Merge branch 'master' into sh/hwblk

This commit is contained in:
Paul Mundt
2009-08-15 13:00:02 +09:00
669 changed files with 18691 additions and 8406 deletions

View File

@@ -110,6 +110,14 @@ config DUMP_CODE
Those looking for more verbose debugging output should say Y.
config DWARF_UNWINDER
bool "Enable the DWARF unwinder for stacktraces"
select FRAME_POINTER
default n
help
Enabling this option will make stacktraces more accurate, at
the cost of an increase in overall kernel size.
config SH_NO_BSS_INIT
bool "Avoid zeroing BSS (to speed-up startup on suitable platforms)"
depends on DEBUG_KERNEL

View File

@@ -191,6 +191,10 @@ ifeq ($(CONFIG_MCOUNT),y)
KBUILD_CFLAGS += -pg
endif
ifeq ($(CONFIG_DWARF_UNWINDER),y)
KBUILD_CFLAGS += -fasynchronous-unwind-tables
endif
libs-$(CONFIG_SUPERH32) := arch/sh/lib/ $(libs-y)
libs-$(CONFIG_SUPERH64) := arch/sh/lib64/ $(libs-y)

View File

@@ -553,7 +553,7 @@ static int __init ap325rxa_devices_setup(void)
return platform_add_devices(ap325rxa_devices,
ARRAY_SIZE(ap325rxa_devices));
}
device_initcall(ap325rxa_devices_setup);
arch_initcall(ap325rxa_devices_setup);
/* Return the board specific boot mode pin configuration */
static int ap325rxa_mode_pins(void)

View File

@@ -1 +1,2 @@
obj-y := setup.o
obj-$(CONFIG_FB_SH_MOBILE_LCDC) += lcd_wqvga.o

View File

@@ -0,0 +1,332 @@
/*
* KFR2R09 LCD panel support
*
* Copyright (C) 2009 Magnus Damm
*
* Register settings based on the out-of-tree t33fb.c driver
* Copyright (C) 2008 Lineo Solutions, Inc.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive for
* more details.
*/
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/fb.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/gpio.h>
#include <video/sh_mobile_lcdc.h>
#include <mach/kfr2r09.h>
#include <cpu/sh7724.h>
/* The on-board LCD module is a Hitachi TX07D34VM0AAA. This module is made
* up of a 240x400 LCD hooked up to a R61517 driver IC. The driver IC is
* communicating with the main port of the LCDC using an 18-bit SYS interface.
*
* The device code for this LCD module is 0x01221517.
*/
static const unsigned char data_frame_if[] = {
0x02, /* WEMODE: 1=cont, 0=one-shot */
0x00, 0x00,
0x00, /* EPF, DFM */
0x02, /* RIM[1] : 1 (18bpp) */
};
static const unsigned char data_panel[] = {
0x0b,
0x63, /* 400 lines */
0x04, 0x00, 0x00, 0x04, 0x11, 0x00, 0x00,
};
static const unsigned char data_timing[] = {
0x00, 0x00, 0x13, 0x08, 0x08,
};
static const unsigned char data_timing_src[] = {
0x11, 0x01, 0x00, 0x01,
};
static const unsigned char data_gamma[] = {
0x01, 0x02, 0x08, 0x23, 0x03, 0x0c, 0x00, 0x06, 0x00, 0x00,
0x01, 0x00, 0x0c, 0x23, 0x03, 0x08, 0x02, 0x06, 0x00, 0x00,
};
static const unsigned char data_power[] = {
0x07, 0xc5, 0xdc, 0x02, 0x33, 0x0a,
};
static unsigned long read_reg(void *sohandle,
struct sh_mobile_lcdc_sys_bus_ops *so)
{
return so->read_data(sohandle);
}
static void write_reg(void *sohandle,
struct sh_mobile_lcdc_sys_bus_ops *so,
int i, unsigned long v)
{
if (i)
so->write_data(sohandle, v); /* PTH4/LCDRS High [param, 17:0] */
else
so->write_index(sohandle, v); /* PTH4/LCDRS Low [cmd, 7:0] */
}
static void write_data(void *sohandle,
struct sh_mobile_lcdc_sys_bus_ops *so,
unsigned char const *data, int no_data)
{
int i;
for (i = 0; i < no_data; i++)
write_reg(sohandle, so, 1, data[i]);
}
static unsigned long read_device_code(void *sohandle,
struct sh_mobile_lcdc_sys_bus_ops *so)
{
unsigned long device_code;
/* access protect OFF */
write_reg(sohandle, so, 0, 0xb0);
write_reg(sohandle, so, 1, 0x00);
/* deep standby OFF */
write_reg(sohandle, so, 0, 0xb1);
write_reg(sohandle, so, 1, 0x00);
/* device code command */
write_reg(sohandle, so, 0, 0xbf);
mdelay(50);
/* dummy read */
read_reg(sohandle, so);
/* read device code */
device_code = ((read_reg(sohandle, so) & 0xff) << 24);
device_code |= ((read_reg(sohandle, so) & 0xff) << 16);
device_code |= ((read_reg(sohandle, so) & 0xff) << 8);
device_code |= (read_reg(sohandle, so) & 0xff);
return device_code;
}
static void write_memory_start(void *sohandle,
struct sh_mobile_lcdc_sys_bus_ops *so)
{
write_reg(sohandle, so, 0, 0x2c);
}
static void clear_memory(void *sohandle,
struct sh_mobile_lcdc_sys_bus_ops *so)
{
int i;
/* write start */
write_memory_start(sohandle, so);
/* paint it black */
for (i = 0; i < (240 * 400); i++)
write_reg(sohandle, so, 1, 0x00);
}
static void display_on(void *sohandle,
struct sh_mobile_lcdc_sys_bus_ops *so)
{
/* access protect off */
write_reg(sohandle, so, 0, 0xb0);
write_reg(sohandle, so, 1, 0x00);
/* exit deep standby mode */
write_reg(sohandle, so, 0, 0xb1);
write_reg(sohandle, so, 1, 0x00);
/* frame memory I/F */
write_reg(sohandle, so, 0, 0xb3);
write_data(sohandle, so, data_frame_if, ARRAY_SIZE(data_frame_if));
/* display mode and frame memory write mode */
write_reg(sohandle, so, 0, 0xb4);
write_reg(sohandle, so, 1, 0x00); /* DBI, internal clock */
/* panel */
write_reg(sohandle, so, 0, 0xc0);
write_data(sohandle, so, data_panel, ARRAY_SIZE(data_panel));
/* timing (normal) */
write_reg(sohandle, so, 0, 0xc1);
write_data(sohandle, so, data_timing, ARRAY_SIZE(data_timing));
/* timing (partial) */
write_reg(sohandle, so, 0, 0xc2);
write_data(sohandle, so, data_timing, ARRAY_SIZE(data_timing));
/* timing (idle) */
write_reg(sohandle, so, 0, 0xc3);
write_data(sohandle, so, data_timing, ARRAY_SIZE(data_timing));
/* timing (source/VCOM/gate driving) */
write_reg(sohandle, so, 0, 0xc4);
write_data(sohandle, so, data_timing_src, ARRAY_SIZE(data_timing_src));
/* gamma (red) */
write_reg(sohandle, so, 0, 0xc8);
write_data(sohandle, so, data_gamma, ARRAY_SIZE(data_gamma));
/* gamma (green) */
write_reg(sohandle, so, 0, 0xc9);
write_data(sohandle, so, data_gamma, ARRAY_SIZE(data_gamma));
/* gamma (blue) */
write_reg(sohandle, so, 0, 0xca);
write_data(sohandle, so, data_gamma, ARRAY_SIZE(data_gamma));
/* power (common) */
write_reg(sohandle, so, 0, 0xd0);
write_data(sohandle, so, data_power, ARRAY_SIZE(data_power));
/* VCOM */
write_reg(sohandle, so, 0, 0xd1);
write_reg(sohandle, so, 1, 0x00);
write_reg(sohandle, so, 1, 0x0f);
write_reg(sohandle, so, 1, 0x02);
/* power (normal) */
write_reg(sohandle, so, 0, 0xd2);
write_reg(sohandle, so, 1, 0x63);
write_reg(sohandle, so, 1, 0x24);
/* power (partial) */
write_reg(sohandle, so, 0, 0xd3);
write_reg(sohandle, so, 1, 0x63);
write_reg(sohandle, so, 1, 0x24);
/* power (idle) */
write_reg(sohandle, so, 0, 0xd4);
write_reg(sohandle, so, 1, 0x63);
write_reg(sohandle, so, 1, 0x24);
write_reg(sohandle, so, 0, 0xd8);
write_reg(sohandle, so, 1, 0x77);
write_reg(sohandle, so, 1, 0x77);
/* TE signal */
write_reg(sohandle, so, 0, 0x35);
write_reg(sohandle, so, 1, 0x00);
/* TE signal line */
write_reg(sohandle, so, 0, 0x44);
write_reg(sohandle, so, 1, 0x00);
write_reg(sohandle, so, 1, 0x00);
/* column address */
write_reg(sohandle, so, 0, 0x2a);
write_reg(sohandle, so, 1, 0x00);
write_reg(sohandle, so, 1, 0x00);
write_reg(sohandle, so, 1, 0x00);
write_reg(sohandle, so, 1, 0xef);
/* page address */
write_reg(sohandle, so, 0, 0x2b);
write_reg(sohandle, so, 1, 0x00);
write_reg(sohandle, so, 1, 0x00);
write_reg(sohandle, so, 1, 0x01);
write_reg(sohandle, so, 1, 0x8f);
/* exit sleep mode */
write_reg(sohandle, so, 0, 0x11);
mdelay(120);
/* clear vram */
clear_memory(sohandle, so);
/* display ON */
write_reg(sohandle, so, 0, 0x29);
mdelay(1);
write_memory_start(sohandle, so);
}
int kfr2r09_lcd_setup(void *board_data, void *sohandle,
struct sh_mobile_lcdc_sys_bus_ops *so)
{
/* power on */
gpio_set_value(GPIO_PTF4, 0); /* PROTECT/ -> L */
gpio_set_value(GPIO_PTE4, 0); /* LCD_RST/ -> L */
gpio_set_value(GPIO_PTF4, 1); /* PROTECT/ -> H */
udelay(1100);
gpio_set_value(GPIO_PTE4, 1); /* LCD_RST/ -> H */
udelay(10);
gpio_set_value(GPIO_PTF4, 0); /* PROTECT/ -> L */
mdelay(20);
if (read_device_code(sohandle, so) != 0x01221517)
return -ENODEV;
pr_info("KFR2R09 WQVGA LCD Module detected.\n");
display_on(sohandle, so);
return 0;
}
#define CTRL_CKSW 0x10
#define CTRL_C10 0x20
#define CTRL_CPSW 0x80
#define MAIN_MLED4 0x40
#define MAIN_MSW 0x80
static int kfr2r09_lcd_backlight(int on)
{
struct i2c_adapter *a;
struct i2c_msg msg;
unsigned char buf[2];
int ret;
a = i2c_get_adapter(0);
if (!a)
return -ENODEV;
buf[0] = 0x00;
if (on)
buf[1] = CTRL_CPSW | CTRL_C10 | CTRL_CKSW;
else
buf[1] = 0;
msg.addr = 0x75;
msg.buf = buf;
msg.len = 2;
msg.flags = 0;
ret = i2c_transfer(a, &msg, 1);
if (ret != 1)
return -ENODEV;
buf[0] = 0x01;
if (on)
buf[1] = MAIN_MSW | MAIN_MLED4 | 0x0c;
else
buf[1] = 0;
msg.addr = 0x75;
msg.buf = buf;
msg.len = 2;
msg.flags = 0;
ret = i2c_transfer(a, &msg, 1);
if (ret != 1)
return -ENODEV;
return 0;
}
void kfr2r09_lcd_on(void *board_data)
{
kfr2r09_lcd_backlight(1);
}
void kfr2r09_lcd_off(void *board_data)
{
kfr2r09_lcd_backlight(0);
}

