Merge branch 'akpm' (Andrew's patch-bomb)
Merge third batch of patches from Andrew Morton: - Some MM stragglers - core SMP library cleanups (on_each_cpu_mask) - Some IPI optimisations - kexec - kdump - IPMI - the radix-tree iterator work - various other misc bits. "That'll do for -rc1. I still have ~10 patches for 3.4, will send those along when they've baked a little more." * emailed from Andrew Morton <akpm@linux-foundation.org>: (35 commits) backlight: fix typo in tosa_lcd.c crc32: add help text for the algorithm select option mm: move hugepage test examples to tools/testing/selftests/vm mm: move slabinfo.c to tools/vm mm: move page-types.c from Documentation to tools/vm selftests/Makefile: make `run_tests' depend on `all' selftests: launch individual selftests from the main Makefile radix-tree: use iterators in find_get_pages* functions radix-tree: rewrite gang lookup using iterator radix-tree: introduce bit-optimized iterator fs/proc/namespaces.c: prevent crash when ns_entries[] is empty nbd: rename the nbd_device variable from lo to nbd pidns: add reboot_pid_ns() to handle the reboot syscall sysctl: use bitmap library functions ipmi: use locks on watchdog timeout set on reboot ipmi: simplify locking ipmi: fix message handling during panics ipmi: use a tasklet for handling received messages ipmi: increase KCS timeouts ipmi: decrease the IPMI message transaction time in interrupt mode ...
This commit is contained in:
@@ -810,11 +810,10 @@ static inline const struct cpumask *get_cpu_mask(unsigned int cpu)
|
||||
#else /* NR_CPUS > 1 */
|
||||
int __first_cpu(const cpumask_t *srcp);
|
||||
int __next_cpu(int n, const cpumask_t *srcp);
|
||||
int __any_online_cpu(const cpumask_t *mask);
|
||||
|
||||
#define first_cpu(src) __first_cpu(&(src))
|
||||
#define next_cpu(n, src) __next_cpu((n), &(src))
|
||||
#define any_online_cpu(mask) __any_online_cpu(&(mask))
|
||||
#define any_online_cpu(mask) cpumask_any_and(&mask, cpu_online_mask)
|
||||
#define for_each_cpu_mask(cpu, mask) \
|
||||
for ((cpu) = -1; \
|
||||
(cpu) = next_cpu((cpu), (mask)), \
|
||||
|
@@ -954,7 +954,7 @@ extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
|
||||
extern void truncate_setsize(struct inode *inode, loff_t newsize);
|
||||
extern int vmtruncate(struct inode *inode, loff_t offset);
|
||||
extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
|
||||
|
||||
void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
|
||||
int truncate_inode_page(struct address_space *mapping, struct page *page);
|
||||
int generic_error_remove_page(struct address_space *mapping, struct page *page);
|
||||
|
||||
|
@@ -33,6 +33,7 @@ struct pid_namespace {
|
||||
#endif
|
||||
gid_t pid_gid;
|
||||
int hide_pid;
|
||||
int reboot; /* group exit code if this pidns was rebooted */
|
||||
};
|
||||
|
||||
extern struct pid_namespace init_pid_ns;
|
||||
@@ -48,6 +49,7 @@ static inline struct pid_namespace *get_pid_ns(struct pid_namespace *ns)
|
||||
extern struct pid_namespace *copy_pid_ns(unsigned long flags, struct pid_namespace *ns);
|
||||
extern void free_pid_ns(struct kref *kref);
|
||||
extern void zap_pid_ns_processes(struct pid_namespace *pid_ns);
|
||||
extern int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd);
|
||||
|
||||
static inline void put_pid_ns(struct pid_namespace *ns)
|
||||
{
|
||||
@@ -75,11 +77,15 @@ static inline void put_pid_ns(struct pid_namespace *ns)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
static inline void zap_pid_ns_processes(struct pid_namespace *ns)
|
||||
{
|
||||
BUG();
|
||||
}
|
||||
|
||||
static inline int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
#endif /* CONFIG_PID_NS */
|
||||
|
||||
extern struct pid_namespace *task_active_pid_ns(struct task_struct *tsk);
|
||||
|
@@ -2,6 +2,7 @@
|
||||
* Copyright (C) 2001 Momchil Velikov
|
||||
* Portions Copyright (C) 2001 Christoph Hellwig
|
||||
* Copyright (C) 2006 Nick Piggin
|
||||
* Copyright (C) 2012 Konstantin Khlebnikov
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License as
|
||||
@@ -257,4 +258,199 @@ static inline void radix_tree_preload_end(void)
|
||||
preempt_enable();
|
||||
}
|
||||
|
||||
/**
|
||||
* struct radix_tree_iter - radix tree iterator state
|
||||
*
|
||||
* @index: index of current slot
|
||||
* @next_index: next-to-last index for this chunk
|
||||
* @tags: bit-mask for tag-iterating
|
||||
*
|
||||
* This radix tree iterator works in terms of "chunks" of slots. A chunk is a
|
||||
* subinterval of slots contained within one radix tree leaf node. It is
|
||||
* described by a pointer to its first slot and a struct radix_tree_iter
|
||||
* which holds the chunk's position in the tree and its size. For tagged
|
||||
* iteration radix_tree_iter also holds the slots' bit-mask for one chosen
|
||||
* radix tree tag.
