Merge branch 'rotary-encoder' into next
Bring in updates to roraty encoder driver switching it away from legacy platform data and over to generic device properties and adding support for encoders using more than 2 GPIOs.
这个提交包含在:
@@ -97,8 +97,7 @@ static void arizona_haptics_work(struct work_struct *work)
|
||||
|
||||
ret = regmap_update_bits(arizona->regmap,
|
||||
ARIZONA_HAPTICS_CONTROL_1,
|
||||
ARIZONA_HAP_CTRL_MASK,
|
||||
1 << ARIZONA_HAP_CTRL_SHIFT);
|
||||
ARIZONA_HAP_CTRL_MASK, 0);
|
||||
if (ret != 0) {
|
||||
dev_err(arizona->dev, "Failed to stop haptics: %d\n",
|
||||
ret);
|
||||
|
@@ -20,70 +20,78 @@
|
||||
#include <linux/input.h>
|
||||
#include <linux/device.h>
|
||||
#include <linux/platform_device.h>
|
||||
#include <linux/gpio.h>
|
||||
#include <linux/rotary_encoder.h>
|
||||
#include <linux/gpio/consumer.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/of.h>
|
||||
#include <linux/of_platform.h>
|
||||
#include <linux/of_gpio.h>
|
||||
#include <linux/pm.h>
|
||||
#include <linux/property.h>
|
||||
|
||||
#define DRV_NAME "rotary-encoder"
|
||||
|
||||
struct rotary_encoder {
|
||||
struct input_dev *input;
|
||||
const struct rotary_encoder_platform_data *pdata;
|
||||
|
||||
unsigned int axis;
|
||||
struct mutex access_mutex;
|
||||
|
||||
u32 steps;
|
||||
u32 axis;
|
||||
bool relative_axis;
|
||||
bool rollover;
|
||||
|
||||
unsigned int pos;
|
||||
|
||||
unsigned int irq_a;
|
||||
unsigned int irq_b;
|
||||
struct gpio_descs *gpios;
|
||||
|
||||
unsigned int *irq;
|
||||
|
||||
bool armed;
|
||||
unsigned char dir; /* 0 - clockwise, 1 - CCW */
|
||||
signed char dir; /* 1 - clockwise, -1 - CCW */
|
||||
|
||||
char last_stable;
|
||||
unsigned last_stable;
|
||||
};
|
||||
|
||||
static int rotary_encoder_get_state(const struct rotary_encoder_platform_data *pdata)
|
||||
static unsigned rotary_encoder_get_state(struct rotary_encoder *encoder)
|
||||
{
|
||||
int a = !!gpio_get_value(pdata->gpio_a);
|
||||
int b = !!gpio_get_value(pdata->gpio_b);
|
||||
int i;
|
||||
unsigned ret = 0;
|
||||
|
||||
a ^= pdata->inverted_a;
|
||||
b ^= pdata->inverted_b;
|
||||
for (i = 0; i < encoder->gpios->ndescs; ++i) {
|
||||
int val = gpiod_get_value_cansleep(encoder->gpios->desc[i]);
|
||||
/* convert from gray encoding to normal */
|
||||
if (ret & 1)
|
||||
val = !val;
|
||||
|
||||
return ((a << 1) | b);
|
||||
ret = ret << 1 | val;
|
||||
}
|
||||
|
||||
return ret & 3;
|
||||
}
|
||||
|
||||
static void rotary_encoder_report_event(struct rotary_encoder *encoder)
|
||||
{
|
||||
const struct rotary_encoder_platform_data *pdata = encoder->pdata;
|
||||
|
||||
if (pdata->relative_axis) {
|
||||
if (encoder->relative_axis) {
|
||||
input_report_rel(encoder->input,
|
||||
pdata->axis, encoder->dir ? -1 : 1);
|
||||
encoder->axis, encoder->dir);
|
||||
} else {
|
||||
unsigned int pos = encoder->pos;
|
||||
|
||||
if (encoder->dir) {
|
||||
if (encoder->dir < 0) {
|
||||
/* turning counter-clockwise */
|
||||
if (pdata->rollover)
|
||||
