Merge branch 'powerpc.cherry-picks' into timers/clocksource
Conflicts: arch/powerpc/kernel/time.c Reason: The powerpc next tree contains two commits which conflict with the timekeeping changes:8fd63a9e
powerpc: Rework VDSO gettimeofday to prevent time going backwardsc1aa687d
powerpc: Clean up obsolete code relating to decrementer and timebase John Stultz identified them and provided the conflict resolution. Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This commit is contained in:
@@ -149,16 +149,6 @@ unsigned long tb_ticks_per_usec = 100; /* sane default */
|
||||
EXPORT_SYMBOL(tb_ticks_per_usec);
|
||||
unsigned long tb_ticks_per_sec;
|
||||
EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
|
||||
u64 tb_to_xs;
|
||||
unsigned tb_to_us;
|
||||
|
||||
#define TICKLEN_SCALE NTP_SCALE_SHIFT
|
||||
static u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
|
||||
static u64 ticklen_to_xs; /* 0.64 fraction */
|
||||
|
||||
/* If last_tick_len corresponds to about 1/HZ seconds, then
|
||||
last_tick_len << TICKLEN_SHIFT will be about 2^63. */
|
||||
#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
|
||||
|
||||
DEFINE_SPINLOCK(rtc_lock);
|
||||
EXPORT_SYMBOL_GPL(rtc_lock);
|
||||
@@ -174,7 +164,6 @@ unsigned long ppc_proc_freq;
|
||||
EXPORT_SYMBOL(ppc_proc_freq);
|
||||
unsigned long ppc_tb_freq;
|
||||
|
||||
static u64 tb_last_jiffy __cacheline_aligned_in_smp;
|
||||
static DEFINE_PER_CPU(u64, last_jiffy);
|
||||
|
||||
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
|
||||
@@ -446,7 +435,6 @@ EXPORT_SYMBOL(profile_pc);
|
||||
|
||||
static int __init iSeries_tb_recal(void)
|
||||
{
|
||||
struct div_result divres;
|
||||
unsigned long titan, tb;
|
||||
|
||||
/* Make sure we only run on iSeries */
|
||||
@@ -477,10 +465,7 @@ static int __init iSeries_tb_recal(void)
|
||||
tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
|
||||
tb_ticks_per_sec = new_tb_ticks_per_sec;
|
||||
calc_cputime_factors();
|
||||
div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
|
||||
tb_to_xs = divres.result_low;
|
||||
vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
|
||||
vdso_data->tb_to_xs = tb_to_xs;
|
||||
setup_cputime_one_jiffy();
|
||||
}
|
||||
else {
|
||||
@@ -643,27 +628,9 @@ void timer_interrupt(struct pt_regs * regs)
|
||||
trace_timer_interrupt_exit(regs);
|
||||
}
|
||||
|
||||
void wakeup_decrementer(void)
|
||||
{
|
||||
unsigned long ticks;
|
||||
|
||||
/*
|
||||
* The timebase gets saved on sleep and restored on wakeup,
|
||||
* so all we need to do is to reset the decrementer.
|
||||
*/
|
||||
ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
|
||||
if (ticks < tb_ticks_per_jiffy)
|
||||
ticks = tb_ticks_per_jiffy - ticks;
|
||||
else
|
||||
ticks = 1;
|
||||
set_dec(ticks);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_SUSPEND
|
||||
void generic_suspend_disable_irqs(void)
|
||||
static void generic_suspend_disable_irqs(void)
|
||||
{
|
||||
preempt_disable();
|
||||
|
||||
/* Disable the decrementer, so that it doesn't interfere
|
||||
* with suspending.
