Merge branch 'linus' into tracing/core

Merge reason: tracing/core was on a .30-rc1 base and was missing out on
              on a handful of tracing fixes present in .30-rc5-almost.

Signed-off-by: Ingo Molnar <mingo@elte.hu>
This commit is contained in:
Ingo Molnar
2009-05-07 11:17:13 +02:00
1603 zmienionych plików z 32881 dodań i 29607 usunięć

Wyświetl plik

@@ -49,10 +49,10 @@
#define IVHD_DEV_EXT_SELECT 0x46
#define IVHD_DEV_EXT_SELECT_RANGE 0x47
#define IVHD_FLAG_HT_TUN_EN 0x00
#define IVHD_FLAG_PASSPW_EN 0x01
#define IVHD_FLAG_RESPASSPW_EN 0x02
#define IVHD_FLAG_ISOC_EN 0x03
#define IVHD_FLAG_HT_TUN_EN_MASK 0x01
#define IVHD_FLAG_PASSPW_EN_MASK 0x02
#define IVHD_FLAG_RESPASSPW_EN_MASK 0x04
#define IVHD_FLAG_ISOC_EN_MASK 0x08
#define IVMD_FLAG_EXCL_RANGE 0x08
#define IVMD_FLAG_UNITY_MAP 0x01
@@ -569,19 +569,19 @@ static void __init init_iommu_from_acpi(struct amd_iommu *iommu,
* First set the recommended feature enable bits from ACPI
* into the IOMMU control registers
*/
h->flags & IVHD_FLAG_HT_TUN_EN ?
h->flags & IVHD_FLAG_HT_TUN_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_HT_TUN_EN) :
iommu_feature_disable(iommu, CONTROL_HT_TUN_EN);
h->flags & IVHD_FLAG_PASSPW_EN ?
h->flags & IVHD_FLAG_PASSPW_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_PASSPW_EN) :
iommu_feature_disable(iommu, CONTROL_PASSPW_EN);
h->flags & IVHD_FLAG_RESPASSPW_EN ?
h->flags & IVHD_FLAG_RESPASSPW_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_RESPASSPW_EN) :
iommu_feature_disable(iommu, CONTROL_RESPASSPW_EN);
h->flags & IVHD_FLAG_ISOC_EN ?
h->flags & IVHD_FLAG_ISOC_EN_MASK ?
iommu_feature_enable(iommu, CONTROL_ISOC_EN) :
iommu_feature_disable(iommu, CONTROL_ISOC_EN);

Wyświetl plik

@@ -3670,12 +3670,14 @@ int arch_setup_hpet_msi(unsigned int irq)
{
int ret;
struct msi_msg msg;
struct irq_desc *desc = irq_to_desc(irq);
ret = msi_compose_msg(NULL, irq, &msg);
if (ret < 0)
return ret;
hpet_msi_write(irq, &msg);
desc->status |= IRQ_MOVE_PCNTXT;
set_irq_chip_and_handler_name(irq, &hpet_msi_type, handle_edge_irq,
"edge");

Wyświetl plik

@@ -138,7 +138,7 @@ int __init check_nmi_watchdog(void)
if (!prev_nmi_count)
goto error;
alloc_cpumask_var(&backtrace_mask, GFP_KERNEL);
alloc_cpumask_var(&backtrace_mask, GFP_KERNEL|__GFP_ZERO);
printk(KERN_INFO "Testing NMI watchdog ... ");
#ifdef CONFIG_SMP
@@ -414,7 +414,8 @@ nmi_watchdog_tick(struct pt_regs *regs, unsigned reason)
touched = 1;
}
if (cpumask_test_cpu(cpu, backtrace_mask)) {
/* We can be called before check_nmi_watchdog, hence NULL check. */
if (backtrace_mask != NULL && cpumask_test_cpu(cpu, backtrace_mask)) {
static DEFINE_SPINLOCK(lock); /* Serialise the printks */
spin_lock(&lock);

