Merge branch 'work.uaccess2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull uaccess.h prepwork from Al Viro: "Preparations to tree-wide switch to use of linux/uaccess.h (which, obviously, will allow to start unifying stuff for real). The last step there, ie PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>' sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \ `git grep -l "$PATT"|grep -v ^include/linux/uaccess.h` is not taken here - I would prefer to do it once just before or just after -rc1. However, everything should be ready for it" * 'work.uaccess2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: remove a stray reference to asm/uaccess.h in docs sparc64: separate extable_64.h, switch elf_64.h to it score: separate extable.h, switch module.h to it mips: separate extable.h, switch module.h to it x86: separate extable.h, switch sections.h to it remove stray include of asm/uaccess.h from cacheflush.h mn10300: remove a bogus processor.h->uaccess.h include xtensa: split uaccess.h into C and asm sides bonding: quit messing with IOCTL kill __kernel_ds_p off mn10300: finish verify_area() off frv: move HAVE_ARCH_UNMAPPED_AREA to pgtable.h exceptions: detritus removal
This commit is contained in:
@@ -7,7 +7,7 @@
|
||||
|
||||
#include <asm/ptrace.h>
|
||||
#include <asm/processor.h>
|
||||
#include <asm/uaccess.h>
|
||||
#include <asm/extable_64.h>
|
||||
#include <asm/spitfire.h>
|
||||
|
||||
/*
|
||||
|
20
arch/sparc/include/asm/extable_64.h
Normal file
20
arch/sparc/include/asm/extable_64.h
Normal file
@@ -0,0 +1,20 @@
|
||||
#ifndef __ASM_EXTABLE64_H
|
||||
#define __ASM_EXTABLE64_H
|
||||
/*
|
||||
* The exception table consists of pairs of addresses: the first is the
|
||||
* address of an instruction that is allowed to fault, and the second is
|
||||
* the address at which the program should continue. No registers are
|
||||
* modified, so it is entirely up to the continuation code to figure out
|
||||
* what to do.
|
||||
*
|
||||
* All the routines below use bits of fixup code that are out of line
|
||||
* with the main instruction path. This means when everything is well,
|
||||
* we don't even have to jump over them. Further, they do not intrude
|
||||
* on our cache or tlb entries.
|
||||
*/
|
||||
|
||||
struct exception_table_entry {
|
||||
unsigned int insn, fixup;
|
||||
};
|
||||
|
||||
#endif
|
@@ -13,6 +13,7 @@
|
||||
#include <asm/asi.h>
|
||||
#include <asm/spitfire.h>
|
||||
#include <asm-generic/uaccess-unaligned.h>
|
||||
#include <asm/extable_64.h>
|
||||
#endif
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
@@ -81,23 +82,6 @@ static inline int access_ok(int type, const void __user * addr, unsigned long si
|
||||
return 1;
|
||||
}
|
||||
|
||||
/*
|
||||
* The exception table consists of pairs of addresses: the first is the
|
||||
* address of an instruction that is allowed to fault, and the second is
|
||||
* the address at which the program should continue. No registers are
|
||||
* modified, so it is entirely up to the continuation code to figure out
|
||||
* what to do.
|
||||
*
|
||||
* All the routines below use bits of fixup code that are out of line
|
||||
* with the main instruction path. This means when everything is well,
|
||||
* we don't even have to jump over them. Further, they do not intrude
|
||||
* on our cache or tlb entries.
|
||||
*/
|
||||
|
||||
struct exception_table_entry {
|
||||
unsigned int insn, fixup;
|
||||
};
|
||||
|
||||
void __ret_efault(void);
|
||||
void __retl_efault(void);
|
||||
|
||||
|
Reference in New Issue
Block a user