /* could be last */
}
@@ -4124,7 +4143,6 @@ again:
vma->vm_mm->pinned_vm += extra;
ring_buffer_attach(event, rb);
rcu_assign_pointer(event->rb, rb);
perf_event_init_userpage(event);
perf_event_update_userpage(event);
@@ -5408,6 +5426,9 @@ struct swevent_htable {
/* Recursion avoidance in each contexts */
int recursion[PERF_NR_CONTEXTS];
/* Keeps track of cpu being initialized/exited */
bool online;
};
static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
@@ -5654,8 +5675,14 @@ static int perf_swevent_add(struct perf_event *event, int flags)
hwc->state = !(flags & PERF_EF_START);
head = find_swevent_head(swhash, event);
if (WARN_ON_ONCE(!head))
if (!head) {
/*
* We can race with cpu hotplug code. Do not
* WARN if the cpu just got unplugged.
*/
WARN_ON_ONCE(swhash->online);
return -EINVAL;
}
hlist_add_head_rcu(&event->hlist_entry, head);
@@ -6914,7 +6941,7 @@ err_size:
static int
perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
{
struct ring_buffer *rb = NULL, *old_rb = NULL;
struct ring_buffer *rb = NULL;
int ret = -EINVAL;
if (!output_event)
@@ -6942,8 +6969,6 @@ set:
if (atomic_read(&event->mmap_count))
goto unlock;
old_rb = event->rb;
if (output_event) {
/* get the rb we want to redirect to */
rb = ring_buffer_get(output_event);
@@ -6951,23 +6976,7 @@ set:
goto unlock;
}
if (old_rb)
ring_buffer_detach(event, old_rb);
if (rb)
ring_buffer_attach(event, rb);
rcu_assign_pointer(event->rb, rb);
if (old_rb) {
ring_buffer_put(old_rb);
/*
* Since we detached before setting the new rb, so that we
* could attach the new rb, we could have missed a wakeup.
* Provide it now.
*/
wake_up_all(&event->waitq);
}
ring_buffer_attach(event, rb);
ret = 0;
unlock:
@@ -7018,6 +7027,9 @@ SYSCALL_DEFINE5(perf_event_open,
if (attr.freq) {
if (attr.sample_freq > sysctl_perf_event_sample_rate)
return -EINVAL;
} else {
if (attr.sample_period & (1ULL << 63))
return -EINVAL;
}
/*
@@ -7165,7 +7177,7 @@ SYSCALL_DEFINE5(perf_event_open,
struct perf_event_context *gctx = group_leader->ctx;
mutex_lock(&gctx->mutex);
perf_remove_from_context(group_leader);
perf_remove_from_context(group_leader, false);
/*
* Removing from the context ends up with disabled
@@ -7175,7 +7187,7 @@ SYSCALL_DEFINE5(perf_event_open,
perf_event__state_init(group_leader);
list_for_each_entry(sibling, &group_leader->sibling_list,
group_entry) {
perf_remove_from_context(sibling);
perf_remove_from_context(sibling, false);
perf_event__state_init(sibling);
put_ctx(gctx);
}
@@ -7305,7 +7317,7 @@ void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
mutex_lock(&src_ctx->mutex);
list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
event_entry) {
perf_remove_from_context(event);
perf_remove_from_context(event, false);
unaccount_event_cpu(event, src_cpu);
put_ctx(src_ctx);
list_add(&event->migrate_entry, &events);
@@ -7367,13 +7379,7 @@ __perf_event_exit_task(struct perf_event *child_event,
struct perf_event_context *child_ctx,
struct task_struct *child)
{
if (child_event->parent) {
raw_spin_lock_irq(&child_ctx->lock);
perf_group_detach(child_event);
raw_spin_unlock_irq(&child_ctx->lock);
}
perf_remove_from_context(child_event);
perf_remove_from_context(child_event, !!child_event->parent);
/*
* It can happen that the parent exits first, and has events
@@ -7724,6 +7730,8 @@ int perf_event_init_context(struct task_struct *child, int ctxn)
* swapped under us.
*/
parent_ctx = perf_pin_task_context(parent, ctxn);
if (!parent_ctx)
return 0;
/*
* No need to check if parent_ctx != NULL here; since we saw
@@ -7835,6 +7843,7 @@ static void perf_event_init_cpu(int cpu)
struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
mutex_lock(&swhash->hlist_mutex);
swhash->online = true;
if (swhash->hlist_refcount > 0) {
struct swevent_hlist *hlist;
@@ -7857,14 +7866,14 @@ static void perf_pmu_rotate_stop(struct pmu *pmu)
static void __perf_event_exit_context(void *__info)
{
struct remove_event re = { .detach_group = false };
struct perf_event_context *ctx = __info;
struct perf_event *event;
perf_pmu_rotate_stop(ctx->pmu);
rcu_read_lock();
list_for_each_entry_rcu(event, &ctx->event_list, event_entry)
__perf_remove_from_context(event);
list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
__perf_remove_from_context(&re);
rcu_read_unlock();
}
@@ -7892,6 +7901,7 @@ static void perf_event_exit_cpu(int cpu)
perf_event_exit_cpu_context(cpu);
mutex_lock(&swhash->hlist_mutex);
swhash->online = false;
swevent_hlist_release(swhash);
mutex_unlock(&swhash->hlist_mutex);
}