Wyświetl plik

@@ -19,6 +19,7 @@
#include <linux/timer.h>
#include <linux/cpu.h>
#include <linux/init.h>
#include <linux/io.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/uv/uv_hub.h>
@@ -34,6 +35,17 @@ DEFINE_PER_CPU(int, x2apic_extra_bits);
static enum uv_system_type uv_system_type;
static int early_get_nodeid(void)
{
union uvh_node_id_u node_id;
unsigned long *mmr;
mmr = early_ioremap(UV_LOCAL_MMR_BASE | UVH_NODE_ID, sizeof(*mmr));
node_id.v = *mmr;
early_iounmap(mmr, sizeof(*mmr));
return node_id.s.node_id;
}
static int uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id)
{
if (!strcmp(oem_id, "SGI")) {
@@ -42,6 +54,8 @@ static int uv_acpi_madt_oem_check(char *oem_id, char *oem_table_id)
else if (!strcmp(oem_table_id, "UVX"))
uv_system_type = UV_X2APIC;
else if (!strcmp(oem_table_id, "UVH")) {
__get_cpu_var(x2apic_extra_bits) =
early_get_nodeid() << (UV_APIC_PNODE_SHIFT - 1);
uv_system_type = UV_NON_UNIQUE_APIC;
return 1;
}
@@ -549,7 +563,8 @@ void __init uv_system_init(void)
unsigned long gnode_upper, lowmem_redir_base, lowmem_redir_size;
int bytes, nid, cpu, lcpu, pnode, blade, i, j, m_val, n_val;
int max_pnode = 0;
unsigned long mmr_base, present;
unsigned long mmr_base, present, paddr;
unsigned short pnode_mask;
map_low_mmrs();
@@ -592,6 +607,7 @@ void __init uv_system_init(void)
}
}
pnode_mask = (1 << n_val) - 1;
node_id.v = uv_read_local_mmr(UVH_NODE_ID);
gnode_upper = (((unsigned long)node_id.s.node_id) &
~((1 << n_val) - 1)) << m_val;
@@ -615,7 +631,7 @@ void __init uv_system_init(void)
uv_cpu_hub_info(cpu)->numa_blade_id = blade;
uv_cpu_hub_info(cpu)->blade_processor_id = lcpu;
uv_cpu_hub_info(cpu)->pnode = pnode;
uv_cpu_hub_info(cpu)->pnode_mask = (1 << n_val) - 1;
uv_cpu_hub_info(cpu)->pnode_mask = pnode_mask;
uv_cpu_hub_info(cpu)->gpa_mask = (1 << (m_val + n_val)) - 1;
uv_cpu_hub_info(cpu)->gnode_upper = gnode_upper;
uv_cpu_hub_info(cpu)->global_mmr_base = mmr_base;
@@ -631,6 +647,17 @@ void __init uv_system_init(void)
lcpu, blade);
}
/* Add blade/pnode info for nodes without cpus */
for_each_online_node(nid) {
if (uv_node_to_blade[nid] >= 0)
continue;
paddr = node_start_pfn(nid) << PAGE_SHIFT;
paddr = uv_soc_phys_ram_to_gpa(paddr);
pnode = (paddr >> m_val) & pnode_mask;
blade = boot_pnode_to_blade(pnode);
uv_node_to_blade[nid] = blade;
}
map_gru_high(max_pnode);
map_mmr_high(max_pnode);
map_config_high(max_pnode);

Wyświetl plik

@@ -182,7 +182,8 @@ void uv_bios_init(void)
memcpy(&uv_systab, tab, sizeof(struct uv_systab));
iounmap(tab);
printk(KERN_INFO "EFI UV System Table Revision %d\n", tab->revision);
printk(KERN_INFO "EFI UV System Table Revision %d\n",
uv_systab.revision);
}
#else /* !CONFIG_EFI */

Wyświetl plik

@@ -1203,6 +1203,8 @@ void __cpuinit cpu_init(void)
load_TR_desc();
load_LDT(&init_mm.context);
t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
#ifdef CONFIG_DOUBLEFAULT
/* Set up doublefault TSS pointer in the GDT */
__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);