View File

@@ -11,15 +11,18 @@
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/mtd/physmap.h>
#include <linux/mtd/onenand.h>
#include <linux/delay.h>
#include <linux/clk.h>
#include <linux/gpio.h>
#include <linux/input.h>
#include <video/sh_mobile_lcdc.h>
#include <asm/clock.h>
#include <asm/machvec.h>
#include <asm/io.h>
#include <asm/sh_keysc.h>
#include <cpu/sh7724.h>
#include <mach/kfr2r09.h>
static struct mtd_partition kfr2r09_nor_flash_partitions[] =
{
@@ -60,6 +63,21 @@ static struct platform_device kfr2r09_nor_flash_device = {
},
};
static struct resource kfr2r09_nand_flash_resources[] = {
[0] = {
.name = "NAND Flash",
.start = 0x10000000,
.end = 0x1001ffff,
.flags = IORESOURCE_MEM,
}
};
static struct platform_device kfr2r09_nand_flash_device = {
.name = "onenand-flash",
.resource = kfr2r09_nand_flash_resources,
.num_resources = ARRAY_SIZE(kfr2r09_nand_flash_resources),
};
static struct sh_keysc_info kfr2r09_sh_keysc_info = {
.mode = SH_KEYSC_MODE_1, /* KEYOUT0->4, KEYIN0->4 */
.scan_timing = 3,
@@ -100,13 +118,77 @@ static struct platform_device kfr2r09_sh_keysc_device = {
},
};
static struct sh_mobile_lcdc_info kfr2r09_sh_lcdc_info = {
.clock_source = LCDC_CLK_BUS,
.ch[0] = {
.chan = LCDC_CHAN_MAINLCD,
.bpp = 16,
.interface_type = SYS18,
.clock_divider = 6,
.flags = LCDC_FLAGS_DWPOL,
.lcd_cfg = {
.name = "TX07D34VM0AAA",
.xres = 240,
.yres = 400,
.left_margin = 0,
.right_margin = 16,
.hsync_len = 8,
.upper_margin = 0,
.lower_margin = 1,
.vsync_len = 1,
.sync = FB_SYNC_HOR_HIGH_ACT | FB_SYNC_VERT_HIGH_ACT,
},
.lcd_size_cfg = {
.width = 35,
.height = 58,
},
.board_cfg = {
.setup_sys = kfr2r09_lcd_setup,
.display_on = kfr2r09_lcd_on,
.display_off = kfr2r09_lcd_off,
},
.sys_bus_cfg = {
.ldmt2r = 0x07010904,
.ldmt3r = 0x14012914,
/* set 1s delay to encourage fsync() */
.deferred_io_msec = 1000,
},
}
};
static struct resource kfr2r09_sh_lcdc_resources[] = {
[0] = {
.name = "LCDC",
.start = 0xfe940000, /* P4-only space */
.end = 0xfe941fff,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = 106,
.flags = IORESOURCE_IRQ,
},
};
static struct platform_device kfr2r09_sh_lcdc_device = {
.name = "sh_mobile_lcdc_fb",
.num_resources = ARRAY_SIZE(kfr2r09_sh_lcdc_resources),
.resource = kfr2r09_sh_lcdc_resources,
.dev = {
.platform_data = &kfr2r09_sh_lcdc_info,
},
};
static struct platform_device *kfr2r09_devices[] __initdata = {
&kfr2r09_nor_flash_device,
&kfr2r09_nand_flash_device,
&kfr2r09_sh_keysc_device,
&kfr2r09_sh_lcdc_device,
};
#define BSC_CS0BCR 0xfec10004
#define BSC_CS0WCR 0xfec10024
#define BSC_CS4BCR 0xfec10010
#define BSC_CS4WCR 0xfec10030
static int __init kfr2r09_devices_setup(void)
{
@@ -118,6 +200,10 @@ static int __init kfr2r09_devices_setup(void)
ctrl_outl(0x36db0400, BSC_CS0BCR);
ctrl_outl(0x00000500, BSC_CS0WCR);
/* setup NAND flash at CS4 */
ctrl_outl(0x36db0400, BSC_CS4BCR);
ctrl_outl(0x00000500, BSC_CS4WCR);
/* setup KEYSC pins */
gpio_request(GPIO_FN_KEYOUT0, NULL);
gpio_request(GPIO_FN_KEYOUT1, NULL);
@@ -131,6 +217,37 @@ static int __init kfr2r09_devices_setup(void)
gpio_request(GPIO_FN_KEYIN4, NULL);
gpio_request(GPIO_FN_KEYOUT5_IN5, NULL);
/* setup LCDC pins for SYS panel */
gpio_request(GPIO_FN_LCDD17, NULL);
gpio_request(GPIO_FN_LCDD16, NULL);
gpio_request(GPIO_FN_LCDD15, NULL);
gpio_request(GPIO_FN_LCDD14, NULL);
gpio_request(GPIO_FN_LCDD13, NULL);
gpio_request(GPIO_FN_LCDD12, NULL);
gpio_request(GPIO_FN_LCDD11, NULL);
gpio_request(GPIO_FN_LCDD10, NULL);
gpio_request(GPIO_FN_LCDD9, NULL);
gpio_request(GPIO_FN_LCDD8, NULL);
gpio_request(GPIO_FN_LCDD7, NULL);
gpio_request(GPIO_FN_LCDD6, NULL);
gpio_request(GPIO_FN_LCDD5, NULL);
gpio_request(GPIO_FN_LCDD4, NULL);
gpio_request(GPIO_FN_LCDD3, NULL);
gpio_request(GPIO_FN_LCDD2, NULL);
gpio_request(GPIO_FN_LCDD1, NULL);
gpio_request(GPIO_FN_LCDD0, NULL);
gpio_request(GPIO_FN_LCDRS, NULL); /* LCD_RS */
gpio_request(GPIO_FN_LCDCS, NULL); /* LCD_CS/ */
gpio_request(GPIO_FN_LCDRD, NULL); /* LCD_RD/ */
gpio_request(GPIO_FN_LCDWR, NULL); /* LCD_WR/ */
gpio_request(GPIO_FN_LCDVSYN, NULL); /* LCD_VSYNC */
gpio_request(GPIO_PTE4, NULL); /* LCD_RST/ */
gpio_direction_output(GPIO_PTE4, 1);
gpio_request(GPIO_PTF4, NULL); /* PROTECT/ */
gpio_direction_output(GPIO_PTF4, 1);
gpio_request(GPIO_PTU0, NULL); /* LEDSTDBY/ */
gpio_direction_output(GPIO_PTU0, 1);
return platform_add_devices(kfr2r09_devices,
ARRAY_SIZE(kfr2r09_devices));
}

View File

@@ -617,7 +617,7 @@ static int __init migor_devices_setup(void)
return platform_add_devices(migor_devices, ARRAY_SIZE(migor_devices));
}
__initcall(migor_devices_setup);
arch_initcall(migor_devices_setup);
/* Return the board specific boot mode pin configuration */
static int migor_mode_pins(void)

View File

@@ -39,7 +39,15 @@
* SW41 : abxx xxxx -> a = 0 : Analog monitor
* 1 : Digital monitor
* b = 0 : VGA
* 1 : SVGA
* 1 : 720p
*/
/*
* about 720p
*
* When you use 1280 x 720 lcdc output,
* you should change OSC6 lcdc clock from 25.175MHz to 74.25MHz,
* and change SW41 to use 720p
*/
/* Heartbeat */
@@ -247,7 +255,7 @@ static struct platform_device ceu1_device = {
},
};
/* KEYSC */
/* KEYSC in SoC (Needs SW33-2 set to ON) */
static struct sh_keysc_info keysc_info = {
.mode = SH_KEYSC_MODE_1,
.scan_timing = 10,
@@ -264,12 +272,13 @@ static struct sh_keysc_info keysc_info = {
static struct resource keysc_resources[] = {
[0] = {
.start = 0x1a204000,
.end = 0x1a20400f,
.name = "KEYSC",
.start = 0x044b0000,
.end = 0x044b000f,
.flags = IORESOURCE_MEM,
},
[1] = {
.start = IRQ0_KEY,
.start = 79,
.flags = IORESOURCE_IRQ,
},
};
@@ -439,6 +448,32 @@ static int __init devices_setup(void)
/* turn on USB clocks, use external clock */
ctrl_outw((ctrl_inw(PORT_MSELCRB) & ~0xc000) | 0x8000, PORT_MSELCRB);
#ifdef CONFIG_PM
/* Let LED9 show STATUS2 */
gpio_request(GPIO_FN_STATUS2, NULL);
/* Lit LED10 show STATUS0 */
gpio_request(GPIO_FN_STATUS0, NULL);
/* Lit LED11 show PDSTATUS */
gpio_request(GPIO_FN_PDSTATUS, NULL);
#else
/* Lit LED9 */
gpio_request(GPIO_PTJ6, NULL);
gpio_direction_output(GPIO_PTJ6, 1);
gpio_export(GPIO_PTJ6, 0);
/* Lit LED10 */
gpio_request(GPIO_PTJ5, NULL);
gpio_direction_output(GPIO_PTJ5, 1);
gpio_export(GPIO_PTJ5, 0);
/* Lit LED11 */
gpio_request(GPIO_PTJ7, NULL);
gpio_direction_output(GPIO_PTJ7, 1);
gpio_export(GPIO_PTJ7, 0);
#endif
/* enable USB0 port */
ctrl_outw(0x0600, 0xa40501d4);
@@ -564,15 +599,15 @@ static int __init devices_setup(void)
sh_eth_init();
if (sw & SW41_B) {
/* SVGA */
lcdc_info.ch[0].lcd_cfg.xres = 800;
lcdc_info.ch[0].lcd_cfg.yres = 600;
lcdc_info.ch[0].lcd_cfg.left_margin = 142;
lcdc_info.ch[0].lcd_cfg.right_margin = 52;
lcdc_info.ch[0].lcd_cfg.hsync_len = 96;
lcdc_info.ch[0].lcd_cfg.upper_margin = 24;
lcdc_info.ch[0].lcd_cfg.lower_margin = 2;
lcdc_info.ch[0].lcd_cfg.vsync_len = 2;
/* 720p */
lcdc_info.ch[0].lcd_cfg.xres = 1280;
lcdc_info.ch[0].lcd_cfg.yres = 720;
lcdc_info.ch[0].lcd_cfg.left_margin = 220;
lcdc_info.ch[0].lcd_cfg.right_margin = 110;
lcdc_info.ch[0].lcd_cfg.hsync_len = 40;
lcdc_info.ch[0].lcd_cfg.upper_margin = 20;
lcdc_info.ch[0].lcd_cfg.lower_margin = 5;
lcdc_info.ch[0].lcd_cfg.vsync_len = 5;
} else {
/* VGA */
lcdc_info.ch[0].lcd_cfg.xres = 640;

View File

@@ -7,4 +7,4 @@
.text
.global romstart
romstart:
#include <romimage.h>
#include <mach/romimage.h>

View File

@@ -16,6 +16,7 @@
/* DMAOR contorl: The DMAOR access size is different by CPU.*/
#if defined(CONFIG_CPU_SUBTYPE_SH7723) || \
defined(CONFIG_CPU_SUBTYPE_SH7724) || \
defined(CONFIG_CPU_SUBTYPE_SH7780) || \
defined(CONFIG_CPU_SUBTYPE_SH7785)
#define dmaor_read_reg(n) \