|
||||
*/
|
||||
struct radix_tree_iter {
|
||||
unsigned long index;
|
||||
unsigned long next_index;
|
||||
unsigned long tags;
|
||||
};
|
||||
|
||||
#define RADIX_TREE_ITER_TAG_MASK 0x00FF /* tag index in lower byte */
|
||||
#define RADIX_TREE_ITER_TAGGED 0x0100 /* lookup tagged slots */
|
||||
#define RADIX_TREE_ITER_CONTIG 0x0200 /* stop at first hole */
|
||||
|
||||
/**
|
||||
* radix_tree_iter_init - initialize radix tree iterator
|
||||
*
|
||||
* @iter: pointer to iterator state
|
||||
* @start: iteration starting index
|
||||
* Returns: NULL
|
||||
*/
|
||||
static __always_inline void **
|
||||
radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
|
||||
{
|
||||
/*
|
||||
* Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
|
||||
* in the case of a successful tagged chunk lookup. If the lookup was
|
||||
* unsuccessful or non-tagged then nobody cares about ->tags.
|
||||
*
|
||||
* Set index to zero to bypass next_index overflow protection.
|
||||
* See the comment in radix_tree_next_chunk() for details.
|
||||
*/
|
||||
iter->index = 0;
|
||||
iter->next_index = start;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* radix_tree_next_chunk - find next chunk of slots for iteration
|
||||
*
|
||||
* @root: radix tree root
|
||||
* @iter: iterator state
|
||||
* @flags: RADIX_TREE_ITER_* flags and tag index
|
||||
* Returns: pointer to chunk first slot, or NULL if there no more left
|
||||
*
|
||||
* This function looks up the next chunk in the radix tree starting from
|
||||
* @iter->next_index. It returns a pointer to the chunk's first slot.
|
||||
* Also it fills @iter with data about chunk: position in the tree (index),
|
||||
* its end (next_index), and constructs a bit mask for tagged iterating (tags).
|
||||
*/
|
||||
void **radix_tree_next_chunk(struct radix_tree_root *root,
|
||||
struct radix_tree_iter *iter, unsigned flags);
|
||||
|
||||
/**
|
||||
* radix_tree_chunk_size - get current chunk size
|
||||
*
|
||||
* @iter: pointer to radix tree iterator
|
||||
* Returns: current chunk size
|
||||
*/
|
||||
static __always_inline unsigned
|
||||
radix_tree_chunk_size(struct radix_tree_iter *iter)
|
||||
{
|
||||
return iter->next_index - iter->index;
|
||||
}
|
||||
|
||||
/**
|
||||
* radix_tree_next_slot - find next slot in chunk
|
||||
*
|
||||
* @slot: pointer to current slot
|
||||
* @iter: pointer to interator state
|
||||
* @flags: RADIX_TREE_ITER_*, should be constant
|
||||
* Returns: pointer to next slot, or NULL if there no more left
|
||||
*
|
||||
* This function updates @iter->index in the case of a successful lookup.
|
||||
* For tagged lookup it also eats @iter->tags.