Wyświetl plik

@@ -65,14 +65,18 @@ enum {
struct acpi_cpufreq_data {
struct acpi_processor_performance *acpi_data;
struct cpufreq_frequency_table *freq_table;
unsigned int max_freq;
unsigned int resume;
unsigned int cpu_feature;
u64 saved_aperf, saved_mperf;
};
static DEFINE_PER_CPU(struct acpi_cpufreq_data *, drv_data);
struct acpi_msr_data {
u64 saved_aperf, saved_mperf;
};
static DEFINE_PER_CPU(struct acpi_msr_data, msr_data);
DEFINE_TRACE(power_mark);
/* acpi_perf_data is a pointer to percpu data. */
@@ -204,7 +208,13 @@ static void drv_read(struct drv_cmd *cmd)
static void drv_write(struct drv_cmd *cmd)
{
int this_cpu;
this_cpu = get_cpu();
if (cpumask_test_cpu(this_cpu, cmd->mask))
do_drv_write(cmd);
smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
put_cpu();
}
static u32 get_cur_val(const struct cpumask *mask)
@@ -277,15 +287,15 @@ static unsigned int get_measured_perf(struct cpufreq_policy *policy,
unsigned int perf_percent;
unsigned int retval;
if (smp_call_function_single(cpu, read_measured_perf_ctrs, &cur, 1))
if (smp_call_function_single(cpu, read_measured_perf_ctrs, &readin, 1))
return 0;
cur.aperf.whole = readin.aperf.whole -
per_cpu(drv_data, cpu)->saved_aperf;
per_cpu(msr_data, cpu).saved_aperf;
cur.mperf.whole = readin.mperf.whole -
per_cpu(drv_data, cpu)->saved_mperf;
per_cpu(drv_data, cpu)->saved_aperf = readin.aperf.whole;
per_cpu(drv_data, cpu)->saved_mperf = readin.mperf.whole;
per_cpu(msr_data, cpu).saved_mperf;
per_cpu(msr_data, cpu).saved_aperf = readin.aperf.whole;
per_cpu(msr_data, cpu).saved_mperf = readin.mperf.whole;
#ifdef __i386__
/*
@@ -329,7 +339,7 @@ static unsigned int get_measured_perf(struct cpufreq_policy *policy,
#endif
retval = per_cpu(drv_data, policy->cpu)->max_freq * perf_percent / 100;
retval = (policy->cpuinfo.max_freq * perf_percent) / 100;
return retval;
}
@@ -682,16 +692,11 @@ static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
policy->cpuinfo.transition_latency > 20 * 1000) {
static int print_once;
policy->cpuinfo.transition_latency = 20 * 1000;
if (!print_once) {
print_once = 1;
printk(KERN_INFO "Capping off P-state tranision latency"
" at 20 uS\n");
}
printk_once(KERN_INFO "Capping off P-state tranision"
" latency at 20 uS\n");
}
data->max_freq = perf->states[0].core_frequency * 1000;
/* table init */
for (i = 0; i < perf->state_count; i++) {
if (i > 0 && perf->states[i].core_frequency >=
@@ -710,6 +715,9 @@ static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
if (result)
goto err_freqfree;
if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
switch (perf->control_register.space_id) {
case ACPI_ADR_SPACE_SYSTEM_IO:
/* Current speed is unknown and not detectable by IO port */

Wyświetl plik

@@ -239,9 +239,10 @@ void machine_check_poll(enum mcp_flags flags, mce_banks_t *b)
* Don't get the IP here because it's unlikely to
* have anything to do with the actual error location.
*/
mce_log(&m);
add_taint(TAINT_MACHINE_CHECK);
if (!(flags & MCP_DONTLOG)) {
mce_log(&m);
add_taint(TAINT_MACHINE_CHECK);
}
/*
* Clear state for this bank.
@@ -452,13 +453,14 @@ void mce_log_therm_throt_event(__u64 status)
*/
static int check_interval = 5 * 60; /* 5 minutes */
static int next_interval; /* in jiffies */
static DEFINE_PER_CPU(int, next_interval); /* in jiffies */
static void mcheck_timer(unsigned long);
static DEFINE_PER_CPU(struct timer_list, mce_timer);
static void mcheck_timer(unsigned long data)
{
struct timer_list *t = &per_cpu(mce_timer, data);
int *n;
WARN_ON(smp_processor_id() != data);
@@ -470,14 +472,14 @@ static void mcheck_timer(unsigned long data)
* Alert userspace if needed. If we logged an MCE, reduce the
* polling interval, otherwise increase the polling interval.
*/
n = &__get_cpu_var(next_interval);
if (mce_notify_user()) {
next_interval = max(next_interval/2, HZ/100);
*n = max(*n/2, HZ/100);
} else {
next_interval = min(next_interval * 2,
(int)round_jiffies_relative(check_interval*HZ));
*n = min(*n*2, (int)round_jiffies_relative(check_interval*HZ));
}
t->expires = jiffies + next_interval;
t->expires = jiffies + *n;
add_timer(t);
}
@@ -584,7 +586,7 @@ static void mce_init(void *dummy)
* Log the machine checks left over from the previous reset.
*/
bitmap_fill(all_banks, MAX_NR_BANKS);
machine_check_poll(MCP_UC, &all_banks);
machine_check_poll(MCP_UC|(!mce_bootlog ? MCP_DONTLOG : 0), &all_banks);
set_in_cr4(X86_CR4_MCE);
@@ -632,14 +634,13 @@ static void mce_cpu_features(struct cpuinfo_x86 *c)
static void mce_init_timer(void)
{
struct timer_list *t = &__get_cpu_var(mce_timer);
int *n = &__get_cpu_var(next_interval);
/* data race harmless because everyone sets to the same value */
if (!next_interval)
next_interval = check_interval * HZ;
if (!next_interval)
*n = check_interval * HZ;
if (!*n)
return;
setup_timer(t, mcheck_timer, smp_processor_id());
t->expires = round_jiffies(jiffies + next_interval);
t->expires = round_jiffies(jiffies + *n);
add_timer(t);
}
@@ -907,7 +908,6 @@ static void mce_cpu_restart(void *data)
/* Reinit MCEs after user configuration changes */
static void mce_restart(void)
{
next_interval = check_interval * HZ;
on_each_cpu(mce_cpu_restart, NULL, 1);
}
@@ -1110,7 +1110,8 @@ static int __cpuinit mce_cpu_callback(struct notifier_block *nfb,
break;
case CPU_DOWN_FAILED:
case CPU_DOWN_FAILED_FROZEN:
t->expires = round_jiffies(jiffies + next_interval);
t->expires = round_jiffies(jiffies +
__get_cpu_var(next_interval));
add_timer_on(t, cpu);
smp_call_function_single(cpu, mce_reenable_cpu, &action, 1);
break;