402
arch/sh/include/asm/dwarf.h Normal file
View File

@@ -0,0 +1,402 @@
/*
* Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
*/
#ifndef __ASM_SH_DWARF_H
#define __ASM_SH_DWARF_H
#ifdef CONFIG_DWARF_UNWINDER
/*
* DWARF expression operations
*/
#define DW_OP_addr 0x03
#define DW_OP_deref 0x06
#define DW_OP_const1u 0x08
#define DW_OP_const1s 0x09
#define DW_OP_const2u 0x0a
#define DW_OP_const2s 0x0b
#define DW_OP_const4u 0x0c
#define DW_OP_const4s 0x0d
#define DW_OP_const8u 0x0e
#define DW_OP_const8s 0x0f
#define DW_OP_constu 0x10
#define DW_OP_consts 0x11
#define DW_OP_dup 0x12
#define DW_OP_drop 0x13
#define DW_OP_over 0x14
#define DW_OP_pick 0x15
#define DW_OP_swap 0x16
#define DW_OP_rot 0x17
#define DW_OP_xderef 0x18
#define DW_OP_abs 0x19
#define DW_OP_and 0x1a
#define DW_OP_div 0x1b
#define DW_OP_minus 0x1c
#define DW_OP_mod 0x1d
#define DW_OP_mul 0x1e
#define DW_OP_neg 0x1f
#define DW_OP_not 0x20
#define DW_OP_or 0x21
#define DW_OP_plus 0x22
#define DW_OP_plus_uconst 0x23
#define DW_OP_shl 0x24
#define DW_OP_shr 0x25
#define DW_OP_shra 0x26
#define DW_OP_xor 0x27
#define DW_OP_skip 0x2f
#define DW_OP_bra 0x28
#define DW_OP_eq 0x29
#define DW_OP_ge 0x2a
#define DW_OP_gt 0x2b
#define DW_OP_le 0x2c
#define DW_OP_lt 0x2d
#define DW_OP_ne 0x2e
#define DW_OP_lit0 0x30
#define DW_OP_lit1 0x31
#define DW_OP_lit2 0x32
#define DW_OP_lit3 0x33
#define DW_OP_lit4 0x34
#define DW_OP_lit5 0x35
#define DW_OP_lit6 0x36
#define DW_OP_lit7 0x37
#define DW_OP_lit8 0x38
#define DW_OP_lit9 0x39
#define DW_OP_lit10 0x3a
#define DW_OP_lit11 0x3b
#define DW_OP_lit12 0x3c
#define DW_OP_lit13 0x3d
#define DW_OP_lit14 0x3e
#define DW_OP_lit15 0x3f
#define DW_OP_lit16 0x40
#define DW_OP_lit17 0x41
#define DW_OP_lit18 0x42
#define DW_OP_lit19 0x43
#define DW_OP_lit20 0x44
#define DW_OP_lit21 0x45
#define DW_OP_lit22 0x46
#define DW_OP_lit23 0x47
#define DW_OP_lit24 0x48
#define DW_OP_lit25 0x49
#define DW_OP_lit26 0x4a
#define DW_OP_lit27 0x4b
#define DW_OP_lit28 0x4c
#define DW_OP_lit29 0x4d
#define DW_OP_lit30 0x4e
#define DW_OP_lit31 0x4f
#define DW_OP_reg0 0x50
#define DW_OP_reg1 0x51
#define DW_OP_reg2 0x52
#define DW_OP_reg3 0x53
#define DW_OP_reg4 0x54
#define DW_OP_reg5 0x55
#define DW_OP_reg6 0x56
#define DW_OP_reg7 0x57
#define DW_OP_reg8 0x58
#define DW_OP_reg9 0x59
#define DW_OP_reg10 0x5a
#define DW_OP_reg11 0x5b
#define DW_OP_reg12 0x5c
#define DW_OP_reg13 0x5d
#define DW_OP_reg14 0x5e
#define DW_OP_reg15 0x5f
#define DW_OP_reg16 0x60
#define DW_OP_reg17 0x61
#define DW_OP_reg18 0x62
#define DW_OP_reg19 0x63
#define DW_OP_reg20 0x64
#define DW_OP_reg21 0x65
#define DW_OP_reg22 0x66
#define DW_OP_reg23 0x67
#define DW_OP_reg24 0x68
#define DW_OP_reg25 0x69
#define DW_OP_reg26 0x6a
#define DW_OP_reg27 0x6b
#define DW_OP_reg28 0x6c
#define DW_OP_reg29 0x6d
#define DW_OP_reg30 0x6e
#define DW_OP_reg31 0x6f
#define DW_OP_breg0 0x70
#define DW_OP_breg1 0x71
#define DW_OP_breg2 0x72
#define DW_OP_breg3 0x73
#define DW_OP_breg4 0x74
#define DW_OP_breg5 0x75
#define DW_OP_breg6 0x76
#define DW_OP_breg7 0x77
#define DW_OP_breg8 0x78
#define DW_OP_breg9 0x79
#define DW_OP_breg10 0x7a
#define DW_OP_breg11 0x7b
#define DW_OP_breg12 0x7c
#define DW_OP_breg13 0x7d
#define DW_OP_breg14 0x7e
#define DW_OP_breg15 0x7f
#define DW_OP_breg16 0x80
#define DW_OP_breg17 0x81
#define DW_OP_breg18 0x82
#define DW_OP_breg19 0x83
#define DW_OP_breg20 0x84
#define DW_OP_breg21 0x85
#define DW_OP_breg22 0x86
#define DW_OP_breg23 0x87
#define DW_OP_breg24 0x88
#define DW_OP_breg25 0x89
#define DW_OP_breg26 0x8a
#define DW_OP_breg27 0x8b
#define DW_OP_breg28 0x8c
#define DW_OP_breg29 0x8d
#define DW_OP_breg30 0x8e
#define DW_OP_breg31 0x8f
#define DW_OP_regx 0x90
#define DW_OP_fbreg 0x91
#define DW_OP_bregx 0x92
#define DW_OP_piece 0x93
#define DW_OP_deref_size 0x94
#define DW_OP_xderef_size 0x95
#define DW_OP_nop 0x96
#define DW_OP_push_object_address 0x97
#define DW_OP_call2 0x98
#define DW_OP_call4 0x99
#define DW_OP_call_ref 0x9a
#define DW_OP_form_tls_address 0x9b
#define DW_OP_call_frame_cfa 0x9c
#define DW_OP_bit_piece 0x9d
#define DW_OP_lo_user 0xe0
#define DW_OP_hi_user 0xff
/*
* Addresses used in FDE entries in the .eh_frame section may be encoded
* using one of the following encodings.
*/
#define DW_EH_PE_absptr 0x00
#define DW_EH_PE_omit 0xff
#define DW_EH_PE_uleb128 0x01
#define DW_EH_PE_udata2 0x02
#define DW_EH_PE_udata4 0x03
#define DW_EH_PE_udata8 0x04
#define DW_EH_PE_sleb128 0x09
#define DW_EH_PE_sdata2 0x0a
#define DW_EH_PE_sdata4 0x0b
#define DW_EH_PE_sdata8 0x0c
#define DW_EH_PE_signed 0x09
#define DW_EH_PE_pcrel 0x10
/*
* The architecture-specific register number that contains the return
* address in the .debug_frame table.
*/
#define DWARF_ARCH_RA_REG 17
#ifndef __ASSEMBLY__
/*
* Read either the frame pointer (r14) or the stack pointer (r15).
* NOTE: this MUST be inlined.
*/
static __always_inline unsigned long dwarf_read_arch_reg(unsigned int reg)
{
unsigned long value;
switch (reg) {
case 14:
__asm__ __volatile__("mov r14, %0\n" : "=r" (value));
break;
case 15:
__asm__ __volatile__("mov r15, %0\n" : "=r" (value));
break;
default:
BUG();
}
return value;
}
/**
* dwarf_cie - Common Information Entry
*/
struct dwarf_cie {
unsigned long length;
unsigned long cie_id;
unsigned char version;
const char *augmentation;
unsigned int code_alignment_factor;
int data_alignment_factor;
/* Which column in the rule table represents return addr of func. */
unsigned int return_address_reg;
unsigned char *initial_instructions;
unsigned char *instructions_end;
unsigned char encoding;
unsigned long cie_pointer;
struct list_head link;
unsigned long flags;
#define DWARF_CIE_Z_AUGMENTATION (1 << 0)
};
/**
* dwarf_fde - Frame Description Entry
*/
struct dwarf_fde {
unsigned long length;
unsigned long cie_pointer;
struct dwarf_cie *cie;
unsigned long initial_location;
unsigned long address_range;
unsigned char *instructions;
unsigned char *end;
struct list_head link;
};
/**
* dwarf_frame - DWARF information for a frame in the call stack
*/
struct dwarf_frame {
struct dwarf_frame *prev, *next;
unsigned long pc;
struct dwarf_reg *regs;
unsigned int num_regs; /* how many regs are allocated? */
unsigned int depth; /* what level are we in the callstack? */
unsigned long cfa;
/* Valid when DW_FRAME_CFA_REG_OFFSET is set in flags */
unsigned int cfa_register;
unsigned int cfa_offset;
/* Valid when DW_FRAME_CFA_REG_EXP is set in flags */
unsigned char *cfa_expr;
unsigned int cfa_expr_len;
unsigned long flags;
#define DWARF_FRAME_CFA_REG_OFFSET (1 << 0)
#define DWARF_FRAME_CFA_REG_EXP (1 << 1)
unsigned long return_addr;
};
/**
* dwarf_reg - DWARF register
* @flags: Describes how to calculate the value of this register
*/
struct dwarf_reg {
unsigned long addr;
unsigned long flags;
#define DWARF_REG_OFFSET (1 << 0)
};
/**
* dwarf_stack - a DWARF stack contains a collection of DWARF frames
* @depth: the number of frames in the stack
* @level: an array of DWARF frames, indexed by stack level
*
*/
struct dwarf_stack {
unsigned int depth;
struct dwarf_frame **level;
};
/*
* Call Frame instruction opcodes.
*/
#define DW_CFA_advance_loc 0x40
#define DW_CFA_offset 0x80
#define DW_CFA_restore 0xc0
#define DW_CFA_nop 0x00
#define DW_CFA_set_loc 0x01
#define DW_CFA_advance_loc1 0x02
#define DW_CFA_advance_loc2 0x03
#define DW_CFA_advance_loc4 0x04
#define DW_CFA_offset_extended 0x05
#define DW_CFA_restore_extended 0x06
#define DW_CFA_undefined 0x07
#define DW_CFA_same_value 0x08
#define DW_CFA_register 0x09
#define DW_CFA_remember_state 0x0a
#define DW_CFA_restore_state 0x0b
#define DW_CFA_def_cfa 0x0c
#define DW_CFA_def_cfa_register 0x0d
#define DW_CFA_def_cfa_offset 0x0e
#define DW_CFA_def_cfa_expression 0x0f
#define DW_CFA_expression 0x10
#define DW_CFA_offset_extended_sf 0x11
#define DW_CFA_def_cfa_sf 0x12
#define DW_CFA_def_cfa_offset_sf 0x13
#define DW_CFA_val_offset 0x14
#define DW_CFA_val_offset_sf 0x15
#define DW_CFA_val_expression 0x16
#define DW_CFA_lo_user 0x1c
#define DW_CFA_hi_user 0x3f
/*
* Some call frame instructions encode their operands in the opcode. We
* need some helper functions to extract both the opcode and operands
* from an instruction.
*/
static inline unsigned int DW_CFA_opcode(unsigned long insn)
{
return (insn & 0xc0);
}
static inline unsigned int DW_CFA_operand(unsigned long insn)
{
return (insn & 0x3f);
}
#define DW_EH_FRAME_CIE 0 /* .eh_frame CIE IDs are 0 */
#define DW_CIE_ID 0xffffffff
#define DW64_CIE_ID 0xffffffffffffffffULL
/*
* DWARF FDE/CIE length field values.
*/
#define DW_EXT_LO 0xfffffff0
#define DW_EXT_HI 0xffffffff
#define DW_EXT_DWARF64 DW_EXT_HI
extern void dwarf_unwinder_init(void);
extern struct dwarf_frame *dwarf_unwind_stack(unsigned long,
struct dwarf_frame *);
#endif /* __ASSEMBLY__ */
#define CFI_STARTPROC .cfi_startproc
#define CFI_ENDPROC .cfi_endproc
#define CFI_DEF_CFA .cfi_def_cfa
#define CFI_REGISTER .cfi_register
#define CFI_REL_OFFSET .cfi_rel_offset
#else
/*
* Use the asm comment character to ignore the rest of the line.
*/
#define CFI_IGNORE !
#define CFI_STARTPROC CFI_IGNORE
#define CFI_ENDPROC CFI_IGNORE
#define CFI_DEF_CFA CFI_IGNORE
#define CFI_REGISTER CFI_IGNORE
#define CFI_REL_OFFSET CFI_IGNORE
#ifndef __ASSEMBLY__
static inline void dwarf_unwinder_init(void)
{
}
#endif
#endif /* CONFIG_DWARF_UNWINDER */
#endif /* __ASM_SH_DWARF_H */