View File

@@ -990,11 +990,8 @@ int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
/* Remove an active timer from the queue: */
ret = remove_hrtimer(timer, base);
/* Switch the timer base, if necessary: */
new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
if (mode & HRTIMER_MODE_REL) {
tim = ktime_add_safe(tim, new_base->get_time());
tim = ktime_add_safe(tim, base->get_time());
/*
* CONFIG_TIME_LOW_RES is a temporary way for architectures
* to signal that they simply return xtime in
@@ -1009,6 +1006,9 @@ int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
hrtimer_set_expires_range_ns(timer, tim, delta_ns);
/* Switch the timer base, if necessary: */
new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
timer_stats_hrtimer_set_start_info(timer);
leftmost = enqueue_hrtimer(timer, new_base);

View File

@@ -4188,7 +4188,7 @@ void debug_show_held_locks(struct task_struct *task)
}
EXPORT_SYMBOL_GPL(debug_show_held_locks);
asmlinkage void lockdep_sys_exit(void)
asmlinkage __visible void lockdep_sys_exit(void)
{
struct task_struct *curr = current;

View File

@@ -1586,7 +1586,7 @@ swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
return -ENOMEM;
}
asmlinkage int swsusp_save(void)
asmlinkage __visible int swsusp_save(void)
{
unsigned int nr_pages, nr_highmem;

View File

@@ -1674,7 +1674,7 @@ EXPORT_SYMBOL(printk_emit);
*
* See the vsnprintf() documentation for format string extensions over C99.
*/
asmlinkage int printk(const char *fmt, ...)
asmlinkage __visible int printk(const char *fmt, ...)
{
va_list args;
int r;
@@ -1737,7 +1737,7 @@ void early_vprintk(const char *fmt, va_list ap)
}
}
asmlinkage void early_printk(const char *fmt, ...)
asmlinkage __visible void early_printk(const char *fmt, ...)
{
va_list ap;