Wyświetl plik

@@ -14,7 +14,7 @@ static void show_cpuinfo_core(struct seq_file *m, struct cpuinfo_x86 *c,
if (c->x86_max_cores * smp_num_siblings > 1) {
seq_printf(m, "physical id\t: %d\n", c->phys_proc_id);
seq_printf(m, "siblings\t: %d\n",
cpumask_weight(cpu_sibling_mask(cpu)));
cpumask_weight(cpu_core_mask(cpu)));
seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id);
seq_printf(m, "cpu cores\t: %d\n", c->booted_cores);
seq_printf(m, "apicid\t\t: %d\n", c->apicid);

Wyświetl plik

@@ -1397,7 +1397,10 @@ ENTRY(paranoid_exit)
paranoid_swapgs:
TRACE_IRQS_IRETQ 0
SWAPGS_UNSAFE_STACK
RESTORE_ALL 8
jmp irq_return
paranoid_restore:
TRACE_IRQS_IRETQ 0
RESTORE_ALL 8
jmp irq_return
paranoid_userspace:

Wyświetl plik

@@ -236,6 +236,10 @@ static void hpet_stop_counter(void)
unsigned long cfg = hpet_readl(HPET_CFG);
cfg &= ~HPET_CFG_ENABLE;
hpet_writel(cfg, HPET_CFG);
}
static void hpet_reset_counter(void)
{
hpet_writel(0, HPET_COUNTER);
hpet_writel(0, HPET_COUNTER + 4);
}
@@ -250,6 +254,7 @@ static void hpet_start_counter(void)
static void hpet_restart_counter(void)
{
hpet_stop_counter();
hpet_reset_counter();
hpet_start_counter();
}
@@ -309,7 +314,7 @@ static int hpet_setup_msi_irq(unsigned int irq);
static void hpet_set_mode(enum clock_event_mode mode,
struct clock_event_device *evt, int timer)
{
unsigned long cfg;
unsigned long cfg, cmp, now;
uint64_t delta;
switch (mode) {
@@ -317,12 +322,23 @@ static void hpet_set_mode(enum clock_event_mode mode,
hpet_stop_counter();
delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
delta >>= evt->shift;
now = hpet_readl(HPET_COUNTER);
cmp = now + (unsigned long) delta;
cfg = hpet_readl(HPET_Tn_CFG(timer));
/* Make sure we use edge triggered interrupts */
cfg &= ~HPET_TN_LEVEL;
cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
HPET_TN_SETVAL | HPET_TN_32BIT;
hpet_writel(cfg, HPET_Tn_CFG(timer));
hpet_writel(cmp, HPET_Tn_CMP(timer));
udelay(1);
/*
* HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
* cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
* bit is automatically cleared after the first write.
* (See AMD-8111 HyperTransport I/O Hub Data Sheet,
* Publication # 24674)
*/
hpet_writel((unsigned long) delta, HPET_Tn_CMP(timer));
hpet_start_counter();
hpet_print_config();
@@ -722,7 +738,7 @@ static int hpet_cpuhp_notify(struct notifier_block *n,
/*
* Clock source related code
*/
static cycle_t read_hpet(void)
static cycle_t read_hpet(struct clocksource *cs)
{
return (cycle_t)hpet_readl(HPET_COUNTER);
}
@@ -756,7 +772,7 @@ static int hpet_clocksource_register(void)
hpet_restart_counter();
/* Verify whether hpet counter works */
t1 = read_hpet();
t1 = hpet_readl(HPET_COUNTER);
rdtscll(start);
/*
@@ -770,7 +786,7 @@ static int hpet_clocksource_register(void)
rdtscll(now);
} while ((now - start) < 200000UL);
if (t1 == read_hpet()) {
if (t1 == hpet_readl(HPET_COUNTER)) {
printk(KERN_WARNING
"HPET counter not counting. HPET disabled\n");
return -ENODEV;