|
||||
*/
|
||||
@@ -673,12 +640,9 @@ void generic_suspend_disable_irqs(void)
|
||||
set_dec(0x7fffffff);
|
||||
}
|
||||
|
||||
void generic_suspend_enable_irqs(void)
|
||||
static void generic_suspend_enable_irqs(void)
|
||||
{
|
||||
wakeup_decrementer();
|
||||
|
||||
local_irq_enable();
|
||||
preempt_enable();
|
||||
}
|
||||
|
||||
/* Overrides the weak version in kernel/power/main.c */
|
||||
@@ -698,23 +662,6 @@ void arch_suspend_enable_irqs(void)
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_SMP
|
||||
void __init smp_space_timers(unsigned int max_cpus)
|
||||
{
|
||||
int i;
|
||||
u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
|
||||
|
||||
/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
|
||||
previous_tb -= tb_ticks_per_jiffy;
|
||||
|
||||
for_each_possible_cpu(i) {
|
||||
if (i == boot_cpuid)
|
||||
continue;
|
||||
per_cpu(last_jiffy, i) = previous_tb;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Scheduler clock - returns current time in nanosec units.
|
||||
*
|
||||
@@ -853,6 +800,7 @@ void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
|
||||
struct clocksource *clock, u32 mult)
|
||||
{
|
||||
u64 new_tb_to_xs, new_stamp_xsec;
|
||||
u32 frac_sec;
|
||||
|
||||
if (clock != &clocksource_timebase)
|
||||
return;
|
||||
@@ -868,6 +816,10 @@ void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
|
||||
do_div(new_stamp_xsec, 1000000000);
|
||||
new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
|
||||
|
||||
BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
|
||||
/* this is tv_nsec / 1e9 as a 0.32 fraction */
|
||||
frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
|
||||
|
||||
/*
|
||||
* tb_update_count is used to allow the userspace gettimeofday code
|
||||
* to assure itself that it sees a consistent view of the tb_to_xs and
|
||||
@@ -885,6 +837,7 @@ void update_vsyscall(struct timespec *wall_time, struct timespec *wtm,
|
||||
vdso_data->wtom_clock_sec = wtm->tv_sec;
|
||||
vdso_data->wtom_clock_nsec = wtm->tv_nsec;
|
||||
vdso_data->stamp_xtime = *wall_time;
|
||||
vdso_data->stamp_sec_fraction = frac_sec;
|
||||
smp_wmb();
|
||||
++(vdso_data->tb_update_count);
|
||||
}
|
||||
@@ -1002,15 +955,13 @@ void secondary_cpu_time_init(void)
|
||||
/* This function is only called on the boot processor */
|
||||
void __init time_init(void)
|
||||
{
|
||||
unsigned long flags;
|
||||
struct div_result res;
|
||||
u64 scale, x;
|
||||
u64 scale;
|
||||
unsigned shift;
|
||||
|
||||
if (__USE_RTC()) {
|
||||
/* 601 processor: dec counts down by 128 every 128ns */
|
||||
ppc_tb_freq = 1000000000;
|
||||
tb_last_jiffy = get_rtcl();
|
||||
} else {
|
||||
/* Normal PowerPC with timebase register */
|
||||
ppc_md.calibrate_decr();
|
||||
@@ -1018,49 +969,14 @@ void __init time_init(void)
|
||||
ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
|
||||
printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
|
||||
ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
|
||||
tb_last_jiffy = get_tb();
|
||||
}
|
||||
|
||||
tb_ticks_per_jiffy = ppc_tb_freq / HZ;
|
||||
tb_ticks_per_sec = ppc_tb_freq;
|
||||
tb_ticks_per_usec = ppc_tb_freq / 1000000;
|
||||
tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
|
||||
calc_cputime_factors();
|
||||
setup_cputime_one_jiffy();
|
||||
|
||||
/*
|
||||
* Calculate the length of each tick in ns. It will not be
|
||||
* exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
|
||||
* We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
|
||||
* rounded up.