View File

@@ -108,3 +108,15 @@
#else
# define PREF(x) nop
#endif
/*
* Macro for use within assembly. Because the DWARF unwinder
* needs to use the frame register to unwind the stack, we
* need to setup r14 with the value of the stack pointer as
* the return address is usually on the stack somewhere.
*/
.macro setup_frame_reg
#ifdef CONFIG_DWARF_UNWINDER
mov r15, r14
#endif
.endm

View File

@@ -1,16 +1,9 @@
#ifndef __ASM_SH_HARDIRQ_H
#define __ASM_SH_HARDIRQ_H
#include <linux/threads.h>
#include <linux/irq.h>
/* entry.S is sensitive to the offsets of these fields */
typedef struct {
unsigned int __softirq_pending;
} ____cacheline_aligned irq_cpustat_t;
#include <linux/irq_cpustat.h> /* Standard mappings for irq_cpustat_t above */
extern void ack_bad_irq(unsigned int irq);
#define ack_bad_irq ack_bad_irq
#include <asm-generic/hardirq.h>
#endif /* __ASM_SH_HARDIRQ_H */

View File

@@ -7,6 +7,7 @@ extern void __nosave_begin, __nosave_end;
extern long __machvec_start, __machvec_end;
extern char __uncached_start, __uncached_end;
extern char _ebss[];
extern char __start_eh_frame[], __stop_eh_frame[];
#endif /* __ASM_SH_SECTIONS_H */

View File

@@ -0,0 +1,25 @@
/*
* Copyright (C) 2009 Matt Fleming
*
* Based on:
* The x86 implementation - arch/x86/include/asm/stacktrace.h
*/
#ifndef _ASM_SH_STACKTRACE_H
#define _ASM_SH_STACKTRACE_H
/* Generic stack tracer with callbacks */
struct stacktrace_ops {
void (*warning)(void *data, char *msg);
/* msg must contain %s for the symbol */
void (*warning_symbol)(void *data, char *msg, unsigned long symbol);
void (*address)(void *data, unsigned long address, int reliable);
/* On negative return stop dumping */
int (*stack)(void *data, char *name);
};
void dump_trace(struct task_struct *tsk, struct pt_regs *regs,
unsigned long *stack,
const struct stacktrace_ops *ops, void *data);
#endif /* _ASM_SH_STACKTRACE_H */

View File

@@ -0,0 +1,25 @@
#ifndef _LINUX_UNWINDER_H
#define _LINUX_UNWINDER_H
#include <asm/stacktrace.h>
struct unwinder {
const char *name;
struct list_head list;
int rating;
void (*dump)(struct task_struct *, struct pt_regs *,
unsigned long *, const struct stacktrace_ops *, void *);
};
extern int unwinder_init(void);
extern int unwinder_register(struct unwinder *);
extern void unwind_stack(struct task_struct *, struct pt_regs *,
unsigned long *, const struct stacktrace_ops *,
void *);
extern void stack_reader_dump(struct task_struct *, struct pt_regs *,
unsigned long *, const struct stacktrace_ops *,
void *);
#endif /* _LINUX_UNWINDER_H */

View File

@@ -0,0 +1,17 @@
#ifndef __ASM_SH_VMLINUX_LDS_H
#define __ASM_SH_VMLINUX_LDS_H
#include <asm-generic/vmlinux.lds.h>
#ifdef CONFIG_DWARF_UNWINDER
#define DWARF_EH_FRAME \
.eh_frame : AT(ADDR(.eh_frame) - LOAD_OFFSET) { \
VMLINUX_SYMBOL(__start_eh_frame) = .; \
*(.eh_frame) \
VMLINUX_SYMBOL(__stop_eh_frame) = .; \
}
#else
#define DWARF_EH_FRAME
#endif
#endif /* __ASM_SH_VMLINUX_LDS_H */

View File

@@ -16,7 +16,8 @@
#define DMAE0_IRQ 38
#define SH_DMAC_BASE0 0xFF608020
#define SH_DMARS_BASE 0xFF609000
#elif defined(CONFIG_CPU_SUBTYPE_SH7723)
#elif defined(CONFIG_CPU_SUBTYPE_SH7723) || \
defined(CONFIG_CPU_SUBTYPE_SH7724)
#define DMTE0_IRQ 48 /* DMAC0A*/
#define DMTE4_IRQ 40 /* DMAC0B */
#define DMTE6_IRQ 42

View File

@@ -1,64 +0,0 @@
#ifndef __ASM_SH_MIGOR_H
#define __ASM_SH_MIGOR_H
/*
* linux/include/asm-sh/migor.h
*
* Copyright (C) 2008 Renesas Solutions
*
* Portions Copyright (C) 2007 Nobuhiro Iwamatsu
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
*/
#include <asm/addrspace.h>
/* GPIO */
#define PORT_PACR 0xa4050100
#define PORT_PDCR 0xa4050106
#define PORT_PECR 0xa4050108
#define PORT_PHCR 0xa405010e
#define PORT_PJCR 0xa4050110
#define PORT_PKCR 0xa4050112
#define PORT_PLCR 0xa4050114
#define PORT_PMCR 0xa4050116
#define PORT_PRCR 0xa405011c
#define PORT_PTCR 0xa4050140
#define PORT_PUCR 0xa4050142
#define PORT_PVCR 0xa4050144
#define PORT_PWCR 0xa4050146
#define PORT_PXCR 0xa4050148
#define PORT_PYCR 0xa405014a
#define PORT_PZCR 0xa405014c
#define PORT_PADR 0xa4050120
#define PORT_PHDR 0xa405012e
#define PORT_PTDR 0xa4050160
#define PORT_PWDR 0xa4050166
#define PORT_HIZCRA 0xa4050158
#define PORT_HIZCRC 0xa405015c
#define PORT_MSELCRB 0xa4050182
#define PORT_PSELA 0xa405014e
#define PORT_PSELB 0xa4050150
#define PORT_PSELC 0xa4050152
#define PORT_PSELD 0xa4050154
#define PORT_PSELE 0xa4050156
#define PORT_HIZCRA 0xa4050158
#define PORT_HIZCRB 0xa405015a
#define PORT_HIZCRC 0xa405015c
#define BSC_CS4BCR 0xfec10010
#define BSC_CS6ABCR 0xfec1001c
#define BSC_CS4WCR 0xfec10030
#include <video/sh_mobile_lcdc.h>
int migor_lcd_qvga_setup(void *board_data, void *sys_ops_handle,
struct sh_mobile_lcdc_sys_bus_ops *sys_ops);
#endif /* __ASM_SH_MIGOR_H */

View File

@@ -0,0 +1,21 @@
#ifndef __ASM_SH_KFR2R09_H
#define __ASM_SH_KFR2R09_H
#include <video/sh_mobile_lcdc.h>
#ifdef CONFIG_FB_SH_MOBILE_LCDC
void kfr2r09_lcd_on(void *board_data);
void kfr2r09_lcd_off(void *board_data);
int kfr2r09_lcd_setup(void *board_data, void *sys_ops_handle,
struct sh_mobile_lcdc_sys_bus_ops *sys_ops);
#else
static inline void kfr2r09_lcd_on(void *board_data) {}
static inline void kfr2r09_lcd_off(void *board_data) {}
static inline int kfr2r09_lcd_setup(void *board_data, void *sys_ops_handle,
struct sh_mobile_lcdc_sys_bus_ops *sys_ops)
{
return -ENODEV;
}
#endif
#endif /* __ASM_SH_KFR2R09_H */

View File

@@ -0,0 +1,14 @@
#ifndef __ASM_SH_MIGOR_H
#define __ASM_SH_MIGOR_H
#define PORT_MSELCRB 0xa4050182
#define BSC_CS4BCR 0xfec10010
#define BSC_CS6ABCR 0xfec1001c
#define BSC_CS4WCR 0xfec10030
#include <video/sh_mobile_lcdc.h>
int migor_lcd_qvga_setup(void *board_data, void *sys_ops_handle,
struct sh_mobile_lcdc_sys_bus_ops *sys_ops);
#endif /* __ASM_SH_MIGOR_H */

View File

@@ -9,10 +9,10 @@ ifdef CONFIG_FUNCTION_TRACER
CFLAGS_REMOVE_ftrace.o = -pg
endif
obj-y := debugtraps.o idle.o io.o io_generic.o irq.o \
obj-y := debugtraps.o dumpstack.o idle.o io.o io_generic.o irq.o \
machvec.o process_32.o ptrace_32.o setup.o signal_32.o \
sys_sh.o sys_sh32.o syscalls_32.o time.o topology.o \
traps.o traps_32.o
sys_sh.o sys_sh32.o syscalls_32.o time.o topology.o \
traps.o traps_32.o unwinder.o
obj-y += cpu/
obj-$(CONFIG_VSYSCALL) += vsyscall/
@@ -33,6 +33,7 @@ obj-$(CONFIG_FTRACE_SYSCALLS) += ftrace.o
obj-$(CONFIG_FUNCTION_GRAPH_TRACER) += ftrace.o
obj-$(CONFIG_DUMP_CODE) += disassemble.o
obj-$(CONFIG_HIBERNATION) += swsusp.o
obj-$(CONFIG_DWARF_UNWINDER) += dwarf.o
obj-$(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST) += localtimer.o

View File

@@ -2,7 +2,7 @@ extra-y := head_64.o init_task.o vmlinux.lds
obj-y := debugtraps.o idle.o io.o io_generic.o irq.o machvec.o process_64.o \
ptrace_64.o setup.o signal_64.o sys_sh.o sys_sh64.o \
syscalls_64.o time.o topology.o traps.o traps_64.o
syscalls_64.o time.o topology.o traps.o traps_64.o unwinder.o
obj-y += cpu/
obj-$(CONFIG_SMP) += smp.o
@@ -13,6 +13,7 @@ obj-$(CONFIG_CRASH_DUMP) += crash_dump.o
obj-$(CONFIG_STACKTRACE) += stacktrace.o
obj-$(CONFIG_IO_TRAPPED) += io_trapped.o
obj-$(CONFIG_GENERIC_GPIO) += gpio.o
obj-$(CONFIG_DWARF_UNWINDER) += dwarf.o
obj-$(CONFIG_GENERIC_CLOCKEVENTS_BROADCAST) += localtimer.o