Wyświetl plik

@@ -129,7 +129,7 @@ void __init setup_pit_timer(void)
* to just read by itself. So use jiffies to emulate a free
* running counter:
*/
static cycle_t pit_read(void)
static cycle_t pit_read(struct clocksource *cs)
{
static int old_count;
static u32 old_jifs;

Wyświetl plik

@@ -77,6 +77,11 @@ static cycle_t kvm_clock_read(void)
return ret;
}
static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
{
return kvm_clock_read();
}
/*
* If we don't do that, there is the possibility that the guest
* will calibrate under heavy load - thus, getting a lower lpj -
@@ -107,7 +112,7 @@ static void kvm_get_preset_lpj(void)
static struct clocksource kvm_clock = {
.name = "kvm-clock",
.read = kvm_clock_read,
.read = kvm_clock_get_cycles,
.rating = 400,
.mask = CLOCKSOURCE_MASK(64),
.mult = 1 << KVM_SCALE,

Wyświetl plik

@@ -108,40 +108,29 @@ struct ucode_cpu_info ucode_cpu_info[NR_CPUS];
EXPORT_SYMBOL_GPL(ucode_cpu_info);
#ifdef CONFIG_MICROCODE_OLD_INTERFACE
struct update_for_cpu {
const void __user *buf;
size_t size;
};
static long update_for_cpu(void *_ufc)
{
struct update_for_cpu *ufc = _ufc;
int error;
error = microcode_ops->request_microcode_user(smp_processor_id(),
ufc->buf, ufc->size);
if (error < 0)
return error;
if (!error)
microcode_ops->apply_microcode(smp_processor_id());
return error;
}
static int do_microcode_update(const void __user *buf, size_t size)
{
cpumask_t old;
int error = 0;
int cpu;
struct update_for_cpu ufc = { .buf = buf, .size = size };
old = current->cpus_allowed;
for_each_online_cpu(cpu) {
struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
if (!uci->valid)
continue;
error = work_on_cpu(cpu, update_for_cpu, &ufc);
set_cpus_allowed_ptr(current, &cpumask_of_cpu(cpu));
error = microcode_ops->request_microcode_user(cpu, buf, size);
if (error < 0)
break;
goto out;
if (!error)
microcode_ops->apply_microcode(cpu);
}
out:
set_cpus_allowed_ptr(current, &old);
return error;
}
@@ -391,8 +380,6 @@ static int mc_sysdev_add(struct sys_device *sys_dev)
return err;
err = microcode_init_cpu(cpu);
if (err)
sysfs_remove_group(&sys_dev->kobj, &mc_attr_group);
return err;
}

Wyświetl plik

@@ -50,7 +50,7 @@ static void *x86_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
return swiotlb_alloc_coherent(hwdev, size, dma_handle, flags);
}
struct dma_map_ops swiotlb_dma_ops = {
static struct dma_map_ops swiotlb_dma_ops = {
.mapping_error = swiotlb_dma_mapping_error,
.alloc_coherent = x86_swiotlb_alloc_coherent,
.free_coherent = swiotlb_free_coherent,

Wyświetl plik

@@ -261,8 +261,6 @@ static void old_ich_force_enable_hpet_user(struct pci_dev *dev)
{
if (hpet_force_user)
old_ich_force_enable_hpet(dev);
else
hpet_print_force_info();
}
DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_ESB_1,

