Merge commit 'origin/master' into for-linus/xen/master
* commit 'origin/master': (4825 commits) Fix build errors due to CONFIG_BRANCH_TRACER=y parport: Use the PCI IRQ if offered tty: jsm cleanups Adjust path to gpio headers KGDB_SERIAL_CONSOLE check for module Change KCONFIG name tty: Blackin CTS/RTS Change hardware flow control from poll to interrupt driven Add support for the MAX3100 SPI UART. lanana: assign a device name and numbering for MAX3100 serqt: initial clean up pass for tty side tty: Use the generic RS485 ioctl on CRIS tty: Correct inline types for tty_driver_kref_get() splice: fix deadlock in splicing to file nilfs2: support nanosecond timestamp nilfs2: introduce secondary super block nilfs2: simplify handling of active state of segments nilfs2: mark minor flag for checkpoint created by internal operation nilfs2: clean up sketch file nilfs2: super block operations fix endian bug ... Conflicts: arch/x86/include/asm/thread_info.h arch/x86/lguest/boot.c drivers/xen/manage.c
This commit is contained in:
@@ -107,7 +107,7 @@ static void async_hcall(unsigned long call, unsigned long arg1,
|
||||
local_irq_save(flags);
|
||||
if (lguest_data.hcall_status[next_call] != 0xFF) {
|
||||
/* Table full, so do normal hcall which will flush table. */
|
||||
hcall(call, arg1, arg2, arg3);
|
||||
kvm_hypercall3(call, arg1, arg2, arg3);
|
||||
} else {
|
||||
lguest_data.hcalls[next_call].arg0 = call;
|
||||
lguest_data.hcalls[next_call].arg1 = arg1;
|
||||
@@ -134,13 +134,32 @@ static void async_hcall(unsigned long call, unsigned long arg1,
|
||||
*
|
||||
* So, when we're in lazy mode, we call async_hcall() to store the call for
|
||||
* future processing: */
|
||||
static void lazy_hcall(unsigned long call,
|
||||
static void lazy_hcall1(unsigned long call,
|
||||
unsigned long arg1)
|
||||
{
|
||||
if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
|
||||
kvm_hypercall1(call, arg1);
|
||||
else
|
||||
async_hcall(call, arg1, 0, 0);
|
||||
}
|
||||
|
||||
static void lazy_hcall2(unsigned long call,
|
||||
unsigned long arg1,
|
||||
unsigned long arg2)
|
||||
{
|
||||
if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
|
||||
kvm_hypercall2(call, arg1, arg2);
|
||||
else
|
||||
async_hcall(call, arg1, arg2, 0);
|
||||
}
|
||||
|
||||
static void lazy_hcall3(unsigned long call,
|
||||
unsigned long arg1,
|
||||
unsigned long arg2,
|
||||
unsigned long arg3)
|
||||
{
|
||||
if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
|
||||
hcall(call, arg1, arg2, arg3);
|
||||
kvm_hypercall3(call, arg1, arg2, arg3);
|
||||
else
|
||||
async_hcall(call, arg1, arg2, arg3);
|
||||
}
|
||||
@@ -155,7 +174,7 @@ static void lguest_leave_lazy_mmu_mode(void)
|
||||
|
||||
static void lguest_end_context_switch(struct task_struct *next)
|
||||
{
|
||||
hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0);
|
||||
kvm_hypercall0(LHCALL_FLUSH_ASYNC);
|
||||
paravirt_end_context_switch(next);
|
||||
}
|
||||
|
||||
@@ -235,7 +254,7 @@ static void lguest_write_idt_entry(gate_desc *dt,
|
||||
/* Keep the local copy up to date. */
|
||||
native_write_idt_entry(dt, entrynum, g);
|
||||
/* Tell Host about this new entry. */
|
||||
hcall(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1]);
|
||||
kvm_hypercall3(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1]);
|
||||
}
|
||||
|
||||
/* Changing to a different IDT is very rare: we keep the IDT up-to-date every
|
||||
@@ -247,7 +266,7 @@ static void lguest_load_idt(const struct desc_ptr *desc)
|
||||
struct desc_struct *idt = (void *)desc->address;
|
||||
|
||||
for (i = 0; i < (desc->size+1)/8; i++)
|
||||
hcall(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b);
|
||||
kvm_hypercall3(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b);
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -267,8 +286,8 @@ static void lguest_load_idt(const struct desc_ptr *desc)
|
||||
*/
|
||||
static void lguest_load_gdt(const struct desc_ptr *desc)
|
||||
{
|
||||
BUG_ON((desc->size+1)/8 != GDT_ENTRIES);
|
||||
hcall(LHCALL_LOAD_GDT, __pa(desc->address), GDT_ENTRIES, 0);
|
||||
BUG_ON((desc->size + 1) / 8 != GDT_ENTRIES);
|
||||