View File

@@ -2192,7 +2192,7 @@ static inline void post_schedule(struct rq *rq)
* schedule_tail - first thing a freshly forked thread must call.
* @prev: the thread we just switched away from.
*/
asmlinkage void schedule_tail(struct task_struct *prev)
asmlinkage __visible void schedule_tail(struct task_struct *prev)
__releases(rq->lock)
{
struct rq *rq = this_rq();
@@ -2592,8 +2592,14 @@ pick_next_task(struct rq *rq, struct task_struct *prev)
if (likely(prev->sched_class == class &&
rq->nr_running == rq->cfs.h_nr_running)) {
p = fair_sched_class.pick_next_task(rq, prev);
if (likely(p && p != RETRY_TASK))
return p;
if (unlikely(p == RETRY_TASK))
goto again;
/* assumes fair_sched_class->next == idle_sched_class */
if (unlikely(!p))
p = idle_sched_class.pick_next_task(rq, prev);
return p;
}
again:
@@ -2741,7 +2747,7 @@ static inline void sched_submit_work(struct task_struct *tsk)
blk_schedule_flush_plug(tsk);
}
asmlinkage void __sched schedule(void)
asmlinkage __visible void __sched schedule(void)
{
struct task_struct *tsk = current;
@@ -2751,7 +2757,7 @@ asmlinkage void __sched schedule(void)
EXPORT_SYMBOL(schedule);
#ifdef CONFIG_CONTEXT_TRACKING
asmlinkage void __sched schedule_user(void)
asmlinkage __visible void __sched schedule_user(void)
{
/*
* If we come here after a random call to set_need_resched(),
@@ -2783,7 +2789,7 @@ void __sched schedule_preempt_disabled(void)
* off of preempt_enable. Kernel preemptions off return from interrupt
* occur there and call schedule directly.
*/
asmlinkage void __sched notrace preempt_schedule(void)
asmlinkage __visible void __sched notrace preempt_schedule(void)
{
/*
* If there is a non-zero preempt_count or interrupts are disabled,
@@ -2813,7 +2819,7 @@ EXPORT_SYMBOL(preempt_schedule);
* Note, that this is called and return with irqs disabled. This will
* protect us against recursive calling from irq.
*/
asmlinkage void __sched preempt_schedule_irq(void)
asmlinkage __visible void __sched preempt_schedule_irq(void)
{
enum ctx_state prev_state;
@@ -3124,6 +3130,7 @@ __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
dl_se->dl_throttled = 0;
dl_se->dl_new = 1;
dl_se->dl_yielded = 0;
}
static void __setscheduler_params(struct task_struct *p,
@@ -3639,6 +3646,7 @@ SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
* sys_sched_setattr - same as above, but with extended sched_attr
* @pid: the pid in question.
* @uattr: structure containing the extended parameters.
* @flags: for future extension.
*/
SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
unsigned int, flags)
@@ -3783,6 +3791,7 @@ err_size:
* @pid: the pid in question.
* @uattr: structure containing the extended parameters.
* @size: sizeof(attr) for fwd/bwd comp.
* @flags: for future extension.
*/
SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
unsigned int, size, unsigned int, flags)
@@ -6017,6 +6026,8 @@ sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
,
.last_balance = jiffies,
.balance_interval = sd_weight,
.max_newidle_lb_cost = 0,
.next_decay_max_lb_cost = jiffies,
};
SD_INIT_NAME(sd, NUMA);
sd->private = &tl->data;

View File

@@ -210,7 +210,5 @@ int cpudl_init(struct cpudl *cp)
*/
void cpudl_cleanup(struct cpudl *cp)
{
/*
* nothing to do for the moment
*/
free_cpumask_var(cp->free_cpus);
}

View File

@@ -70,8 +70,7 @@ int cpupri_find(struct cpupri *cp, struct task_struct *p,
int idx = 0;
int task_pri = convert_prio(p->prio);
if (task_pri >= MAX_RT_PRIO)
return 0;
BUG_ON(task_pri >= CPUPRI_NR_PRIORITIES);
for (idx = 0; idx < task_pri; idx++) {
struct cpupri_vec *vec = &cp->pri_to_cpu[idx];