Wyświetl plik

@@ -25,12 +25,42 @@ static int uv_bau_retry_limit __read_mostly;
/* position of pnode (which is nasid>>1): */
static int uv_nshift __read_mostly;
/* base pnode in this partition */
static int uv_partition_base_pnode __read_mostly;
static unsigned long uv_mmask __read_mostly;
static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
static DEFINE_PER_CPU(struct bau_control, bau_control);
/*
* Determine the first node on a blade.
*/
static int __init blade_to_first_node(int blade)
{
int node, b;
for_each_online_node(node) {
b = uv_node_to_blade_id(node);
if (blade == b)
return node;
}
return -1; /* shouldn't happen */
}
/*
* Determine the apicid of the first cpu on a blade.
*/
static int __init blade_to_first_apicid(int blade)
{
int cpu;
for_each_present_cpu(cpu)
if (blade == uv_cpu_to_blade_id(cpu))
return per_cpu(x86_cpu_to_apicid, cpu);
return -1;
}
/*
* Free a software acknowledge hardware resource by clearing its Pending
* bit. This will return a reply to the sender.
@@ -67,7 +97,7 @@ static void uv_bau_process_message(struct bau_payload_queue_entry *msg,
msp = __get_cpu_var(bau_control).msg_statuses + msg_slot;
cpu = uv_blade_processor_id();
msg->number_of_cpus =
uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id()));
this_cpu_mask = 1UL << cpu;
if (msp->seen_by.bits & this_cpu_mask)
return;
@@ -215,14 +245,14 @@ static int uv_wait_completion(struct bau_desc *bau_desc,
* Returns @flush_mask if some remote flushing remains to be done. The
* mask will have some bits still set.
*/
const struct cpumask *uv_flush_send_and_wait(int cpu, int this_blade,
const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode,
struct bau_desc *bau_desc,
struct cpumask *flush_mask)
{
int completion_status = 0;
int right_shift;
int tries = 0;
int blade;
int pnode;
int bit;
unsigned long mmr_offset;
unsigned long index;
@@ -265,8 +295,8 @@ const struct cpumask *uv_flush_send_and_wait(int cpu, int this_blade,
* use the IPI method of shootdown on them.
*/
for_each_cpu(bit, flush_mask) {
blade = uv_cpu_to_blade_id(bit);
if (blade == this_blade)
pnode = uv_cpu_to_pnode(bit);
if (pnode == this_pnode)
continue;
cpumask_clear_cpu(bit, flush_mask);
}
@@ -309,16 +339,16 @@ const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
struct cpumask *flush_mask = __get_cpu_var(uv_flush_tlb_mask);
int i;
int bit;
int blade;
int pnode;
int uv_cpu;
int this_blade;
int this_pnode;
int locals = 0;
struct bau_desc *bau_desc;
cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
uv_cpu = uv_blade_processor_id();
this_blade = uv_numa_blade_id();
this_pnode = uv_hub_info->pnode;
bau_desc = __get_cpu_var(bau_control).descriptor_base;
bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu;
@@ -326,13 +356,14 @@ const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
i = 0;
for_each_cpu(bit, flush_mask) {
blade = uv_cpu_to_blade_id(bit);
BUG_ON(blade > (UV_DISTRIBUTION_SIZE - 1));
if (blade == this_blade) {
pnode = uv_cpu_to_pnode(bit);
BUG_ON(pnode > (UV_DISTRIBUTION_SIZE - 1));
if (pnode == this_pnode) {
locals++;
continue;
}
bau_node_set(blade, &bau_desc->distribution);
bau_node_set(pnode - uv_partition_base_pnode,
&bau_desc->distribution);
i++;
}
if (i == 0) {
@@ -350,7 +381,7 @@ const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
bau_desc->payload.address = va;
bau_desc->payload.sending_cpu = cpu;
return uv_flush_send_and_wait(uv_cpu, this_blade, bau_desc, flush_mask);
return uv_flush_send_and_wait(uv_cpu, this_pnode, bau_desc, flush_mask);
}
/*
@@ -418,24 +449,58 @@ void uv_bau_message_interrupt(struct pt_regs *regs)
set_irq_regs(old_regs);
}
/*
* uv_enable_timeouts
*
* Each target blade (i.e. blades that have cpu's) needs to have
* shootdown message timeouts enabled. The timeout does not cause
* an interrupt, but causes an error message to be returned to
* the sender.
*/
static void uv_enable_timeouts(void)
{
int i;
int blade;
int last_blade;
int nblades;
int pnode;
int cur_cpu = 0;
unsigned long apicid;
unsigned long mmr_image;
last_blade = -1;
for_each_online_node(i) {
blade = uv_node_to_blade_id(i);
if (blade == last_blade)
nblades = uv_num_possible_blades();
for (blade = 0; blade < nblades; blade++) {
if (!uv_blade_nr_possible_cpus(blade))
continue;
last_blade = blade;
apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
pnode = uv_blade_to_pnode(blade);
cur_cpu += uv_blade_nr_possible_cpus(i);
mmr_image =
uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
/*
* Set the timeout period and then lock it in, in three
* steps; captures and locks in the period.
*
* To program the period, the SOFT_ACK_MODE must be off.
*/
mmr_image &= ~((unsigned long)1 <<
UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
uv_write_global_mmr64
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
/*
* Set the 4-bit period.
*/
mmr_image &= ~((unsigned long)0xf <<
UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT);
uv_write_global_mmr64
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
/*
* Subsequent reversals of the timebase bit (3) cause an
* immediate timeout of one or all INTD resources as
* indicated in bits 2:0 (7 causes all of them to timeout).
*/
mmr_image |= ((unsigned long)1 <<
UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT);
uv_write_global_mmr64
(pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
}
}
@@ -482,8 +547,7 @@ static int uv_ptc_seq_show(struct seq_file *file, void *data)