|
||||
*/
|
||||
x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
|
||||
do_div(x, ppc_tb_freq);
|
||||
tick_nsec = x;
|
||||
last_tick_len = x << TICKLEN_SCALE;
|
||||
|
||||
/*
|
||||
* Compute ticklen_to_xs, which is a factor which gets multiplied
|
||||
* by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
|
||||
* It is computed as:
|
||||
* ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
|
||||
* where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
|
||||
* which turns out to be N = 51 - SHIFT_HZ.
|
||||
* This gives the result as a 0.64 fixed-point fraction.
|
||||
* That value is reduced by an offset amounting to 1 xsec per
|
||||
* 2^31 timebase ticks to avoid problems with time going backwards
|
||||
* by 1 xsec when we do timer_recalc_offset due to losing the
|
||||
* fractional xsec. That offset is equal to ppc_tb_freq/2^51
|
||||
* since there are 2^20 xsec in a second.
|
||||
*/
|
||||
div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
|
||||
tb_ticks_per_jiffy << SHIFT_HZ, &res);
|
||||
div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
|
||||
ticklen_to_xs = res.result_low;
|
||||
|
||||
/* Compute tb_to_xs from tick_nsec */
|
||||
tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
|
||||
|
||||
/*
|
||||
* Compute scale factor for sched_clock.
|
||||
* The calibrate_decr() function has set tb_ticks_per_sec,
|
||||
@@ -1082,21 +998,14 @@ void __init time_init(void)
|
||||
/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
|
||||
boot_tb = get_tb_or_rtc();
|
||||
|
||||
write_seqlock_irqsave(&xtime_lock, flags);
|
||||
|
||||
/* If platform provided a timezone (pmac), we correct the time */
|
||||
if (timezone_offset) {
|
||||
sys_tz.tz_minuteswest = -timezone_offset / 60;
|
||||
sys_tz.tz_dsttime = 0;
|
||||
}
|
||||
|
||||
vdso_data->tb_orig_stamp = tb_last_jiffy;
|
||||
vdso_data->tb_update_count = 0;
|
||||
vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
|
||||
vdso_data->stamp_xsec = (u64) get_seconds() * XSEC_PER_SEC;
|
||||
vdso_data->tb_to_xs = tb_to_xs;
|
||||
|
||||
write_sequnlock_irqrestore(&xtime_lock, flags);
|
||||
|
||||
/* Start the decrementer on CPUs that have manual control
|
||||
* such as BookE
|
||||
@@ -1190,39 +1099,6 @@ void to_tm(int tim, struct rtc_time * tm)
|
||||
GregorianDay(tm);
|
||||
}
|
||||
|
||||
/* Auxiliary function to compute scaling factors */
|
||||
/* Actually the choice of a timebase running at 1/4 the of the bus
|
||||
* frequency giving resolution of a few tens of nanoseconds is quite nice.
|
||||
* It makes this computation very precise (27-28 bits typically) which
|
||||
* is optimistic considering the stability of most processor clock
|
||||
* oscillators and the precision with which the timebase frequency
|
||||
* is measured but does not harm.
|
||||
*/
|
||||
unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
|
||||
{
|
||||
unsigned mlt=0, tmp, err;
|
||||
/* No concern for performance, it's done once: use a stupid
|
||||
* but safe and compact method to find the multiplier.
|
||||
*/
|
||||
|
||||
for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
|
||||
if (mulhwu(inscale, mlt|tmp) < outscale)
|
||||
mlt |= tmp;
|
||||
}
|
||||
|
||||
/* We might still be off by 1 for the best approximation.
|
||||
* A side effect of this is that if outscale is too large
|
||||
* the returned value will be zero.
|
||||
* Many corner cases have been checked and seem to work,
|
||||
* some might have been forgotten in the test however.
|
||||
*/
|
||||
|
||||
err = inscale * (mlt+1);
|
||||
if (err <= inscale/2)
|
||||
mlt++;
|
||||
return mlt;
|
||||
}
|
||||
|
||||
/*
|
||||
* Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
|
||||
* result.
|
||||
|
Reference in New Issue
Block a user