View File

@@ -3,7 +3,7 @@
*
* CPU init code
*
* Copyright (C) 2002 - 2007 Paul Mundt
* Copyright (C) 2002 - 2009 Paul Mundt
* Copyright (C) 2003 Richard Curnow
*
* This file is subject to the terms and conditions of the GNU General Public
@@ -62,6 +62,37 @@ static void __init speculative_execution_init(void)
#define speculative_execution_init() do { } while (0)
#endif
#ifdef CONFIG_CPU_SH4A
#define EXPMASK 0xff2f0004
#define EXPMASK_RTEDS (1 << 0)
#define EXPMASK_BRDSSLP (1 << 1)
#define EXPMASK_MMCAW (1 << 4)
static void __init expmask_init(void)
{
unsigned long expmask = __raw_readl(EXPMASK);
/*
* Future proofing.
*
* Disable support for slottable sleep instruction
* and non-nop instructions in the rte delay slot.
*/
expmask &= ~(EXPMASK_RTEDS | EXPMASK_BRDSSLP);
/*
* Enable associative writes to the memory-mapped cache array
* until the cache flush ops have been rewritten.
*/
expmask |= EXPMASK_MMCAW;
__raw_writel(expmask, EXPMASK);
ctrl_barrier();
}
#else
#define expmask_init() do { } while (0)
#endif
/* 2nd-level cache init */
void __uses_jump_to_uncached __attribute__ ((weak)) l2_cache_init(void)
{
@@ -321,4 +352,5 @@ asmlinkage void __init sh_cpu_init(void)
#endif
speculative_execution_init();
expmask_init();
}

View File

@@ -227,8 +227,9 @@ ENTRY(sh_bios_handler)
mov.l @r15+, r14
add #8,r15
lds.l @r15+, pr
mov.l @r15+,r15
rte
mov.l @r15+,r15
nop
.align 2
1: .long gdb_vbr_vector
#endif /* CONFIG_SH_STANDARD_BIOS */

View File

@@ -176,8 +176,9 @@ ENTRY(sh_bios_handler)
movml.l @r15+,r14
add #8,r15
lds.l @r15+, pr
mov.l @r15+,r15
rte
mov.l @r15+,r15
nop
.align 2
1: .long gdb_vbr_vector
#endif /* CONFIG_SH_STANDARD_BIOS */

View File

@@ -137,6 +137,7 @@ ENTRY(tlb_protection_violation_store)
mov #1, r5
call_dpf:
setup_frame_reg
mov.l 1f, r0
mov r5, r8
mov.l @r0, r6

View File

@@ -26,8 +26,30 @@ ENTRY(sh_mobile_standby)
tst #SUSP_SH_SF, r0
bt skip_set_sf
#ifdef CONFIG_CPU_SUBTYPE_SH7724
/* DBSC: put memory in self-refresh mode */
/* SDRAM: disable power down and put in self-refresh mode */
mov.l dben_reg, r4
mov.l dben_data0, r1
mov.l r1, @r4
mov.l dbrfpdn0_reg, r4
mov.l dbrfpdn0_data0, r1
mov.l r1, @r4
mov.l dbcmdcnt_reg, r4
mov.l dbcmdcnt_data0, r1
mov.l r1, @r4
mov.l dbcmdcnt_reg, r4
mov.l dbcmdcnt_data1, r1
mov.l r1, @r4
mov.l dbrfpdn0_reg, r4
mov.l dbrfpdn0_data1, r1
mov.l r1, @r4
#else
/* SBSC: disable power down and put in self-refresh mode */
mov.l 1f, r4
mov.l 2f, r1
mov.l @r4, r2
@@ -35,6 +57,7 @@ ENTRY(sh_mobile_standby)
mov.l 3f, r3
and r3, r2
mov.l r2, @r4
#endif
skip_set_sf:
tst #SUSP_SH_SLEEP, r0
@@ -84,7 +107,36 @@ done_sleep:
tst #SUSP_SH_SF, r0
bt skip_restore_sf
/* SDRAM: set auto-refresh mode */
#ifdef CONFIG_CPU_SUBTYPE_SH7724
/* DBSC: put memory in auto-refresh mode */
mov.l dbrfpdn0_reg, r4
mov.l dbrfpdn0_data0, r1
mov.l r1, @r4
/* sleep 140 ns */
nop
nop
nop
nop
mov.l dbcmdcnt_reg, r4
mov.l dbcmdcnt_data0, r1
mov.l r1, @r4
mov.l dbcmdcnt_reg, r4
mov.l dbcmdcnt_data1, r1
mov.l r1, @r4
mov.l dben_reg, r4
mov.l dben_data1, r1
mov.l r1, @r4
mov.l dbrfpdn0_reg, r4
mov.l dbrfpdn0_data2, r1
mov.l r1, @r4
#else
/* SBSC: set auto-refresh mode */
mov.l 1f, r4
mov.l @r4, r2
mov.l 4f, r3
@@ -98,15 +150,29 @@ done_sleep:
add r4, r3
or r2, r3
mov.l r3, @r1
#endif
skip_restore_sf:
rts
nop
.balign 4
#ifdef CONFIG_CPU_SUBTYPE_SH7724
dben_reg: .long 0xfd000010 /* DBEN */
dben_data0: .long 0
dben_data1: .long 1
dbrfpdn0_reg: .long 0xfd000040 /* DBRFPDN0 */
dbrfpdn0_data0: .long 0
dbrfpdn0_data1: .long 1
dbrfpdn0_data2: .long 0x00010000
dbcmdcnt_reg: .long 0xfd000014 /* DBCMDCNT */
dbcmdcnt_data0: .long 2
dbcmdcnt_data1: .long 4
#else
1: .long 0xfe400008 /* SDCR0 */
2: .long 0x00000400
3: .long 0xffff7fff
4: .long 0xfffffbff
#endif
5: .long 0xa4150020 /* STBCR */
6: .long 0xfe40001c /* RTCOR */
7: .long 0xfe400018 /* RTCNT */

123
arch/sh/kernel/dumpstack.c Normal file
View File

@@ -0,0 +1,123 @@
/*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
* Copyright (C) 2009 Matt Fleming
*/
#include <linux/kallsyms.h>
#include <linux/ftrace.h>
#include <linux/debug_locks.h>
#include <asm/unwinder.h>
#include <asm/stacktrace.h>
void printk_address(unsigned long address, int reliable)
{
printk(" [<%p>] %s%pS\n", (void *) address,
reliable ? "" : "? ", (void *) address);
}
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
static void
print_ftrace_graph_addr(unsigned long addr, void *data,
const struct stacktrace_ops *ops,
struct thread_info *tinfo, int *graph)
{
struct task_struct *task = tinfo->task;
unsigned long ret_addr;
int index = task->curr_ret_stack;
if (addr != (unsigned long)return_to_handler)
return;
if (!task->ret_stack || index < *graph)
return;
index -= *graph;
ret_addr = task->ret_stack[index].ret;
ops->address(data, ret_addr, 1);
(*graph)++;
}
#else
static inline void
print_ftrace_graph_addr(unsigned long addr, void *data,
const struct stacktrace_ops *ops,
struct thread_info *tinfo, int *graph)
{ }
#endif
void
stack_reader_dump(struct task_struct *task, struct pt_regs *regs,
unsigned long *sp, const struct stacktrace_ops *ops,
void *data)
{
struct thread_info *context;
int graph = 0;
context = (struct thread_info *)
((unsigned long)sp & (~(THREAD_SIZE - 1)));
while (!kstack_end(sp)) {
unsigned long addr = *sp++;
if (__kernel_text_address(addr)) {
ops->address(data, addr, 1);
print_ftrace_graph_addr(addr, data, ops,
context, &graph);
}
}
}
static void
print_trace_warning_symbol(void *data, char *msg, unsigned long symbol)
{
printk(data);
print_symbol(msg, symbol);
printk("\n");
}
static void print_trace_warning(void *data, char *msg)
{
printk("%s%s\n", (char *)data, msg);
}
static int print_trace_stack(void *data, char *name)
{
printk("%s <%s> ", (char *)data, name);
return 0;
}
/*
* Print one address/symbol entries per line.
*/
static void print_trace_address(void *data, unsigned long addr, int reliable)
{
printk(data);
printk_address(addr, reliable);
}
static const struct stacktrace_ops print_trace_ops = {
.warning = print_trace_warning,
.warning_symbol = print_trace_warning_symbol,
.stack = print_trace_stack,
.address = print_trace_address,
};
void show_trace(struct task_struct *tsk, unsigned long *sp,
struct pt_regs *regs)
{
if (regs && user_mode(regs))
return;
printk("\nCall trace:\n");
unwind_stack(tsk, regs, sp, &print_trace_ops, "");
printk("\n");
if (!tsk)
tsk = current;
debug_show_held_locks(tsk);
}