pos += pdata->steps;
|
||||
if (encoder->rollover)
|
||||
pos += encoder->steps;
|
||||
if (pos)
|
||||
pos--;
|
||||
} else {
|
||||
/* turning clockwise */
|
||||
if (pdata->rollover || pos < pdata->steps)
|
||||
if (encoder->rollover || pos < encoder->steps)
|
||||
pos++;
|
||||
}
|
||||
|
||||
if (pdata->rollover)
|
||||
pos %= pdata->steps;
|
||||
if (encoder->rollover)
|
||||
pos %= encoder->steps;
|
||||
|
||||
encoder->pos = pos;
|
||||
input_report_abs(encoder->input, pdata->axis, encoder->pos);
|
||||
input_report_abs(encoder->input, encoder->axis, encoder->pos);
|
||||
}
|
||||
|
||||
input_sync(encoder->input);
|
||||
@@ -92,9 +100,11 @@ static void rotary_encoder_report_event(struct rotary_encoder *encoder)
|
||||
static irqreturn_t rotary_encoder_irq(int irq, void *dev_id)
|
||||
{
|
||||
struct rotary_encoder *encoder = dev_id;
|
||||
int state;
|
||||
unsigned state;
|
||||
|
||||
state = rotary_encoder_get_state(encoder->pdata);
|
||||
mutex_lock(&encoder->access_mutex);
|
||||
|
||||
state = rotary_encoder_get_state(encoder);
|
||||
|
||||
switch (state) {
|
||||
case 0x0:
|
||||
@@ -105,334 +115,227 @@ static irqreturn_t rotary_encoder_irq(int irq, void *dev_id)
|
||||
break;
|
||||
|
||||
case 0x1:
|
||||
case 0x2:
|
||||
case 0x3:
|
||||
if (encoder->armed)
|
||||
encoder->dir = state - 1;
|
||||
encoder->dir = 2 - state;
|
||||
break;
|
||||
|
||||
case 0x3:
|
||||
case 0x2:
|
||||
encoder->armed = true;
|
||||
break;
|
||||
}
|
||||
|
||||
mutex_unlock(&encoder->access_mutex);
|
||||
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
static irqreturn_t rotary_encoder_half_period_irq(int irq, void *dev_id)
|
||||
{
|
||||
struct rotary_encoder *encoder = dev_id;
|
||||
int state;
|
||||
unsigned int state;
|
||||
|
||||
state = rotary_encoder_get_state(encoder->pdata);
|
||||
mutex_lock(&encoder->access_mutex);
|
||||
|
||||
switch (state) {
|
||||
case 0x00:
|
||||
case 0x03:
|
||||
state = rotary_encoder_get_state(encoder);
|
||||
|
||||
if (state & 1) {
|
||||
encoder->dir = ((encoder->last_stable - state + 1) % 4) - 1;
|
||||
} else {
|
||||
if (state != encoder->last_stable) {
|
||||
rotary_encoder_report_event(encoder);
|
||||
encoder->last_stable = state;
|
||||
}
|
||||
break;
|
||||
|
||||
case 0x01:
|
||||
case 0x02:
|
||||
encoder->dir = (encoder->last_stable + state) & 0x01;
|
||||
break;
|
||||
}
|
||||
|
||||
mutex_unlock(&encoder->access_mutex);
|
||||
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
static irqreturn_t rotary_encoder_quarter_period_irq(int irq, void *dev_id)
|
||||
{
|
||||
struct rotary_encoder *encoder = dev_id;
|
||||
unsigned char sum;
|
||||
int state;
|
||||
unsigned int state;
|
||||
|
||||
state = rotary_encoder_get_state(encoder->pdata);
|
||||
mutex_lock(&encoder->access_mutex);
|
||||
|
||||
/*
|
||||
* We encode the previous and the current state using a byte.
|
||||
* The previous state in the MSB nibble, the current state in the LSB
|
||||
* nibble. Then use a table to decide the direction of the turn.
