KVM: x86: do not report a vCPU as preempted outside instruction boundaries

commit 6cd88243c7e03845a450795e134b488fc2afb736 upstream.

If a vCPU is outside guest mode and is scheduled out, it might be in the
process of making a memory access.  A problem occurs if another vCPU uses
the PV TLB flush feature during the period when the vCPU is scheduled
out, and a virtual address has already been translated but has not yet
been accessed, because this is equivalent to using a stale TLB entry.

To avoid this, only report a vCPU as preempted if sure that the guest
is at an instruction boundary.  A rescheduling request will be delivered
to the host physical CPU as an external interrupt, so for simplicity
consider any vmexit *not* instruction boundary except for external
interrupts.

It would in principle be okay to report the vCPU as preempted also
if it is sleeping in kvm_vcpu_block(): a TLB flush IPI will incur the
vmentry/vmexit overhead unnecessarily, and optimistic spinning is
also unlikely to succeed.  However, leave it for later because right
now kvm_vcpu_check_block() is doing memory accesses.  Even
though the TLB flush issue only applies to virtual memory address,
it's very much preferrable to be conservative.

Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[OP: use VCPU_STAT() for debugfs entries]
Signed-off-by: Ovidiu Panait <ovidiu.panait@windriver.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This commit is contained in:
Paolo Bonzini
2022-06-07 10:09:03 -04:00
committed by Greg Kroah-Hartman
parent 0cb6e9e7d3
commit 529f41f0eb
4 changed files with 28 additions and 0 deletions

View File

@@ -553,6 +553,7 @@ struct kvm_vcpu_arch {
u64 ia32_misc_enable_msr; u64 ia32_misc_enable_msr;
u64 smbase; u64 smbase;
u64 smi_count; u64 smi_count;
bool at_instruction_boundary;
bool tpr_access_reporting; bool tpr_access_reporting;
bool xsaves_enabled; bool xsaves_enabled;
u64 ia32_xss; u64 ia32_xss;
@@ -1061,6 +1062,8 @@ struct kvm_vcpu_stat {
u64 req_event; u64 req_event;
u64 halt_poll_success_ns; u64 halt_poll_success_ns;
u64 halt_poll_fail_ns; u64 halt_poll_fail_ns;
u64 preemption_reported;
u64 preemption_other;
}; };
struct x86_instruction_info; struct x86_instruction_info;

View File

@@ -3983,6 +3983,8 @@ out:
static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu) static void svm_handle_exit_irqoff(struct kvm_vcpu *vcpu)
{ {
if (to_svm(vcpu)->vmcb->control.exit_code == SVM_EXIT_INTR)
vcpu->arch.at_instruction_boundary = true;
} }
static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)

View File

@@ -6510,6 +6510,7 @@ static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
return; return;
handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc)); handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
vcpu->arch.at_instruction_boundary = true;
} }
static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu) static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)

View File

@@ -231,6 +231,8 @@ struct kvm_stats_debugfs_item debugfs_entries[] = {
VCPU_STAT("l1d_flush", l1d_flush), VCPU_STAT("l1d_flush", l1d_flush),
VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns), VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns), VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
VCPU_STAT("preemption_reported", preemption_reported),
VCPU_STAT("preemption_other", preemption_other),
VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped), VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
VM_STAT("mmu_pte_write", mmu_pte_write), VM_STAT("mmu_pte_write", mmu_pte_write),
VM_STAT("mmu_pde_zapped", mmu_pde_zapped), VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
@@ -4052,6 +4054,19 @@ static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
struct kvm_host_map map; struct kvm_host_map map;
struct kvm_steal_time *st; struct kvm_steal_time *st;
/*
* The vCPU can be marked preempted if and only if the VM-Exit was on
* an instruction boundary and will not trigger guest emulation of any
* kind (see vcpu_run). Vendor specific code controls (conservatively)
* when this is true, for example allowing the vCPU to be marked
* preempted if and only if the VM-Exit was due to a host interrupt.
*/
if (!vcpu->arch.at_instruction_boundary) {
vcpu->stat.preemption_other++;
return;
}
vcpu->stat.preemption_reported++;
if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
return; return;
@@ -9357,6 +9372,13 @@ static int vcpu_run(struct kvm_vcpu *vcpu)
vcpu->arch.l1tf_flush_l1d = true; vcpu->arch.l1tf_flush_l1d = true;
for (;;) { for (;;) {
/*
* If another guest vCPU requests a PV TLB flush in the middle
* of instruction emulation, the rest of the emulation could
* use a stale page translation. Assume that any code after
* this point can start executing an instruction.
*/
vcpu->arch.at_instruction_boundary = false;
if (kvm_vcpu_running(vcpu)) { if (kvm_vcpu_running(vcpu)) {
r = vcpu_enter_guest(vcpu); r = vcpu_enter_guest(vcpu);
} else { } else {