stat->requestee, stat->onetlb, stat->alltlb,
stat->s_retry, stat->d_retry, stat->ptc_i);
seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n",
uv_read_global_mmr64(uv_blade_to_pnode
(uv_cpu_to_blade_id(cpu)),
uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
stat->sflush, stat->dflush,
stat->retriesok, stat->nomsg,
@@ -617,16 +681,18 @@ static struct bau_control * __init uv_table_bases_init(int blade, int node)
* finish the initialization of the per-blade control structures
*/
static void __init
uv_table_bases_finish(int blade, int node, int cur_cpu,
uv_table_bases_finish(int blade,
struct bau_control *bau_tablesp,
struct bau_desc *adp)
{
struct bau_control *bcp;
int i;
int cpu;
for (i = cur_cpu; i < cur_cpu + uv_blade_nr_possible_cpus(blade); i++) {
bcp = (struct bau_control *)&per_cpu(bau_control, i);
for_each_present_cpu(cpu) {
if (blade != uv_cpu_to_blade_id(cpu))
continue;
bcp = (struct bau_control *)&per_cpu(bau_control, cpu);
bcp->bau_msg_head = bau_tablesp->va_queue_first;
bcp->va_queue_first = bau_tablesp->va_queue_first;
bcp->va_queue_last = bau_tablesp->va_queue_last;
@@ -649,11 +715,10 @@ uv_activation_descriptor_init(int node, int pnode)
struct bau_desc *adp;
struct bau_desc *ad2;
adp = (struct bau_desc *)
kmalloc_node(16384, GFP_KERNEL, node);
adp = (struct bau_desc *)kmalloc_node(16384, GFP_KERNEL, node);
BUG_ON(!adp);
pa = __pa((unsigned long)adp);
pa = uv_gpa(adp); /* need the real nasid*/
n = pa >> uv_nshift;
m = pa & uv_mmask;
@@ -667,8 +732,12 @@ uv_activation_descriptor_init(int node, int pnode)
for (i = 0, ad2 = adp; i < UV_ACTIVATION_DESCRIPTOR_SIZE; i++, ad2++) {
memset(ad2, 0, sizeof(struct bau_desc));
ad2->header.sw_ack_flag = 1;
ad2->header.base_dest_nodeid =
uv_blade_to_pnode(uv_cpu_to_blade_id(0));
/*
* base_dest_nodeid is the first node in the partition, so
* the bit map will indicate partition-relative node numbers.
* note that base_dest_nodeid is actually a nasid.
*/
ad2->header.base_dest_nodeid = uv_partition_base_pnode << 1;
ad2->header.command = UV_NET_ENDPOINT_INTD;
ad2->header.int_both = 1;
/*
@@ -686,6 +755,8 @@ static struct bau_payload_queue_entry * __init
uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
{
struct bau_payload_queue_entry *pqp;
unsigned long pa;
int pn;
char *cp;
pqp = (struct bau_payload_queue_entry *) kmalloc_node(
@@ -696,10 +767,14 @@ uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
cp = (char *)pqp + 31;
pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
bau_tablesp->va_queue_first = pqp;
/*
* need the pnode of where the memory was really allocated
*/
pa = uv_gpa(pqp);
pn = pa >> uv_nshift;
uv_write_global_mmr64(pnode,
UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
((unsigned long)pnode <<
UV_PAYLOADQ_PNODE_SHIFT) |
((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
uv_physnodeaddr(pqp));
uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
uv_physnodeaddr(pqp));
@@ -715,8 +790,9 @@ uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp)
/*
* Initialization of each UV blade's structures
*/
static int __init uv_init_blade(int blade, int node, int cur_cpu)
static int __init uv_init_blade(int blade)
{
int node;
int pnode;
unsigned long pa;
unsigned long apicid;
@@ -724,16 +800,17 @@ static int __init uv_init_blade(int blade, int node, int cur_cpu)
struct bau_payload_queue_entry *pqp;
struct bau_control *bau_tablesp;
node = blade_to_first_node(blade);
bau_tablesp = uv_table_bases_init(blade, node);
pnode = uv_blade_to_pnode(blade);
adp = uv_activation_descriptor_init(node, pnode);
pqp = uv_payload_queue_init(node, pnode, bau_tablesp);
uv_table_bases_finish(blade, node, cur_cpu, bau_tablesp, adp);
uv_table_bases_finish(blade, bau_tablesp, adp);
/*
* the below initialization can't be in firmware because the
* messaging IRQ will be determined by the OS
*/
apicid = per_cpu(x86_cpu_to_apicid, cur_cpu);
apicid = blade_to_first_apicid(blade);
pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG);
if ((pa & 0xff) != UV_BAU_MESSAGE) {
uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
@@ -748,9 +825,7 @@ static int __init uv_init_blade(int blade, int node, int cur_cpu)
static int __init uv_bau_init(void)
{
int blade;
int node;
int nblades;
int last_blade;
int cur_cpu;
if (!is_uv_system())
@@ -763,29 +838,21 @@ static int __init uv_bau_init(void)
uv_bau_retry_limit = 1;
uv_nshift = uv_hub_info->n_val;
uv_mmask = (1UL << uv_hub_info->n_val) - 1;
nblades = 0;
last_blade = -1;
cur_cpu = 0;
for_each_online_node(node) {
blade = uv_node_to_blade_id(node);
if (blade == last_blade)
continue;
last_blade = blade;
nblades++;
}
nblades = uv_num_possible_blades();
uv_bau_table_bases = (struct bau_control **)
kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL);
BUG_ON(!uv_bau_table_bases);
last_blade = -1;
for_each_online_node(node) {
blade = uv_node_to_blade_id(node);
if (blade == last_blade)
continue;
last_blade = blade;
uv_init_blade(blade, node, cur_cpu);
cur_cpu += uv_blade_nr_possible_cpus(blade);
}
uv_partition_base_pnode = 0x7fffffff;
for (blade = 0; blade < nblades; blade++)
if (uv_blade_nr_possible_cpus(blade) &&
(uv_blade_to_pnode(blade) < uv_partition_base_pnode))
uv_partition_base_pnode = uv_blade_to_pnode(blade);
for (blade = 0; blade < nblades; blade++)
if (uv_blade_nr_possible_cpus(blade))
uv_init_blade(blade);
alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);
uv_enable_timeouts();