|
||||
*/
|
||||
sum = (encoder->last_stable << 4) + state;
|
||||
switch (sum) {
|
||||
case 0x31:
|
||||
case 0x10:
|
||||
case 0x02:
|
||||
case 0x23:
|
||||
encoder->dir = 0; /* clockwise */
|
||||
break;
|
||||
state = rotary_encoder_get_state(encoder);
|
||||
|
||||
case 0x13:
|
||||
case 0x01:
|
||||
case 0x20:
|
||||
case 0x32:
|
||||
encoder->dir = 1; /* counter-clockwise */
|
||||
break;
|
||||
|
||||
default:
|
||||
/*
|
||||
* Ignore all other values. This covers the case when the
|
||||
* state didn't change (a spurious interrupt) and the
|
||||
* cases where the state changed by two steps, making it
|
||||
* impossible to tell the direction.
|
||||
*
|
||||
* In either case, don't report any event and save the
|
||||
* state for later.
|
||||
*/
|
||||
if ((encoder->last_stable + 1) % 4 == state)
|
||||
encoder->dir = 1;
|
||||
else if (encoder->last_stable == (state + 1) % 4)
|
||||
encoder->dir = -1;
|
||||
else
|
||||
goto out;
|
||||
}
|
||||
|
||||
rotary_encoder_report_event(encoder);
|
||||
|
||||
out:
|
||||
encoder->last_stable = state;
|
||||
mutex_unlock(&encoder->access_mutex);
|
||||
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
static int rotary_encoder_probe(struct platform_device *pdev)
|
||||
{
|
||||
struct device *dev = &pdev->dev;
|
||||
struct rotary_encoder *encoder;
|
||||
struct input_dev *input;
|
||||
irq_handler_t handler;
|
||||
u32 steps_per_period;
|
||||
unsigned int i;
|
||||
int err;
|
||||
|
||||
encoder = devm_kzalloc(dev, sizeof(struct rotary_encoder), GFP_KERNEL);
|
||||
if (!encoder)
|
||||
return -ENOMEM;
|
||||
|
||||
mutex_init(&encoder->access_mutex);
|
||||
|
||||
device_property_read_u32(dev, "rotary-encoder,steps", &encoder->steps);
|
||||
|
||||
err = device_property_read_u32(dev, "rotary-encoder,steps-per-period",
|
||||
&steps_per_period);
|
||||
if (err) {
|
||||
/*
|
||||
* The 'half-period' property has been deprecated, you must
|
||||
* use 'steps-per-period' and set an appropriate value, but
|
||||
* we still need to parse it to maintain compatibility. If
|
||||
* neither property is present we fall back to the one step
|
||||
* per period behavior.
|
||||
*/
|
||||
steps_per_period = device_property_read_bool(dev,
|
||||
"rotary-encoder,half-period") ? 2 : 1;
|
||||
}
|
||||
|
||||
encoder->rollover =
|
||||
device_property_read_bool(dev, "rotary-encoder,rollover");
|
||||
|
||||
device_property_read_u32(dev, "linux,axis", &encoder->axis);
|
||||
encoder->relative_axis =
|
||||
device_property_read_bool(dev, "rotary-encoder,relative-axis");
|
||||
|
||||
encoder->gpios = devm_gpiod_get_array(dev, NULL, GPIOD_IN);
|
||||
if (IS_ERR(encoder->gpios)) {
|
||||
dev_err(dev, "unable to get gpios\n");
|
||||
return PTR_ERR(encoder->gpios);
|
||||
}
|
||||
if (encoder->gpios->ndescs < 2) {
|
||||
dev_err(dev, "not enough gpios found\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
input = devm_input_allocate_device(dev);
|
||||
if (!input)
|
||||
return -ENOMEM;
|
||||
|
||||
encoder->input = input;
|
||||
|
||||
input->name = pdev->name;
|
||||
input->id.bustype = BUS_HOST;
|
||||
input->dev.parent = dev;
|
||||
|
||||
if (encoder->relative_axis)
|
||||
input_set_capability(input, EV_REL, encoder->axis);
|
||||
else
|
||||
input_set_abs_params(input,
|
||||
encoder->axis, 0, encoder->steps, 0, 1);
|
||||
|
||||
switch (steps_per_period >> (encoder->gpios->ndescs - 2)) {
|
||||
case 4:
|
||||
handler = &rotary_encoder_quarter_period_irq;
|
||||
encoder->last_stable = rotary_encoder_get_state(encoder);
|
||||
break;
|
||||
case 2:
|
||||
handler = &rotary_encoder_half_period_irq;
|
||||
encoder->last_stable = rotary_encoder_get_state(encoder);
|
||||
break;
|