902
arch/sh/kernel/dwarf.c Normal file
View File

@@ -0,0 +1,902 @@
/*
* Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* This is an implementation of a DWARF unwinder. Its main purpose is
* for generating stacktrace information. Based on the DWARF 3
* specification from http://www.dwarfstd.org.
*
* TODO:
* - DWARF64 doesn't work.
*/
/* #define DEBUG */
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <asm/dwarf.h>
#include <asm/unwinder.h>
#include <asm/sections.h>
#include <asm/unaligned.h>
#include <asm/dwarf.h>
#include <asm/stacktrace.h>
static LIST_HEAD(dwarf_cie_list);
DEFINE_SPINLOCK(dwarf_cie_lock);
static LIST_HEAD(dwarf_fde_list);
DEFINE_SPINLOCK(dwarf_fde_lock);
static struct dwarf_cie *cached_cie;
/*
* Figure out whether we need to allocate some dwarf registers. If dwarf
* registers have already been allocated then we may need to realloc
* them. "reg" is a register number that we need to be able to access
* after this call.
*
* Register numbers start at zero, therefore we need to allocate space
* for "reg" + 1 registers.
*/
static void dwarf_frame_alloc_regs(struct dwarf_frame *frame,
unsigned int reg)
{
struct dwarf_reg *regs;
unsigned int num_regs = reg + 1;
size_t new_size;
size_t old_size;
new_size = num_regs * sizeof(*regs);
old_size = frame->num_regs * sizeof(*regs);
/* Fast path: don't allocate any regs if we've already got enough. */
if (frame->num_regs >= num_regs)
return;
regs = kzalloc(new_size, GFP_ATOMIC);
if (!regs) {
printk(KERN_WARNING "Unable to allocate DWARF registers\n");
/*
* Let's just bomb hard here, we have no way to
* gracefully recover.
*/
BUG();
}
if (frame->regs) {
memcpy(regs, frame->regs, old_size);
kfree(frame->regs);
}
frame->regs = regs;
frame->num_regs = num_regs;
}
/**
* dwarf_read_addr - read dwarf data
* @src: source address of data
* @dst: destination address to store the data to
*
* Read 'n' bytes from @src, where 'n' is the size of an address on
* the native machine. We return the number of bytes read, which
* should always be 'n'. We also have to be careful when reading
* from @src and writing to @dst, because they can be arbitrarily
* aligned. Return 'n' - the number of bytes read.
*/
static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
{
u32 val = get_unaligned(src);
put_unaligned(val, dst);
return sizeof(unsigned long *);
}
/**
* dwarf_read_uleb128 - read unsigned LEB128 data
* @addr: the address where the ULEB128 data is stored
* @ret: address to store the result
*
* Decode an unsigned LEB128 encoded datum. The algorithm is taken
* from Appendix C of the DWARF 3 spec. For information on the
* encodings refer to section "7.6 - Variable Length Data". Return
* the number of bytes read.
*/
static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
{
unsigned int result;
unsigned char byte;
int shift, count;
result = 0;
shift = 0;
count = 0;
while (1) {
byte = __raw_readb(addr);
addr++;
count++;
result |= (byte & 0x7f) << shift;
shift += 7;
if (!(byte & 0x80))
break;
}
*ret = result;
return count;
}
/**
* dwarf_read_leb128 - read signed LEB128 data
* @addr: the address of the LEB128 encoded data
* @ret: address to store the result
*
* Decode signed LEB128 data. The algorithm is taken from Appendix
* C of the DWARF 3 spec. Return the number of bytes read.
*/
static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
{
unsigned char byte;
int result, shift;
int num_bits;
int count;
result = 0;
shift = 0;
count = 0;
while (1) {
byte = __raw_readb(addr);
addr++;
result |= (byte & 0x7f) << shift;
shift += 7;
count++;
if (!(byte & 0x80))
break;
}
/* The number of bits in a signed integer. */
num_bits = 8 * sizeof(result);
if ((shift < num_bits) && (byte & 0x40))
result |= (-1 << shift);
*ret = result;
return count;
}
/**
* dwarf_read_encoded_value - return the decoded value at @addr
* @addr: the address of the encoded value
* @val: where to write the decoded value
* @encoding: the encoding with which we can decode @addr
*
* GCC emits encoded address in the .eh_frame FDE entries. Decode
* the value at @addr using @encoding. The decoded value is written
* to @val and the number of bytes read is returned.
*/
static int dwarf_read_encoded_value(char *addr, unsigned long *val,
char encoding)
{
unsigned long decoded_addr = 0;
int count = 0;
switch (encoding & 0x70) {
case DW_EH_PE_absptr:
break;
case DW_EH_PE_pcrel:
decoded_addr = (unsigned long)addr;
break;
default:
pr_debug("encoding=0x%x\n", (encoding & 0x70));
BUG();
}
if ((encoding & 0x07) == 0x00)
encoding |= DW_EH_PE_udata4;
switch (encoding & 0x0f) {
case DW_EH_PE_sdata4:
case DW_EH_PE_udata4:
count += 4;
decoded_addr += get_unaligned((u32 *)addr);
__raw_writel(decoded_addr, val);
break;
default:
pr_debug("encoding=0x%x\n", encoding);
BUG();
}
return count;
}
/**
* dwarf_entry_len - return the length of an FDE or CIE
* @addr: the address of the entry
* @len: the length of the entry
*
* Read the initial_length field of the entry and store the size of
* the entry in @len. We return the number of bytes read. Return a
* count of 0 on error.
*/
static inline int dwarf_entry_len(char *addr, unsigned long *len)
{
u32 initial_len;
int count;
initial_len = get_unaligned((u32 *)addr);
count = 4;
/*
* An initial length field value in the range DW_LEN_EXT_LO -
* DW_LEN_EXT_HI indicates an extension, and should not be
* interpreted as a length. The only extension that we currently
* understand is the use of DWARF64 addresses.
*/
if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
/*
* The 64-bit length field immediately follows the
* compulsory 32-bit length field.
*/
if (initial_len == DW_EXT_DWARF64) {
*len = get_unaligned((u64 *)addr + 4);
count = 12;
} else {
printk(KERN_WARNING "Unknown DWARF extension\n");
count = 0;
}
} else
*len = initial_len;
return count;
}
/**
* dwarf_lookup_cie - locate the cie
* @cie_ptr: pointer to help with lookup
*/
static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
{
struct dwarf_cie *cie, *n;
unsigned long flags;
spin_lock_irqsave(&dwarf_cie_lock, flags);
/*
* We've cached the last CIE we looked up because chances are
* that the FDE wants this CIE.
*/
if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
cie = cached_cie;
goto out;
}
list_for_each_entry_safe(cie, n, &dwarf_cie_list, link) {
if (cie->cie_pointer == cie_ptr) {
cached_cie = cie;
break;
}
}
/* Couldn't find the entry in the list. */
if (&cie->link == &dwarf_cie_list)
cie = NULL;
out:
spin_unlock_irqrestore(&dwarf_cie_lock, flags);
return cie;
}
/**
* dwarf_lookup_fde - locate the FDE that covers pc
* @pc: the program counter
*/
struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
{
unsigned long flags;
struct dwarf_fde *fde, *n;
spin_lock_irqsave(&dwarf_fde_lock, flags);
list_for_each_entry_safe(fde, n, &dwarf_fde_list, link) {
unsigned long start, end;
start = fde->initial_location;
end = fde->initial_location + fde->address_range;
if (pc >= start && pc < end)
break;
}
/* Couldn't find the entry in the list. */
if (&fde->link == &dwarf_fde_list)
fde = NULL;
spin_unlock_irqrestore(&dwarf_fde_lock, flags);
return fde;
}
/**
* dwarf_cfa_execute_insns - execute instructions to calculate a CFA
* @insn_start: address of the first instruction
* @insn_end: address of the last instruction
* @cie: the CIE for this function
* @fde: the FDE for this function
* @frame: the instructions calculate the CFA for this frame
* @pc: the program counter of the address we're interested in
* @define_ra: keep executing insns until the return addr reg is defined?
*
* Execute the Call Frame instruction sequence starting at
* @insn_start and ending at @insn_end. The instructions describe
* how to calculate the Canonical Frame Address of a stackframe.
* Store the results in @frame.
*/
static int dwarf_cfa_execute_insns(unsigned char *insn_start,
unsigned char *insn_end,
struct dwarf_cie *cie,
struct dwarf_fde *fde,
struct dwarf_frame *frame,
unsigned long pc,
bool define_ra)
{
unsigned char insn;
unsigned char *current_insn;
unsigned int count, delta, reg, expr_len, offset;
bool seen_ra_reg;
current_insn = insn_start;
/*
* If we're executing instructions for the dwarf_unwind_stack()
* FDE we need to keep executing instructions until the value of
* DWARF_ARCH_RA_REG is defined. See the comment in
* dwarf_unwind_stack() for more details.
*/
if (define_ra)
seen_ra_reg = false;
else
seen_ra_reg = true;
while (current_insn < insn_end && (frame->pc <= pc || !seen_ra_reg) ) {
insn = __raw_readb(current_insn++);
if (!seen_ra_reg) {
if (frame->num_regs >= DWARF_ARCH_RA_REG &&
frame->regs[DWARF_ARCH_RA_REG].flags)
seen_ra_reg = true;
}
/*
* Firstly, handle the opcodes that embed their operands
* in the instructions.
*/
switch (DW_CFA_opcode(insn)) {
case DW_CFA_advance_loc:
delta = DW_CFA_operand(insn);
delta *= cie->code_alignment_factor;
frame->pc += delta;
continue;
/* NOTREACHED */
case DW_CFA_offset:
reg = DW_CFA_operand(insn);
count = dwarf_read_uleb128(current_insn, &offset);
current_insn += count;
offset *= cie->data_alignment_factor;
dwarf_frame_alloc_regs(frame, reg);
frame->regs[reg].addr = offset;
frame->regs[reg].flags |= DWARF_REG_OFFSET;
continue;
/* NOTREACHED */
case DW_CFA_restore:
reg = DW_CFA_operand(insn);
continue;
/* NOTREACHED */
}
/*
* Secondly, handle the opcodes that don't embed their
* operands in the instruction.
*/
switch (insn) {
case DW_CFA_nop:
continue;
case DW_CFA_advance_loc1:
delta = *current_insn++;
frame->pc += delta * cie->code_alignment_factor;
break;
case DW_CFA_advance_loc2:
delta = get_unaligned((u16 *)current_insn);
current_insn += 2;
frame->pc += delta * cie->code_alignment_factor;
break;
case DW_CFA_advance_loc4:
delta = get_unaligned((u32 *)current_insn);
current_insn += 4;
frame->pc += delta * cie->code_alignment_factor;
break;
case DW_CFA_offset_extended:
count = dwarf_read_uleb128(current_insn, &reg);
current_insn += count;
count = dwarf_read_uleb128(current_insn, &offset);
current_insn += count;
offset *= cie->data_alignment_factor;
break;
case DW_CFA_restore_extended:
count = dwarf_read_uleb128(current_insn, &reg);
current_insn += count;
break;
case DW_CFA_undefined:
count = dwarf_read_uleb128(current_insn, &reg);
current_insn += count;
break;
case DW_CFA_def_cfa:
count = dwarf_read_uleb128(current_insn,
&frame->cfa_register);
current_insn += count;
count = dwarf_read_uleb128(current_insn,
&frame->cfa_offset);
current_insn += count;
frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
break;
case DW_CFA_def_cfa_register:
count = dwarf_read_uleb128(current_insn,
&frame->cfa_register);
current_insn += count;
frame->cfa_offset = 0;
frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
break;
case DW_CFA_def_cfa_offset:
count = dwarf_read_uleb128(current_insn, &offset);
current_insn += count;
frame->cfa_offset = offset;
break;
case DW_CFA_def_cfa_expression:
count = dwarf_read_uleb128(current_insn, &expr_len);
current_insn += count;
frame->cfa_expr = current_insn;
frame->cfa_expr_len = expr_len;
current_insn += expr_len;
frame->flags |= DWARF_FRAME_CFA_REG_EXP;
break;
case DW_CFA_offset_extended_sf:
count = dwarf_read_uleb128(current_insn, &reg);
current_insn += count;
count = dwarf_read_leb128(current_insn, &offset);
current_insn += count;
offset *= cie->data_alignment_factor;
dwarf_frame_alloc_regs(frame, reg);
frame->regs[reg].flags |= DWARF_REG_OFFSET;
frame->regs[reg].addr = offset;
break;
case DW_CFA_val_offset:
count = dwarf_read_uleb128(current_insn, &reg);
current_insn += count;
count = dwarf_read_leb128(current_insn, &offset);
offset *= cie->data_alignment_factor;
frame->regs[reg].flags |= DWARF_REG_OFFSET;
frame->regs[reg].addr = offset;
break;
default:
pr_debug("unhandled DWARF instruction 0x%x\n", insn);
break;
}
}
return 0;
}
/**
* dwarf_unwind_stack - recursively unwind the stack
* @pc: address of the function to unwind
* @prev: struct dwarf_frame of the previous stackframe on the callstack
*
* Return a struct dwarf_frame representing the most recent frame
* on the callstack. Each of the lower (older) stack frames are
* linked via the "prev" member.
*/
struct dwarf_frame *dwarf_unwind_stack(unsigned long pc,
struct dwarf_frame *prev)
{
struct dwarf_frame *frame;
struct dwarf_cie *cie;
struct dwarf_fde *fde;
unsigned long addr;
int i, offset;
bool define_ra = false;
/*
* If this is the first invocation of this recursive function we
* need get the contents of a physical register to get the CFA
* in order to begin the virtual unwinding of the stack.
*
* Setting "define_ra" to true indictates that we want
* dwarf_cfa_execute_insns() to continue executing instructions
* until we know how to calculate the value of DWARF_ARCH_RA_REG
* (which we need in order to kick off the whole unwinding
* process).
*
* NOTE: the return address is guaranteed to be setup by the
* time this function makes its first function call.
*/
if (!pc && !prev) {
pc = (unsigned long)&dwarf_unwind_stack;
define_ra = true;
}
frame = kzalloc(sizeof(*frame), GFP_ATOMIC);
if (!frame)
return NULL;
frame->prev = prev;
fde = dwarf_lookup_fde(pc);
if (!fde) {
/*
* This is our normal exit path - the one that stops the
* recursion. There's two reasons why we might exit
* here,
*
* a) pc has no asscociated DWARF frame info and so
* we don't know how to unwind this frame. This is
* usually the case when we're trying to unwind a
* frame that was called from some assembly code
* that has no DWARF info, e.g. syscalls.
*
* b) the DEBUG info for pc is bogus. There's
* really no way to distinguish this case from the
* case above, which sucks because we could print a
* warning here.
*/
return NULL;
}
cie = dwarf_lookup_cie(fde->cie_pointer);
frame->pc = fde->initial_location;
/* CIE initial instructions */
dwarf_cfa_execute_insns(cie->initial_instructions,
cie->instructions_end, cie, fde,
frame, pc, false);
/* FDE instructions */
dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
fde, frame, pc, define_ra);
/* Calculate the CFA */
switch (frame->flags) {
case DWARF_FRAME_CFA_REG_OFFSET:
if (prev) {
BUG_ON(!prev->regs[frame->cfa_register].flags);
addr = prev->cfa;
addr += prev->regs[frame->cfa_register].addr;
frame->cfa = __raw_readl(addr);
} else {
/*
* Again, this is the first invocation of this
* recurisve function. We need to physically
* read the contents of a register in order to
* get the Canonical Frame Address for this
* function.
*/
frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
}
frame->cfa += frame->cfa_offset;
break;
default:
BUG();
}
/* If we haven't seen the return address reg, we're screwed. */
BUG_ON(!frame->regs[DWARF_ARCH_RA_REG].flags);
for (i = 0; i <= frame->num_regs; i++) {
struct dwarf_reg *reg = &frame->regs[i];
if (!reg->flags)
continue;
offset = reg->addr;
offset += frame->cfa;
}
addr = frame->cfa + frame->regs[DWARF_ARCH_RA_REG].addr;
frame->return_addr = __raw_readl(addr);
frame->next = dwarf_unwind_stack(frame->return_addr, frame);
return frame;
}
static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
unsigned char *end)
{
struct dwarf_cie *cie;
unsigned long flags;
int count;
cie = kzalloc(sizeof(*cie), GFP_KERNEL);
if (!cie)
return -ENOMEM;
cie->length = len;
/*
* Record the offset into the .eh_frame section
* for this CIE. It allows this CIE to be
* quickly and easily looked up from the
* corresponding FDE.
*/
cie->cie_pointer = (unsigned long)entry;
cie->version = *(char *)p++;
BUG_ON(cie->version != 1);
cie->augmentation = p;
p += strlen(cie->augmentation) + 1;
count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
p += count;
count = dwarf_read_leb128(p, &cie->data_alignment_factor);
p += count;
/*
* Which column in the rule table contains the
* return address?
*/
if (cie->version == 1) {
cie->return_address_reg = __raw_readb(p);
p++;
} else {
count = dwarf_read_uleb128(p, &cie->return_address_reg);
p += count;
}
if (cie->augmentation[0] == 'z') {
unsigned int length, count;
cie->flags |= DWARF_CIE_Z_AUGMENTATION;
count = dwarf_read_uleb128(p, &length);
p += count;
BUG_ON((unsigned char *)p > end);
cie->initial_instructions = p + length;
cie->augmentation++;
}
while (*cie->augmentation) {
/*
* "L" indicates a byte showing how the
* LSDA pointer is encoded. Skip it.
*/
if (*cie->augmentation == 'L') {
p++;
cie->augmentation++;
} else if (*cie->augmentation == 'R') {
/*
* "R" indicates a byte showing
* how FDE addresses are
* encoded.
*/
cie->encoding = *(char *)p++;
cie->augmentation++;
} else if (*cie->augmentation == 'P') {
/*
* "R" indicates a personality
* routine in the CIE
* augmentation.
*/
BUG();
} else if (*cie->augmentation == 'S') {
BUG();
} else {
/*
* Unknown augmentation. Assume
* 'z' augmentation.
*/
p = cie->initial_instructions;
BUG_ON(!p);
break;
}
}
cie->initial_instructions = p;
cie->instructions_end = end;
/* Add to list */
spin_lock_irqsave(&dwarf_cie_lock, flags);
list_add_tail(&cie->link, &dwarf_cie_list);
spin_unlock_irqrestore(&dwarf_cie_lock, flags);
return 0;
}
static int dwarf_parse_fde(void *entry, u32 entry_type,
void *start, unsigned long len)
{
struct dwarf_fde *fde;
struct dwarf_cie *cie;
unsigned long flags;
int count;
void *p = start;
fde = kzalloc(sizeof(*fde), GFP_KERNEL);
if (!fde)
return -ENOMEM;
fde->length = len;
/*
* In a .eh_frame section the CIE pointer is the
* delta between the address within the FDE
*/
fde->cie_pointer = (unsigned long)(p - entry_type - 4);
cie = dwarf_lookup_cie(fde->cie_pointer);
fde->cie = cie;
if (cie->encoding)
count = dwarf_read_encoded_value(p, &fde->initial_location,
cie->encoding);
else
count = dwarf_read_addr(p, &fde->initial_location);
p += count;
if (cie->encoding)
count = dwarf_read_encoded_value(p, &fde->address_range,
cie->encoding & 0x0f);
else
count = dwarf_read_addr(p, &fde->address_range);
p += count;
if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
unsigned int length;
count = dwarf_read_uleb128(p, &length);
p += count + length;
}
/* Call frame instructions. */
fde->instructions = p;
fde->end = start + len;
/* Add to list. */
spin_lock_irqsave(&dwarf_fde_lock, flags);
list_add_tail(&fde->link, &dwarf_fde_list);
spin_unlock_irqrestore(&dwarf_fde_lock, flags);
return 0;
}
static void dwarf_unwinder_dump(struct task_struct *task, struct pt_regs *regs,
unsigned long *sp,
const struct stacktrace_ops *ops, void *data)
{
struct dwarf_frame *frame;
frame = dwarf_unwind_stack(0, NULL);
while (frame && frame->return_addr) {
ops->address(data, frame->return_addr, 1);
frame = frame->next;
}
}
static struct unwinder dwarf_unwinder = {
.name = "dwarf-unwinder",
.dump = dwarf_unwinder_dump,
.rating = 150,
};
static void dwarf_unwinder_cleanup(void)
{
struct dwarf_cie *cie, *m;
struct dwarf_fde *fde, *n;
unsigned long flags;
/*
* Deallocate all the memory allocated for the DWARF unwinder.
* Traverse all the FDE/CIE lists and remove and free all the
* memory associated with those data structures.
*/
spin_lock_irqsave(&dwarf_cie_lock, flags);
list_for_each_entry_safe(cie, m, &dwarf_cie_list, link)
kfree(cie);
spin_unlock_irqrestore(&dwarf_cie_lock, flags);
spin_lock_irqsave(&dwarf_fde_lock, flags);
list_for_each_entry_safe(fde, n, &dwarf_fde_list, link)
kfree(fde);
spin_unlock_irqrestore(&dwarf_fde_lock, flags);
}
/**
* dwarf_unwinder_init - initialise the dwarf unwinder
*
* Build the data structures describing the .dwarf_frame section to
* make it easier to lookup CIE and FDE entries. Because the
* .eh_frame section is packed as tightly as possible it is not
* easy to lookup the FDE for a given PC, so we build a list of FDE
* and CIE entries that make it easier.
*/
void dwarf_unwinder_init(void)
{
u32 entry_type;
void *p, *entry;
int count, err;
unsigned long len;
unsigned int c_entries, f_entries;
unsigned char *end;
INIT_LIST_HEAD(&dwarf_cie_list);
INIT_LIST_HEAD(&dwarf_fde_list);
c_entries = 0;
f_entries = 0;
entry = &__start_eh_frame;
while ((char *)entry < __stop_eh_frame) {
p = entry;
count = dwarf_entry_len(p, &len);
if (count == 0) {
/*
* We read a bogus length field value. There is
* nothing we can do here apart from disabling
* the DWARF unwinder. We can't even skip this
* entry and move to the next one because 'len'
* tells us where our next entry is.
*/
goto out;
} else
p += count;
/* initial length does not include itself */
end = p + len;
entry_type = get_unaligned((u32 *)p);
p += 4;
if (entry_type == DW_EH_FRAME_CIE) {
err = dwarf_parse_cie(entry, p, len, end);
if (err < 0)
goto out;
else
c_entries++;
} else {
err = dwarf_parse_fde(entry, entry_type, p, len);
if (err < 0)
goto out;
else
f_entries++;
}
entry = (char *)entry + len + 4;
}
printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
c_entries, f_entries);
err = unwinder_register(&dwarf_unwinder);
if (err)
goto out;
return;
out:
printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
dwarf_unwinder_cleanup();
}