|
||||
*/
|
||||
static __always_inline void **
|
||||
radix_tree_next_slot(void **slot, struct radix_tree_iter *iter, unsigned flags)
|
||||
{
|
||||
if (flags & RADIX_TREE_ITER_TAGGED) {
|
||||
iter->tags >>= 1;
|
||||
if (likely(iter->tags & 1ul)) {
|
||||
iter->index++;
|
||||
return slot + 1;
|
||||
}
|
||||
if (!(flags & RADIX_TREE_ITER_CONTIG) && likely(iter->tags)) {
|
||||
unsigned offset = __ffs(iter->tags);
|
||||
|
||||
iter->tags >>= offset;
|
||||
iter->index += offset + 1;
|
||||
return slot + offset + 1;
|
||||
}
|
||||
} else {
|
||||
unsigned size = radix_tree_chunk_size(iter) - 1;
|
||||
|
||||
while (size--) {
|
||||
slot++;
|
||||
iter->index++;
|
||||
if (likely(*slot))
|
||||
return slot;
|
||||
if (flags & RADIX_TREE_ITER_CONTIG)
|
||||
break;
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* radix_tree_for_each_chunk - iterate over chunks
|
||||
*
|
||||
* @slot: the void** variable for pointer to chunk first slot
|
||||
* @root: the struct radix_tree_root pointer
|
||||
* @iter: the struct radix_tree_iter pointer
|
||||
* @start: iteration starting index
|
||||
* @flags: RADIX_TREE_ITER_* and tag index
|
||||
*
|
||||
* Locks can be released and reacquired between iterations.
|
||||
*/
|
||||
#define radix_tree_for_each_chunk(slot, root, iter, start, flags) \
|
||||
for (slot = radix_tree_iter_init(iter, start) ; \
|
||||
(slot = radix_tree_next_chunk(root, iter, flags)) ;)
|
||||
|
||||
/**
|
||||
* radix_tree_for_each_chunk_slot - iterate over slots in one chunk
|
||||
*
|
||||
* @slot: the void** variable, at the beginning points to chunk first slot
|
||||
* @iter: the struct radix_tree_iter pointer
|
||||
* @flags: RADIX_TREE_ITER_*, should be constant
|
||||
*
|
||||
* This macro is designed to be nested inside radix_tree_for_each_chunk().
|
||||
* @slot points to the radix tree slot, @iter->index contains its index.
|
||||
*/
|
||||
#define radix_tree_for_each_chunk_slot(slot, iter, flags) \
|
||||
for (; slot ; slot = radix_tree_next_slot(slot, iter, flags))
|
||||
|
||||
/**
|
||||
* radix_tree_for_each_slot - iterate over non-empty slots
|
||||
*
|
||||
* @slot: the void** variable for pointer to slot
|
||||
* @root: the struct radix_tree_root pointer
|
||||
* @iter: the struct radix_tree_iter pointer
|
||||
* @start: iteration starting index
|
||||
*
|
||||
* @slot points to radix tree slot, @iter->index contains its index.
|
||||
*/
|
||||
#define radix_tree_for_each_slot(slot, root, iter, start) \
|
||||
for (slot = radix_tree_iter_init(iter, start) ; \
|
||||
slot || (slot = radix_tree_next_chunk(root, iter, 0)) ; \
|
||||
slot = radix_tree_next_slot(slot, iter, 0))
|
||||
|
||||
/**
|
||||
* radix_tree_for_each_contig - iterate over contiguous slots
|
||||
*
|
||||
* @slot: the void** variable for pointer to slot
|
||||
* @root: the struct radix_tree_root pointer
|
||||
* @iter: the struct radix_tree_iter pointer
|
||||
* @start: iteration starting index
|
||||
*
|
||||
* @slot points to radix tree slot, @iter->index contains its index.
|
||||
*/
|
||||
#define radix_tree_for_each_contig(slot, root, iter, start) \
|
||||
for (slot = radix_tree_iter_init(iter, start) ; \
|
||||
slot || (slot = radix_tree_next_chunk(root, iter, \
|
||||
RADIX_TREE_ITER_CONTIG)) ; \
|
||||
slot = radix_tree_next_slot(slot, iter, \
|
||||
RADIX_TREE_ITER_CONTIG))
|
||||
|
||||
/**
|
||||
* radix_tree_for_each_tagged - iterate over tagged slots
|
||||
*
|
||||
* @slot: the void** variable for pointer to slot
|
||||
* @root: the struct radix_tree_root pointer
|
||||
* @iter: the struct radix_tree_iter pointer
|
||||
* @start: iteration starting index
|
||||
* @tag: tag index
|
||||
*
|
||||
* @slot points to radix tree slot, @iter->index contains its index.
