Boot with virtual == physical to get closer to native Linux.

1) This allows us to get alot closer to booting bzImages.

2) It means we don't have to know page_offset.

3) The Guest needs to modify the boot pagetables to create the
   PAGE_OFFSET mapping before jumping to C code.

4) guest_pa() walks the page tables rather than using page_offset.

5) We don't use page_offset to figure out whether to emulate: it was
   always kinda quesationable, and won't work for instructions done
   before remapping (bzImage unpacking in particular).

6) We still want the kernel address for tlb flushing: have the initial
   hypercall give us that, too.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This commit is contained in:
Rusty Russell
2007-10-22 11:03:36 +10:00
parent c18acd73ff
commit 47436aa4ad
12 changed files with 141 additions and 148 deletions

View File

@@ -86,6 +86,7 @@ struct lguest_data lguest_data = {
.hcall_status = { [0 ... LHCALL_RING_SIZE-1] = 0xFF },
.noirq_start = (u32)lguest_noirq_start,
.noirq_end = (u32)lguest_noirq_end,
.kernel_address = PAGE_OFFSET,
.blocked_interrupts = { 1 }, /* Block timer interrupts */
.syscall_vec = SYSCALL_VECTOR,
};
@@ -1033,11 +1034,7 @@ __init void lguest_init(void *boot)
/*G:070 Now we've seen all the paravirt_ops, we return to
* lguest_init() where the rest of the fairly chaotic boot setup
* occurs.
*
* The Host expects our first hypercall to tell it where our "struct
* lguest_data" is, so we do that first. */
hcall(LHCALL_LGUEST_INIT, __pa(&lguest_data), 0, 0);
* occurs. */
/* The native boot code sets up initial page tables immediately after
* the kernel itself, and sets init_pg_tables_end so they're not