||||
case 1:
|
||||
handler = &rotary_encoder_irq;
|
||||
break;
|
||||
default:
|
||||
dev_err(dev, "'%d' is not a valid steps-per-period value\n",
|
||||
steps_per_period);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
encoder->irq =
|
||||
devm_kzalloc(dev,
|
||||
sizeof(*encoder->irq) * encoder->gpios->ndescs,
|
||||
GFP_KERNEL);
|
||||
if (!encoder->irq)
|
||||
return -ENOMEM;
|
||||
|
||||
for (i = 0; i < encoder->gpios->ndescs; ++i) {
|
||||
encoder->irq[i] = gpiod_to_irq(encoder->gpios->desc[i]);
|
||||
|
||||
err = devm_request_threaded_irq(dev, encoder->irq[i],
|
||||
NULL, handler,
|
||||
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING |
|
||||
IRQF_ONESHOT,
|
||||
DRV_NAME, encoder);
|
||||
if (err) {
|
||||
dev_err(dev, "unable to request IRQ %d (gpio#%d)\n",
|
||||
encoder->irq[i], i);
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
err = input_register_device(input);
|
||||
if (err) {
|
||||
dev_err(dev, "failed to register input device\n");
|
||||
return err;
|
||||
}
|
||||
|
||||
device_init_wakeup(dev,
|
||||
device_property_read_bool(dev, "wakeup-source"));
|
||||
|
||||
platform_set_drvdata(pdev, encoder);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int __maybe_unused rotary_encoder_suspend(struct device *dev)
|
||||
{
|
||||
struct rotary_encoder *encoder = dev_get_drvdata(dev);
|
||||
unsigned int i;
|
||||
|
||||
if (device_may_wakeup(dev)) {
|
||||
for (i = 0; i < encoder->gpios->ndescs; ++i)
|
||||
enable_irq_wake(encoder->irq[i]);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int __maybe_unused rotary_encoder_resume(struct device *dev)
|
||||
{
|
||||
struct rotary_encoder *encoder = dev_get_drvdata(dev);
|
||||
unsigned int i;
|
||||
|
||||
if (device_may_wakeup(dev)) {
|
||||
for (i = 0; i < encoder->gpios->ndescs; ++i)
|
||||
disable_irq_wake(encoder->irq[i]);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static SIMPLE_DEV_PM_OPS(rotary_encoder_pm_ops,
|
||||
rotary_encoder_suspend, rotary_encoder_resume);
|
||||
|
||||
#ifdef CONFIG_OF
|
||||
static const struct of_device_id rotary_encoder_of_match[] = {
|
||||
{ .compatible = "rotary-encoder", },
|
||||
{ },
|
||||
};
|
||||
MODULE_DEVICE_TABLE(of, rotary_encoder_of_match);
|
||||
|
||||
static struct rotary_encoder_platform_data *rotary_encoder_parse_dt(struct device *dev)
|
||||
{
|
||||
const struct of_device_id *of_id =
|
||||
of_match_device(rotary_encoder_of_match, dev);
|
||||
struct device_node *np = dev->of_node;
|
||||
struct rotary_encoder_platform_data *pdata;
|
||||
enum of_gpio_flags flags;
|
||||
int error;
|
||||
|
||||
if (!of_id || !np)
|
||||
return NULL;
|
||||
|
||||
pdata = kzalloc(sizeof(struct rotary_encoder_platform_data),
|
||||
GFP_KERNEL);
|
||||
if (!pdata)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
of_property_read_u32(np, "rotary-encoder,steps", &pdata->steps);
|
||||
of_property_read_u32(np, "linux,axis", &pdata->axis);
|
||||
|
||||
pdata->gpio_a = of_get_gpio_flags(np, 0, &flags);
|
||||
pdata->inverted_a = flags & OF_GPIO_ACTIVE_LOW;
|
||||
|
||||
pdata->gpio_b = of_get_gpio_flags(np, 1, &flags);
|
||||
pdata->inverted_b = flags & OF_GPIO_ACTIVE_LOW;
|
||||
|
||||
pdata->relative_axis =
|
||||
of_property_read_bool(np, "rotary-encoder,relative-axis");
|
||||
pdata->rollover = of_property_read_bool(np, "rotary-encoder,rollover");
|
||||
|
||||
error = of_property_read_u32(np, "rotary-encoder,steps-per-period",
|
||||
&pdata->steps_per_period);
|
||||
if (error) {
|
||||
/*
|
||||
* The 'half-period' property has been deprecated, you must use
|
||||
* 'steps-per-period' and set an appropriate value, but we still
|
||||
* need to parse it to maintain compatibility.