|
||||
*/
|
||||
#define radix_tree_for_each_tagged(slot, root, iter, start, tag) \
|
||||
for (slot = radix_tree_iter_init(iter, start) ; \
|
||||
slot || (slot = radix_tree_next_chunk(root, iter, \
|
||||
RADIX_TREE_ITER_TAGGED | tag)) ; \
|
||||
slot = radix_tree_next_slot(slot, iter, \
|
||||
RADIX_TREE_ITER_TAGGED))
|
||||
|
||||
#endif /* _LINUX_RADIX_TREE_H */
|
||||
|
@@ -101,6 +101,22 @@ static inline void call_function_init(void) { }
|
||||
*/
|
||||
int on_each_cpu(smp_call_func_t func, void *info, int wait);
|
||||
|
||||
/*
|
||||
* Call a function on processors specified by mask, which might include
|
||||
* the local one.
|
||||
*/
|
||||
void on_each_cpu_mask(const struct cpumask *mask, smp_call_func_t func,
|
||||
void *info, bool wait);
|
||||
|
||||
/*
|
||||
* Call a function on each processor for which the supplied function
|
||||
* cond_func returns a positive value. This may include the local
|
||||
* processor.
|
||||
*/
|
||||
void on_each_cpu_cond(bool (*cond_func)(int cpu, void *info),
|
||||
smp_call_func_t func, void *info, bool wait,
|
||||
gfp_t gfp_flags);
|
||||
|
||||
/*
|
||||
* Mark the boot cpu "online" so that it can call console drivers in
|
||||
* printk() and can access its per-cpu storage.
|
||||
@@ -132,6 +148,36 @@ static inline int up_smp_call_function(smp_call_func_t func, void *info)
|
||||
local_irq_enable(); \
|
||||
0; \
|
||||
})
|
||||
/*
|
||||
* Note we still need to test the mask even for UP
|
||||
* because we actually can get an empty mask from
|
||||
* code that on SMP might call us without the local
|
||||
* CPU in the mask.
|
||||
*/
|
||||
#define on_each_cpu_mask(mask, func, info, wait) \
|
||||
do { \
|
||||
if (cpumask_test_cpu(0, (mask))) { \
|
||||
local_irq_disable(); \
|
||||
(func)(info); \
|
||||
local_irq_enable(); \
|
||||
} \
|
||||
} while (0)
|
||||
/*
|
||||
* Preemption is disabled here to make sure the cond_func is called under the
|
||||
* same condtions in UP and SMP.
|
||||
*/
|
||||
#define on_each_cpu_cond(cond_func, func, info, wait, gfp_flags)\
|
||||
do { \
|
||||
void *__info = (info); \
|
||||
preempt_disable(); \
|
||||
if ((cond_func)(0, __info)) { \
|
||||
local_irq_disable(); \
|
||||
(func)(__info); \
|
||||
local_irq_enable(); \
|
||||
} \
|
||||
preempt_enable(); \
|
||||
} while (0)
|
||||
|
||||
static inline void smp_send_reschedule(int cpu) { }
|
||||
#define num_booting_cpus() 1
|
||||
#define smp_prepare_boot_cpu() do {} while (0)
|
||||
|
@@ -21,6 +21,9 @@ struct bio;
|
||||
#define SWAP_FLAG_PRIO_SHIFT 0
|
||||
#define SWAP_FLAG_DISCARD 0x10000 /* discard swap cluster after use */
|
||||
|
||||
#define SWAP_FLAGS_VALID (SWAP_FLAG_PRIO_MASK | SWAP_FLAG_PREFER | \
|
||||
SWAP_FLAG_DISCARD)
|
||||
|
||||
static inline int current_is_kswapd(void)
|
||||
{
|
||||
return current->flags & PF_KSWAPD;
|
||||
|
Reference in New Issue
Block a user