kvm_hypercall2(LHCALL_LOAD_GDT, __pa(desc->address), GDT_ENTRIES);
|
||||
}
|
||||
|
||||
/* For a single GDT entry which changes, we do the lazy thing: alter our GDT,
|
||||
@@ -278,7 +297,7 @@ static void lguest_write_gdt_entry(struct desc_struct *dt, int entrynum,
|
||||
const void *desc, int type)
|
||||
{
|
||||
native_write_gdt_entry(dt, entrynum, desc, type);
|
||||
hcall(LHCALL_LOAD_GDT, __pa(dt), GDT_ENTRIES, 0);
|
||||
kvm_hypercall2(LHCALL_LOAD_GDT, __pa(dt), GDT_ENTRIES);
|
||||
}
|
||||
|
||||
/* OK, I lied. There are three "thread local storage" GDT entries which change
|
||||
@@ -290,7 +309,7 @@ static void lguest_load_tls(struct thread_struct *t, unsigned int cpu)
|
||||
* can't handle us removing entries we're currently using. So we clear
|
||||
* the GS register here: if it's needed it'll be reloaded anyway. */
|
||||
lazy_load_gs(0);
|
||||
lazy_hcall(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu, 0);
|
||||
lazy_hcall2(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu);
|
||||
}
|
||||
|
||||
/*G:038 That's enough excitement for now, back to ploughing through each of
|
||||
@@ -388,7 +407,7 @@ static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
|
||||
static unsigned long current_cr0;
|
||||
static void lguest_write_cr0(unsigned long val)
|
||||
{
|
||||
lazy_hcall(LHCALL_TS, val & X86_CR0_TS, 0, 0);
|
||||
lazy_hcall1(LHCALL_TS, val & X86_CR0_TS);
|
||||
current_cr0 = val;
|
||||
}
|
||||
|
||||
@@ -402,7 +421,7 @@ static unsigned long lguest_read_cr0(void)
|
||||
* the vowels have been optimized out. */
|
||||
static void lguest_clts(void)
|
||||
{
|
||||
lazy_hcall(LHCALL_TS, 0, 0, 0);
|
||||
lazy_hcall1(LHCALL_TS, 0);
|
||||
current_cr0 &= ~X86_CR0_TS;
|
||||
}
|
||||
|
||||
@@ -424,7 +443,7 @@ static bool cr3_changed = false;
|
||||
static void lguest_write_cr3(unsigned long cr3)
|
||||
{
|
||||
lguest_data.pgdir = cr3;
|
||||
lazy_hcall(LHCALL_NEW_PGTABLE, cr3, 0, 0);
|
||||
lazy_hcall1(LHCALL_NEW_PGTABLE, cr3);
|
||||
cr3_changed = true;
|
||||
}
|
||||
|
||||
@@ -496,11 +515,17 @@ static void lguest_write_cr4(unsigned long val)
|
||||
* into a process' address space. We set the entry then tell the Host the
|
||||
* toplevel and address this corresponds to. The Guest uses one pagetable per
|
||||
* process, so we need to tell the Host which one we're changing (mm->pgd). */
|
||||
static void lguest_pte_update(struct mm_struct *mm, unsigned long addr,
|
||||
pte_t *ptep)
|
||||
{
|
||||
lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low);
|
||||
}
|
||||
|
||||
static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
|
||||
pte_t *ptep, pte_t pteval)
|
||||
{
|
||||
*ptep = pteval;
|
||||
lazy_hcall(LHCALL_SET_PTE, __pa(mm->pgd), addr, pteval.pte_low);
|
||||
lguest_pte_update(mm, addr, ptep);
|
||||
}
|
||||
|
||||
/* The Guest calls this to set a top-level entry. Again, we set the entry then
|
||||
@@ -509,8 +534,8 @@ static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
|
||||
static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
|
||||
{
|
||||
*pmdp = pmdval;
|
||||
lazy_hcall(LHCALL_SET_PMD, __pa(pmdp)&PAGE_MASK,
|
||||
(__pa(pmdp)&(PAGE_SIZE-1))/4, 0);
|
||||
lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
|
||||
(__pa(pmdp) & (PAGE_SIZE - 1)) / 4);
|
||||
}
|
||||
|
||||
/* There are a couple of legacy places where the kernel sets a PTE, but we
|
||||
@@ -526,7 +551,7 @@ static void lguest_set_pte(pte_t *ptep, pte_t pteval)
|
||||
{
|
||||
*ptep = pteval;
|
||||
if (cr3_changed)
|
||||
lazy_hcall(LHCALL_FLUSH_TLB, 1, 0, 0);
|
||||
lazy_hcall1(LHCALL_FLUSH_TLB, 1);
|
||||
}
|
||||
|
||||
/* Unfortunately for Lguest, the pv_mmu_ops for page tables were based on
|
||||
@@ -542,7 +567,7 @@ static void lguest_set_pte(pte_t *ptep, pte_t pteval)
|
||||
static void lguest_flush_tlb_single(unsigned long addr)
|
||||
{
|
||||
/* Simply set it to zero: if it was not, it will fault back in. */
|
||||
lazy_hcall(LHCALL_SET_PTE, lguest_data.pgdir, addr, 0);
|
||||
lazy_hcall3(LHCALL_SET_PTE, lguest_data.pgdir, addr, 0);
|
||||
}
|
||||
|
||||
/* This is what happens after the Guest has removed a large number of entries.