|
||||
*/
|
||||
if (of_property_read_bool(np, "rotary-encoder,half-period")) {
|
||||
pdata->steps_per_period = 2;
|
||||
} else {
|
||||
/* Fallback to one step per period behavior */
|
||||
pdata->steps_per_period = 1;
|
||||
}
|
||||
}
|
||||
|
||||
pdata->wakeup_source = of_property_read_bool(np, "wakeup-source");
|
||||
|
||||
return pdata;
|
||||
}
|
||||
#else
|
||||
static inline struct rotary_encoder_platform_data *
|
||||
rotary_encoder_parse_dt(struct device *dev)
|
||||
{
|
||||
return NULL;
|
||||
}
|
||||
#endif
|
||||
|
||||
static int rotary_encoder_probe(struct platform_device *pdev)
|
||||
{
|
||||
struct device *dev = &pdev->dev;
|
||||
const struct rotary_encoder_platform_data *pdata = dev_get_platdata(dev);
|
||||
struct rotary_encoder *encoder;
|
||||
struct input_dev *input;
|
||||
irq_handler_t handler;
|
||||
int err;
|
||||
|
||||
if (!pdata) {
|
||||
pdata = rotary_encoder_parse_dt(dev);
|
||||
if (IS_ERR(pdata))
|
||||
return PTR_ERR(pdata);
|
||||
|
||||
if (!pdata) {
|
||||
dev_err(dev, "missing platform data\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
}
|
||||
|
||||
encoder = kzalloc(sizeof(struct rotary_encoder), GFP_KERNEL);
|
||||
input = input_allocate_device();
|
||||
if (!encoder || !input) {
|
||||
err = -ENOMEM;
|
||||
goto exit_free_mem;
|
||||
}
|
||||
|
||||
encoder->input = input;
|
||||
encoder->pdata = pdata;
|
||||
|
||||
input->name = pdev->name;
|
||||
input->id.bustype = BUS_HOST;
|
||||
input->dev.parent = dev;
|
||||
|
||||
if (pdata->relative_axis) {
|
||||
input->evbit[0] = BIT_MASK(EV_REL);
|
||||
input->relbit[0] = BIT_MASK(pdata->axis);
|
||||
} else {
|
||||
input->evbit[0] = BIT_MASK(EV_ABS);
|
||||
input_set_abs_params(encoder->input,
|
||||
pdata->axis, 0, pdata->steps, 0, 1);
|
||||
}
|
||||
|
||||
/* request the GPIOs */
|
||||
err = gpio_request_one(pdata->gpio_a, GPIOF_IN, dev_name(dev));
|
||||
if (err) {
|
||||
dev_err(dev, "unable to request GPIO %d\n", pdata->gpio_a);
|
||||
goto exit_free_mem;
|
||||
}
|
||||
|
||||
err = gpio_request_one(pdata->gpio_b, GPIOF_IN, dev_name(dev));
|
||||
if (err) {
|
||||
dev_err(dev, "unable to request GPIO %d\n", pdata->gpio_b);
|
||||
goto exit_free_gpio_a;
|
||||
}
|
||||
|
||||
encoder->irq_a = gpio_to_irq(pdata->gpio_a);
|
||||
encoder->irq_b = gpio_to_irq(pdata->gpio_b);
|
||||
|
||||
switch (pdata->steps_per_period) {
|
||||
case 4:
|
||||
handler = &rotary_encoder_quarter_period_irq;
|
||||
encoder->last_stable = rotary_encoder_get_state(pdata);
|
||||
break;
|
||||
case 2:
|
||||
handler = &rotary_encoder_half_period_irq;
|
||||
encoder->last_stable = rotary_encoder_get_state(pdata);
|
||||
break;
|
||||
case 1:
|
||||
handler = &rotary_encoder_irq;
|
||||
break;
|
||||
default:
|
||||
dev_err(dev, "'%d' is not a valid steps-per-period value\n",
|
||||
pdata->steps_per_period);
|
||||
err = -EINVAL;
|
||||
goto exit_free_gpio_b;
