drm/pl111: Support handling bridge timings

If the bridge has a too strict setup time for the incoming
signals, we may not be fast enough and then we need to
compensate by outputting the signal on the inverse clock
edge so it is for sure stable when the bridge samples it.

Since bridges in difference to panels does not expose their
connectors, make the connector optional in the display
setup code.

Acked-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Reviewed-by: Eric Anholt <eric@anholt.net>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Archit Taneja <architt@codeaurora.org>
Link: https://patchwork.freedesktop.org/patch/msgid/20180112074854.9560-4-linus.walleij@linaro.org
This commit is contained in:
Linus Walleij
2018-01-12 08:48:54 +01:00
committed by Archit Taneja
parent 88dda5b478
commit 49f81d80ab
3 changed files with 43 additions and 13 deletions

View File

@@ -94,6 +94,7 @@ static void pl111_display_enable(struct drm_simple_display_pipe *pipe,
const struct drm_display_mode *mode = &cstate->mode;
struct drm_framebuffer *fb = plane->state->fb;
struct drm_connector *connector = priv->connector;
struct drm_bridge *bridge = priv->bridge;
u32 cntl;
u32 ppl, hsw, hfp, hbp;
u32 lpp, vsw, vfp, vbp;
@@ -143,11 +144,37 @@ static void pl111_display_enable(struct drm_simple_display_pipe *pipe,
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
tim2 |= TIM2_IVS;
if (connector->display_info.bus_flags & DRM_BUS_FLAG_DE_LOW)
tim2 |= TIM2_IOE;
if (connector) {
if (connector->display_info.bus_flags & DRM_BUS_FLAG_DE_LOW)
tim2 |= TIM2_IOE;
if (connector->display_info.bus_flags & DRM_BUS_FLAG_PIXDATA_NEGEDGE)
tim2 |= TIM2_IPC;
if (connector->display_info.bus_flags &
DRM_BUS_FLAG_PIXDATA_NEGEDGE)
tim2 |= TIM2_IPC;
}
if (bridge) {
const struct drm_bridge_timings *btimings = bridge->timings;
/*
* Here is when things get really fun. Sometimes the bridge
* timings are such that the signal out from PL11x is not
* stable before the receiving bridge (such as a dumb VGA DAC
* or similar) samples it. If that happens, we compensate by
* the only method we have: output the data on the opposite
* edge of the clock so it is for sure stable when it gets
* sampled.
*
* The PL111 manual does not contain proper timining diagrams
* or data for these details, but we know from experiments
* that the setup time is more than 3000 picoseconds (3 ns).
* If we have a bridge that requires the signal to be stable
* earlier than 3000 ps before the clock pulse, we have to
* output the data on the opposite edge to avoid flicker.
*/
if (btimings && btimings->setup_time_ps >= 3000)
tim2 ^= TIM2_IPC;
}
tim2 |= cpl << 16;
writel(tim2, priv->regs + CLCD_TIM2);