View File

@@ -332,50 +332,50 @@ out:
* softirq as those do not count in task exec_runtime any more.
*/
static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
struct rq *rq)
struct rq *rq, int ticks)
{
cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
u64 cputime = (__force u64) cputime_one_jiffy;
u64 *cpustat = kcpustat_this_cpu->cpustat;
if (steal_account_process_tick())
return;
cputime *= ticks;
scaled *= ticks;
if (irqtime_account_hi_update()) {
cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
cpustat[CPUTIME_IRQ] += cputime;
} else if (irqtime_account_si_update()) {
cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
cpustat[CPUTIME_SOFTIRQ] += cputime;
} else if (this_cpu_ksoftirqd() == p) {
/*
* ksoftirqd time do not get accounted in cpu_softirq_time.
* So, we have to handle it separately here.
* Also, p->stime needs to be updated for ksoftirqd.
*/
__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
CPUTIME_SOFTIRQ);
__account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
} else if (user_tick) {
account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
account_user_time(p, cputime, scaled);
} else if (p == rq->idle) {
account_idle_time(cputime_one_jiffy);
account_idle_time(cputime);
} else if (p->flags & PF_VCPU) { /* System time or guest time */
account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
account_guest_time(p, cputime, scaled);
} else {
__account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
CPUTIME_SYSTEM);
__account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
}
}
static void irqtime_account_idle_ticks(int ticks)
{
int i;
struct rq *rq = this_rq();
for (i = 0; i < ticks; i++)
irqtime_account_process_tick(current, 0, rq);
irqtime_account_process_tick(current, 0, rq, ticks);
}
#else /* CONFIG_IRQ_TIME_ACCOUNTING */
static inline void irqtime_account_idle_ticks(int ticks) {}
static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
struct rq *rq) {}
struct rq *rq, int nr_ticks) {}
#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
/*
@@ -464,7 +464,7 @@ void account_process_tick(struct task_struct *p, int user_tick)
return;
if (sched_clock_irqtime) {
irqtime_account_process_tick(p, user_tick, rq);
irqtime_account_process_tick(p, user_tick, rq, 1);
return;
}

View File

@@ -528,6 +528,7 @@ static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
sched_clock_tick();
update_rq_clock(rq);
dl_se->dl_throttled = 0;
dl_se->dl_yielded = 0;
if (p->on_rq) {
enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
if (task_has_dl_policy(rq->curr))
@@ -893,10 +894,10 @@ static void yield_task_dl(struct rq *rq)
* We make the task go to sleep until its current deadline by
* forcing its runtime to zero. This way, update_curr_dl() stops
* it and the bandwidth timer will wake it up and will give it
* new scheduling parameters (thanks to dl_new=1).
* new scheduling parameters (thanks to dl_yielded=1).
*/
if (p->dl.runtime > 0) {
rq->curr->dl.dl_new = 1;
rq->curr->dl.dl_yielded = 1;
p->dl.runtime = 0;
}
update_curr_dl(rq);

View File

@@ -6653,6 +6653,7 @@ static int idle_balance(struct rq *this_rq)
int this_cpu = this_rq->cpu;
idle_enter_fair(this_rq);
/*
* We must set idle_stamp _before_ calling idle_balance(), such that we
* measure the duration of idle_balance() as idle time.
@@ -6705,14 +6706,16 @@ static int idle_balance(struct rq *this_rq)
raw_spin_lock(&this_rq->lock);
if (curr_cost > this_rq->max_idle_balance_cost)
this_rq->max_idle_balance_cost = curr_cost;
/*
* While browsing the domains, we released the rq lock.
* A task could have be enqueued in the meantime
* While browsing the domains, we released the rq lock, a task could
* have been enqueued in the meantime. Since we're not going idle,
* pretend we pulled a task.
*/
if (this_rq->cfs.h_nr_running && !pulled_task) {
if (this_rq->cfs.h_nr_running && !pulled_task)
pulled_task = 1;
goto out;
}
if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
/*
@@ -6722,9 +6725,6 @@ static int idle_balance(struct rq *this_rq)
this_rq->next_balance = next_balance;
}
if (curr_cost > this_rq->max_idle_balance_cost)
this_rq->max_idle_balance_cost = curr_cost;
out:
/* Is there a task of a high priority class? */
if (this_rq->nr_running != this_rq->cfs.h_nr_running &&