View File

@@ -222,6 +222,7 @@ static int __init setup_early_printk(char *buf)
#if !defined(CONFIG_SH_STANDARD_BIOS)
#if defined(CONFIG_CPU_SH4) || defined(CONFIG_CPU_SH3)
scif_sercon_init(buf + 6);
#endif
#endif
}
#endif

View File

@@ -43,6 +43,7 @@
* syscall #
*
*/
#include <asm/dwarf.h>
#if defined(CONFIG_PREEMPT)
# define preempt_stop() cli ; TRACE_IRQS_OFF
@@ -66,6 +67,11 @@ ENTRY(exception_error)
.align 2
ret_from_exception:
CFI_STARTPROC simple
CFI_DEF_CFA r14, 0
CFI_REL_OFFSET 17, 64
CFI_REL_OFFSET 15, 0
CFI_REL_OFFSET 14, 56
preempt_stop()
ENTRY(ret_from_irq)
!
@@ -240,6 +246,7 @@ debug_trap:
nop
bra __restore_all
nop
CFI_ENDPROC
.align 2
1: .long debug_trap_table
@@ -285,6 +292,7 @@ ret_from_fork:
* system calls and debug traps through their respective jump tables.
*/
ENTRY(system_call)
setup_frame_reg
#if !defined(CONFIG_CPU_SH2)
mov.l 1f, r9
mov.l @r9, r8 ! Read from TRA (Trap Address) Register

View File

@@ -14,6 +14,7 @@
#include <asm/processor.h>
#include <asm/machvec.h>
#include <asm/uaccess.h>
#include <asm/dwarf.h>
#include <asm/thread_info.h>
#include <cpu/mmu_context.h>
@@ -261,6 +262,9 @@ void __init init_IRQ(void)
sh_mv.mv_init_irq();
irq_ctx_init(smp_processor_id());
/* This needs to be early, but not too early.. */
dwarf_unwinder_init();
}
#ifdef CONFIG_SPARSE_IRQ