|
||||
}
|
||||
|
||||
err = request_irq(encoder->irq_a, handler,
|
||||
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
|
||||
DRV_NAME, encoder);
|
||||
if (err) {
|
||||
dev_err(dev, "unable to request IRQ %d\n", encoder->irq_a);
|
||||
goto exit_free_gpio_b;
|
||||
}
|
||||
|
||||
err = request_irq(encoder->irq_b, handler,
|
||||
IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
|
||||
DRV_NAME, encoder);
|
||||
if (err) {
|
||||
dev_err(dev, "unable to request IRQ %d\n", encoder->irq_b);
|
||||
goto exit_free_irq_a;
|
||||
}
|
||||
|
||||
err = input_register_device(input);
|
||||
if (err) {
|
||||
dev_err(dev, "failed to register input device\n");
|
||||
goto exit_free_irq_b;
|
||||
}
|
||||
|
||||
device_init_wakeup(&pdev->dev, pdata->wakeup_source);
|
||||
|
||||
platform_set_drvdata(pdev, encoder);
|
||||
|
||||
return 0;
|
||||
|
||||
exit_free_irq_b:
|
||||
free_irq(encoder->irq_b, encoder);
|
||||
exit_free_irq_a:
|
||||
free_irq(encoder->irq_a, encoder);
|
||||
exit_free_gpio_b:
|
||||
gpio_free(pdata->gpio_b);
|
||||
exit_free_gpio_a:
|
||||
gpio_free(pdata->gpio_a);
|
||||
exit_free_mem:
|
||||
input_free_device(input);
|
||||
kfree(encoder);
|
||||
if (!dev_get_platdata(&pdev->dev))
|
||||
kfree(pdata);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static int rotary_encoder_remove(struct platform_device *pdev)
|
||||
{
|
||||
struct rotary_encoder *encoder = platform_get_drvdata(pdev);
|
||||
const struct rotary_encoder_platform_data *pdata = encoder->pdata;
|
||||
|
||||
device_init_wakeup(&pdev->dev, false);
|
||||
|
||||
free_irq(encoder->irq_a, encoder);
|
||||
free_irq(encoder->irq_b, encoder);
|
||||
gpio_free(pdata->gpio_a);
|
||||
gpio_free(pdata->gpio_b);
|
||||
|
||||
input_unregister_device(encoder->input);
|
||||
kfree(encoder);
|
||||
|
||||
if (!dev_get_platdata(&pdev->dev))
|
||||
kfree(pdata);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_PM_SLEEP
|
||||
static int rotary_encoder_suspend(struct device *dev)
|
||||
{
|
||||
struct rotary_encoder *encoder = dev_get_drvdata(dev);
|
||||
|
||||
if (device_may_wakeup(dev)) {
|
||||
enable_irq_wake(encoder->irq_a);
|
||||
enable_irq_wake(encoder->irq_b);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int rotary_encoder_resume(struct device *dev)
|
||||
{
|
||||
struct rotary_encoder *encoder = dev_get_drvdata(dev);
|
||||
|
||||
if (device_may_wakeup(dev)) {
|
||||
disable_irq_wake(encoder->irq_a);
|
||||
disable_irq_wake(encoder->irq_b);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
static SIMPLE_DEV_PM_OPS(rotary_encoder_pm_ops,
|
||||
rotary_encoder_suspend, rotary_encoder_resume);
|
||||
|
||||
static struct platform_driver rotary_encoder_driver = {
|
||||
.probe = rotary_encoder_probe,
|
||||
.remove = rotary_encoder_remove,
|
||||
.driver = {
|
||||
.name = DRV_NAME,
|
||||
.pm = &rotary_encoder_pm_ops,
|
||||
|
在新工单中引用
屏蔽一个用户