View File

@@ -223,7 +223,7 @@ static inline bool lockdep_softirq_start(void) { return false; }
static inline void lockdep_softirq_end(bool in_hardirq) { }
#endif
asmlinkage void __do_softirq(void)
asmlinkage __visible void __do_softirq(void)
{
unsigned long end = jiffies + MAX_SOFTIRQ_TIME;
unsigned long old_flags = current->flags;
@@ -299,7 +299,7 @@ restart:
tsk_restore_flags(current, old_flags, PF_MEMALLOC);
}
asmlinkage void do_softirq(void)
asmlinkage __visible void do_softirq(void)
{
__u32 pending;
unsigned long flags;

View File

@@ -188,7 +188,6 @@ static int tracepoint_add_func(struct tracepoint *tp,
WARN_ON_ONCE(1);
return PTR_ERR(old);
}
release_probes(old);
/*
* rcu_assign_pointer has a smp_wmb() which makes sure that the new
@@ -200,6 +199,7 @@ static int tracepoint_add_func(struct tracepoint *tp,
rcu_assign_pointer(tp->funcs, tp_funcs);
if (!static_key_enabled(&tp->key))
static_key_slow_inc(&tp->key);
release_probes(old);
return 0;
}
@@ -221,7 +221,6 @@ static int tracepoint_remove_func(struct tracepoint *tp,
WARN_ON_ONCE(1);
return PTR_ERR(old);
}
release_probes(old);
if (!tp_funcs) {
/* Removed last function */
@@ -232,6 +231,7 @@ static int tracepoint_remove_func(struct tracepoint *tp,
static_key_slow_dec(&tp->key);
}
rcu_assign_pointer(tp->funcs, tp_funcs);
release_probes(old);
return 0;
}

View File

@@ -1916,6 +1916,12 @@ static void send_mayday(struct work_struct *work)
/* mayday mayday mayday */
if (list_empty(&pwq->mayday_node)) {
/*
* If @pwq is for an unbound wq, its base ref may be put at
* any time due to an attribute change. Pin @pwq until the
* rescuer is done with it.
*/
get_pwq(pwq);
list_add_tail(&pwq->mayday_node, &wq->maydays);
wake_up_process(wq->rescuer->task);
}
@@ -2398,6 +2404,7 @@ static int rescuer_thread(void *__rescuer)
struct worker *rescuer = __rescuer;
struct workqueue_struct *wq = rescuer->rescue_wq;
struct list_head *scheduled = &rescuer->scheduled;
bool should_stop;
set_user_nice(current, RESCUER_NICE_LEVEL);
@@ -2409,11 +2416,15 @@ static int rescuer_thread(void *__rescuer)
repeat:
set_current_state(TASK_INTERRUPTIBLE);
if (kthread_should_stop()) {
__set_current_state(TASK_RUNNING);
rescuer->task->flags &= ~PF_WQ_WORKER;
return 0;
}
/*
* By the time the rescuer is requested to stop, the workqueue
* shouldn't have any work pending, but @wq->maydays may still have
* pwq(s) queued. This can happen by non-rescuer workers consuming
* all the work items before the rescuer got to them. Go through
* @wq->maydays processing before acting on should_stop so that the
* list is always empty on exit.
*/
should_stop = kthread_should_stop();
/* see whether any pwq is asking for help */
spin_lock_irq(&wq_mayday_lock);
@@ -2444,6 +2455,12 @@ repeat:
process_scheduled_works(rescuer);
/*
* Put the reference grabbed by send_mayday(). @pool won't
* go away while we're holding its lock.
*/
put_pwq(pwq);
/*
* Leave this pool. If keep_working() is %true, notify a
* regular worker; otherwise, we end up with 0 concurrency
@@ -2459,6 +2476,12 @@ repeat:
spin_unlock_irq(&wq_mayday_lock);
if (should_stop) {
__set_current_state(TASK_RUNNING);
rescuer->task->flags &= ~PF_WQ_WORKER;
return 0;
}
/* rescuers should never participate in concurrency management */
WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
schedule();
@@ -4100,7 +4123,8 @@ static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
if (!pwq) {
pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
wq->name);
goto out_unlock;
mutex_lock(&wq->mutex);
goto use_dfl_pwq;
}
/*