View File

@@ -13,47 +13,93 @@
#include <linux/stacktrace.h>
#include <linux/thread_info.h>
#include <linux/module.h>
#include <asm/unwinder.h>
#include <asm/ptrace.h>
#include <asm/stacktrace.h>
static void save_stack_warning(void *data, char *msg)
{
}
static void
save_stack_warning_symbol(void *data, char *msg, unsigned long symbol)
{
}
static int save_stack_stack(void *data, char *name)
{
return 0;
}
/*
* Save stack-backtrace addresses into a stack_trace buffer.
*/
static void save_stack_address(void *data, unsigned long addr, int reliable)
{
struct stack_trace *trace = data;
if (!reliable)
return;
if (trace->skip > 0) {
trace->skip--;
return;
}
if (trace->nr_entries < trace->max_entries)
trace->entries[trace->nr_entries++] = addr;
}
static const struct stacktrace_ops save_stack_ops = {
.warning = save_stack_warning,
.warning_symbol = save_stack_warning_symbol,
.stack = save_stack_stack,
.address = save_stack_address,
};
void save_stack_trace(struct stack_trace *trace)
{
unsigned long *sp = (unsigned long *)current_stack_pointer;
while (!kstack_end(sp)) {
unsigned long addr = *sp++;
if (__kernel_text_address(addr)) {
if (trace->skip > 0)
trace->skip--;
else
trace->entries[trace->nr_entries++] = addr;
if (trace->nr_entries >= trace->max_entries)
break;
}
}
unwind_stack(current, NULL, sp, &save_stack_ops, trace);
if (trace->nr_entries < trace->max_entries)
trace->entries[trace->nr_entries++] = ULONG_MAX;
}
EXPORT_SYMBOL_GPL(save_stack_trace);
static void
save_stack_address_nosched(void *data, unsigned long addr, int reliable)
{
struct stack_trace *trace = (struct stack_trace *)data;
if (!reliable)
return;
if (in_sched_functions(addr))
return;
if (trace->skip > 0) {
trace->skip--;
return;
}
if (trace->nr_entries < trace->max_entries)
trace->entries[trace->nr_entries++] = addr;
}
static const struct stacktrace_ops save_stack_ops_nosched = {
.warning = save_stack_warning,
.warning_symbol = save_stack_warning_symbol,
.stack = save_stack_stack,
.address = save_stack_address_nosched,
};
void save_stack_trace_tsk(struct task_struct *tsk, struct stack_trace *trace)
{
unsigned long *sp = (unsigned long *)tsk->thread.sp;
while (!kstack_end(sp)) {
unsigned long addr = *sp++;
if (__kernel_text_address(addr)) {
if (in_sched_functions(addr))
break;
if (trace->skip > 0)
trace->skip--;
else
trace->entries[trace->nr_entries++] = addr;
if (trace->nr_entries >= trace->max_entries)
break;
}
}
unwind_stack(current, NULL, sp, &save_stack_ops_nosched, trace);
if (trace->nr_entries < trace->max_entries)
trace->entries[trace->nr_entries++] = ULONG_MAX;
}
EXPORT_SYMBOL_GPL(save_stack_trace_tsk);

View File

@@ -858,30 +858,6 @@ void __init trap_init(void)
per_cpu_trap_init();
}
void show_trace(struct task_struct *tsk, unsigned long *sp,
struct pt_regs *regs)
{
unsigned long addr;
if (regs && user_mode(regs))
return;
printk("\nCall trace:\n");
while (!kstack_end(sp)) {
addr = *sp++;
if (kernel_text_address(addr))
print_ip_sym(addr);
}
printk("\n");
if (!tsk)
tsk = current;
debug_show_held_locks(tsk);
}
void show_stack(struct task_struct *tsk, unsigned long *sp)
{
unsigned long stack;

162
arch/sh/kernel/unwinder.c Normal file
View File

@@ -0,0 +1,162 @@
/*
* Copyright (C) 2009 Matt Fleming
*
* Based, in part, on kernel/time/clocksource.c.
*
* This file provides arbitration code for stack unwinders.
*
* Multiple stack unwinders can be available on a system, usually with
* the most accurate unwinder being the currently active one.
*/
#include <linux/errno.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <asm/unwinder.h>
#include <asm/atomic.h>
/*
* This is the most basic stack unwinder an architecture can
* provide. For architectures without reliable frame pointers, e.g.
* RISC CPUs, it can be implemented by looking through the stack for
* addresses that lie within the kernel text section.
*
* Other CPUs, e.g. x86, can use their frame pointer register to
* construct more accurate stack traces.
*/
static struct list_head unwinder_list;
static struct unwinder stack_reader = {
.name = "stack-reader",
.dump = stack_reader_dump,
.rating = 50,
.list = {
.next = &unwinder_list,
.prev = &unwinder_list,
},
};
/*
* "curr_unwinder" points to the stack unwinder currently in use. This
* is the unwinder with the highest rating.
*
* "unwinder_list" is a linked-list of all available unwinders, sorted
* by rating.
*
* All modifications of "curr_unwinder" and "unwinder_list" must be
* performed whilst holding "unwinder_lock".
*/
static struct unwinder *curr_unwinder = &stack_reader;
static struct list_head unwinder_list = {
.next = &stack_reader.list,
.prev = &stack_reader.list,
};
static DEFINE_SPINLOCK(unwinder_lock);
static atomic_t unwinder_running = ATOMIC_INIT(0);
/**
* select_unwinder - Select the best registered stack unwinder.
*
* Private function. Must hold unwinder_lock when called.
*
* Select the stack unwinder with the best rating. This is useful for
* setting up curr_unwinder.
*/
static struct unwinder *select_unwinder(void)
{
struct unwinder *best;
if (list_empty(&unwinder_list))
return NULL;
best = list_entry(unwinder_list.next, struct unwinder, list);
if (best == curr_unwinder)
return NULL;
return best;
}
/*
* Enqueue the stack unwinder sorted by rating.
*/
static int unwinder_enqueue(struct unwinder *ops)
{
struct list_head *tmp, *entry = &unwinder_list;
list_for_each(tmp, &unwinder_list) {
struct unwinder *o;
o = list_entry(tmp, struct unwinder, list);
if (o == ops)
return -EBUSY;
/* Keep track of the place, where to insert */
if (o->rating >= ops->rating)
entry = tmp;
}
list_add(&ops->list, entry);
return 0;
}
/**
* unwinder_register - Used to install new stack unwinder
* @u: unwinder to be registered
*
* Install the new stack unwinder on the unwinder list, which is sorted
* by rating.
*
* Returns -EBUSY if registration fails, zero otherwise.
*/
int unwinder_register(struct unwinder *u)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&unwinder_lock, flags);
ret = unwinder_enqueue(u);
if (!ret)
curr_unwinder = select_unwinder();
spin_unlock_irqrestore(&unwinder_lock, flags);
return ret;
}
/*
* Unwind the call stack and pass information to the stacktrace_ops
* functions. Also handle the case where we need to switch to a new
* stack dumper because the current one faulted unexpectedly.
*/
void unwind_stack(struct task_struct *task, struct pt_regs *regs,
unsigned long *sp, const struct stacktrace_ops *ops,
void *data)
{
unsigned long flags;
/*
* The problem with unwinders with high ratings is that they are
* inherently more complicated than the simple ones with lower
* ratings. We are therefore more likely to fault in the
* complicated ones, e.g. hitting BUG()s. If we fault in the
* code for the current stack unwinder we try to downgrade to
* one with a lower rating.
*
* Hopefully this will give us a semi-reliable stacktrace so we
* can diagnose why curr_unwinder->dump() faulted.
*/
if (atomic_inc_return(&unwinder_running) != 1) {
spin_lock_irqsave(&unwinder_lock, flags);
if (!list_is_singular(&unwinder_list)) {
list_del(&curr_unwinder->list);
curr_unwinder = select_unwinder();
}
spin_unlock_irqrestore(&unwinder_lock, flags);
atomic_dec(&unwinder_running);
}
curr_unwinder->dump(task, regs, sp, ops, data);
atomic_dec(&unwinder_running);
}

View File

@@ -12,7 +12,7 @@ OUTPUT_ARCH(sh)
#include <asm/thread_info.h>
#include <asm/cache.h>
#include <asm-generic/vmlinux.lds.h>
#include <asm/vmlinux.lds.h>
ENTRY(_start)
SECTIONS
@@ -70,6 +70,8 @@ SECTIONS
_edata = .; /* End of data section */
DWARF_EH_FRAME
. = ALIGN(PAGE_SIZE); /* Init code and data */
__init_begin = .;
INIT_TEXT_SECTION(PAGE_SIZE)

View File

@@ -94,7 +94,6 @@ static struct resource *shmedia_find_resource(struct resource *root,
static void __iomem *shmedia_alloc_io(unsigned long phys, unsigned long size,
const char *name, unsigned long flags)
{
static int printed_full;
struct xresource *xres;
struct resource *res;
char *tack;
@@ -108,11 +107,8 @@ static void __iomem *shmedia_alloc_io(unsigned long phys, unsigned long size,
tack = xres->xname;
res = &xres->xres;
} else {
if (!printed_full) {
printk(KERN_NOTICE "%s: done with statics, "
printk_once(KERN_NOTICE "%s: done with statics, "
"switching to kmalloc\n", __func__);
printed_full = 1;
}
tlen = strlen(name);
tack = kmalloc(sizeof(struct resource) + tlen + 1, GFP_KERNEL);
if (!tack)

View File

@@ -17,9 +17,43 @@
#include <linux/sched.h>
#include <linux/kallsyms.h>
#include <linux/mm.h>
#include <asm/unwinder.h>
#include <asm/ptrace.h>
#include <asm/uaccess.h>
#include <asm/sections.h>
#include <asm/stacktrace.h>
static void backtrace_warning_symbol(void *data, char *msg,
unsigned long symbol)
{
/* Ignore warnings */
}
static void backtrace_warning(void *data, char *msg)
{
/* Ignore warnings */
}
static int backtrace_stack(void *data, char *name)
{
/* Yes, we want all stacks */
return 0;
}
static void backtrace_address(void *data, unsigned long addr, int reliable)
{
unsigned int *depth = data;
if ((*depth)--)
oprofile_add_trace(addr);
}
static struct stacktrace_ops backtrace_ops = {
.warning = backtrace_warning,
.warning_symbol = backtrace_warning_symbol,
.stack = backtrace_stack,
.address = backtrace_address,
};
/* Limit to stop backtracing too far. */
static int backtrace_limit = 20;
@@ -47,50 +81,6 @@ user_backtrace(unsigned long *stackaddr, struct pt_regs *regs)
return stackaddr;
}
/*
* | | /\ Higher addresses
* | |
* --------------- stack base (address of current_thread_info)
* | thread info |
* . .
* | stack |
* --------------- saved regs->regs[15] value if valid
* . .
* --------------- struct pt_regs stored on stack (struct pt_regs *)
* | |
* . .
* | |
* --------------- ???
* | |
* | | \/ Lower addresses
*
* Thus, &pt_regs <-> stack base restricts the valid(ish) fp values
*/
static int valid_kernel_stack(unsigned long *stackaddr, struct pt_regs *regs)
{
unsigned long stack = (unsigned long)regs;
unsigned long stack_base = (stack & ~(THREAD_SIZE - 1)) + THREAD_SIZE;
return ((unsigned long)stackaddr > stack) && ((unsigned long)stackaddr < stack_base);
}
static unsigned long *
kernel_backtrace(unsigned long *stackaddr, struct pt_regs *regs)
{
unsigned long addr;
/*
* If not a valid kernel address, keep going till we find one
* or the SP stops being a valid address.
*/
do {
addr = *stackaddr++;
oprofile_add_trace(addr);
} while (valid_kernel_stack(stackaddr, regs));
return stackaddr;
}
void sh_backtrace(struct pt_regs * const regs, unsigned int depth)
{
unsigned long *stackaddr;
@@ -103,9 +93,9 @@ void sh_backtrace(struct pt_regs * const regs, unsigned int depth)
stackaddr = (unsigned long *)regs->regs[15];
if (!user_mode(regs)) {
while (depth-- && valid_kernel_stack(stackaddr, regs))
stackaddr = kernel_backtrace(stackaddr, regs);
if (depth)
unwind_stack(NULL, regs, stackaddr,
&backtrace_ops, &depth);
return;
}