Wyświetl plik

@@ -699,7 +699,7 @@ static struct clocksource clocksource_tsc;
* code, which is necessary to support wrapping clocksources like pm
* timer.
*/
static cycle_t read_tsc(void)
static cycle_t read_tsc(struct clocksource *cs)
{
cycle_t ret = (cycle_t)get_cycles();

Wyświetl plik

@@ -21,6 +21,7 @@
#include <linux/sysdev.h>
#include <asm/uv/bios.h>
#include <asm/uv/uv.h>
struct kobject *sgi_uv_kobj;
@@ -47,6 +48,9 @@ static int __init sgi_uv_sysfs_init(void)
{
unsigned long ret;
if (!is_uv_system())
return -ENODEV;
if (!sgi_uv_kobj)
sgi_uv_kobj = kobject_create_and_add("sgi_uv", firmware_kobj);
if (!sgi_uv_kobj) {

Wyświetl plik

@@ -29,7 +29,7 @@
#define RTC_NAME "sgi_rtc"
static cycle_t uv_read_rtc(void);
static cycle_t uv_read_rtc(struct clocksource *cs);
static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
static void uv_rtc_timer_setup(enum clock_event_mode,
struct clock_event_device *);
@@ -123,7 +123,7 @@ static int uv_setup_intr(int cpu, u64 expires)
/* Initialize comparator value */
uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
return (expires < uv_read_rtc() && !uv_intr_pending(pnode));
return (expires < uv_read_rtc(NULL) && !uv_intr_pending(pnode));
}
/*
@@ -256,7 +256,7 @@ static int uv_rtc_unset_timer(int cpu)
spin_lock_irqsave(&head->lock, flags);
if (head->next_cpu == bcpu && uv_read_rtc() >= *t)
if (head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t)
rc = 1;
*t = ULLONG_MAX;
@@ -278,7 +278,7 @@ static int uv_rtc_unset_timer(int cpu)
/*
* Read the RTC.
*/
static cycle_t uv_read_rtc(void)
static cycle_t uv_read_rtc(struct clocksource *cs)
{
return (cycle_t)uv_read_local_mmr(UVH_RTC);
}
@@ -291,7 +291,7 @@ static int uv_rtc_next_event(unsigned long delta,
{
int ced_cpu = cpumask_first(ced->cpumask);
return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc());
return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
}
/*

Wyświetl plik

@@ -283,7 +283,7 @@ void __devinit vmi_time_ap_init(void)
/** vmi clocksource */
static struct clocksource clocksource_vmi;
static cycle_t read_real_cycles(void)
static cycle_t read_real_cycles(struct clocksource *cs)
{
cycle_t ret = (cycle_t)vmi_timer_ops.get_cycle_counter(VMI_CYCLES_REAL);
return max(ret, clocksource_vmi.cycle_last);

Wyświetl plik

@@ -89,7 +89,7 @@ int save_i387_xstate(void __user *buf)
if (!used_math())
return 0;
clear_used_math(); /* trigger finit */
if (task_thread_info(tsk)->status & TS_USEDFPU) {
/*
* Start with clearing the user buffer. This will present a
@@ -114,6 +114,8 @@ int save_i387_xstate(void __user *buf)
return -1;
}
clear_used_math(); /* trigger finit */
if (task_thread_info(tsk)->status & TS_XSAVE) {
struct _fpstate __user *fx = buf;
struct _xstate __user *x = buf;