Merge branch 'serial-from-alan'

* serial-from-alan: (79 commits)
  moxa: prevent opening unavailable ports
  imx: serial: use tty_encode_baud_rate to set true rate
  imx: serial: add IrDA support to serial driver
  imx: serial: use rational library function
  lib: isolate rational fractions helper function
  imx: serial: handle initialisation failure correctly
  imx: serial: be sure to stop xmit upon shutdown
  imx: serial: notify higher layers in case xmit IRQ was not called
  imx: serial: fix one bit field type
  imx: serial: fix whitespaces (no changes in functionality)
  tty: use prepare/finish_wait
  tty: remove sleep_on
  sierra: driver interface blacklisting
  sierra: driver urb handling improvements
  tty: resolve some sierra breakage
  timbuart: Fix the termios logic
  serial: Added Timberdale UART driver
  tty: Add URL for ttydev queue
  devpts: unregister the file system on error
  tty: Untangle termios and mm mutex dependencies
  ...
This commit is contained in:
Linus Torvalds
2009-06-11 08:57:47 -07:00
95 changed files with 4433 additions and 2709 deletions

View File

@@ -10,6 +10,9 @@ menu "Library routines"
config BITREVERSE
tristate
config RATIONAL
boolean
config GENERIC_FIND_FIRST_BIT
bool

View File

@@ -50,6 +50,7 @@ ifneq ($(CONFIG_HAVE_DEC_LOCK),y)
endif
obj-$(CONFIG_BITREVERSE) += bitrev.o
obj-$(CONFIG_RATIONAL) += rational.o
obj-$(CONFIG_CRC_CCITT) += crc-ccitt.o
obj-$(CONFIG_CRC16) += crc16.o
obj-$(CONFIG_CRC_T10DIF)+= crc-t10dif.o

62
lib/rational.c Normal file
View File

@@ -0,0 +1,62 @@
/*
* rational fractions
*
* Copyright (C) 2009 emlix GmbH, Oskar Schirmer <os@emlix.com>
*
* helper functions when coping with rational numbers
*/
#include <linux/rational.h>
/*
* calculate best rational approximation for a given fraction
* taking into account restricted register size, e.g. to find
* appropriate values for a pll with 5 bit denominator and
* 8 bit numerator register fields, trying to set up with a
* frequency ratio of 3.1415, one would say:
*
* rational_best_approximation(31415, 10000,
* (1 << 8) - 1, (1 << 5) - 1, &n, &d);
*
* you may look at given_numerator as a fixed point number,
* with the fractional part size described in given_denominator.
*
* for theoretical background, see:
* http://en.wikipedia.org/wiki/Continued_fraction
*/
void rational_best_approximation(
unsigned long given_numerator, unsigned long given_denominator,
unsigned long max_numerator, unsigned long max_denominator,
unsigned long *best_numerator, unsigned long *best_denominator)
{
unsigned long n, d, n0, d0, n1, d1;
n = given_numerator;
d = given_denominator;
n0 = d1 = 0;
n1 = d0 = 1;
for (;;) {
unsigned long t, a;
if ((n1 > max_numerator) || (d1 > max_denominator)) {
n1 = n0;
d1 = d0;
break;
}
if (d == 0)
break;
t = d;
a = n / d;
d = n % d;
n = t;
t = n0 + a * n1;
n0 = n1;
n1 = t;
t = d0 + a * d1;
d0 = d1;
d1 = t;
}
*best_numerator = n1;
*best_denominator = d1;
}
EXPORT_SYMBOL(rational_best_approximation);