|
||||
@@ -550,7 +575,7 @@ static void lguest_flush_tlb_single(unsigned long addr)
|
||||
* have changed, ie. virtual addresses below PAGE_OFFSET. */
|
||||
static void lguest_flush_tlb_user(void)
|
||||
{
|
||||
lazy_hcall(LHCALL_FLUSH_TLB, 0, 0, 0);
|
||||
lazy_hcall1(LHCALL_FLUSH_TLB, 0);
|
||||
}
|
||||
|
||||
/* This is called when the kernel page tables have changed. That's not very
|
||||
@@ -558,7 +583,7 @@ static void lguest_flush_tlb_user(void)
|
||||
* slow), so it's worth separating this from the user flushing above. */
|
||||
static void lguest_flush_tlb_kernel(void)
|
||||
{
|
||||
lazy_hcall(LHCALL_FLUSH_TLB, 1, 0, 0);
|
||||
lazy_hcall1(LHCALL_FLUSH_TLB, 1);
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -695,7 +720,7 @@ static int lguest_clockevent_set_next_event(unsigned long delta,
|
||||
}
|
||||
|
||||
/* Please wake us this far in the future. */
|
||||
hcall(LHCALL_SET_CLOCKEVENT, delta, 0, 0);
|
||||
kvm_hypercall1(LHCALL_SET_CLOCKEVENT, delta);
|
||||
return 0;
|
||||
}
|
||||
|
||||
@@ -706,7 +731,7 @@ static void lguest_clockevent_set_mode(enum clock_event_mode mode,
|
||||
case CLOCK_EVT_MODE_UNUSED:
|
||||
case CLOCK_EVT_MODE_SHUTDOWN:
|
||||
/* A 0 argument shuts the clock down. */
|
||||
hcall(LHCALL_SET_CLOCKEVENT, 0, 0, 0);
|
||||
kvm_hypercall0(LHCALL_SET_CLOCKEVENT);
|
||||
break;
|
||||
case CLOCK_EVT_MODE_ONESHOT:
|
||||
/* This is what we expect. */
|
||||
@@ -781,8 +806,8 @@ static void lguest_time_init(void)
|
||||
static void lguest_load_sp0(struct tss_struct *tss,
|
||||
struct thread_struct *thread)
|
||||
{
|
||||
lazy_hcall(LHCALL_SET_STACK, __KERNEL_DS|0x1, thread->sp0,
|
||||
THREAD_SIZE/PAGE_SIZE);
|
||||
lazy_hcall3(LHCALL_SET_STACK, __KERNEL_DS | 0x1, thread->sp0,
|
||||
THREAD_SIZE / PAGE_SIZE);
|
||||
}
|
||||
|
||||
/* Let's just say, I wouldn't do debugging under a Guest. */
|
||||
@@ -855,7 +880,7 @@ static void set_lguest_basic_apic_ops(void)
|
||||
/* STOP! Until an interrupt comes in. */
|
||||
static void lguest_safe_halt(void)
|
||||
{
|
||||
hcall(LHCALL_HALT, 0, 0, 0);
|
||||
kvm_hypercall0(LHCALL_HALT);
|
||||
}
|
||||
|
||||
/* The SHUTDOWN hypercall takes a string to describe what's happening, and
|
||||
@@ -865,7 +890,8 @@ static void lguest_safe_halt(void)
|
||||
* rather than virtual addresses, so we use __pa() here. */
|
||||
static void lguest_power_off(void)
|
||||
{
|
||||
hcall(LHCALL_SHUTDOWN, __pa("Power down"), LGUEST_SHUTDOWN_POWEROFF, 0);
|
||||
kvm_hypercall2(LHCALL_SHUTDOWN, __pa("Power down"),
|
||||
LGUEST_SHUTDOWN_POWEROFF);
|
||||
}
|
||||
|
||||
/*
|
||||
@@ -875,7 +901,7 @@ static void lguest_power_off(void)
|
||||
*/
|
||||
static int lguest_panic(struct notifier_block *nb, unsigned long l, void *p)
|
||||
{
|
||||
hcall(LHCALL_SHUTDOWN, __pa(p), LGUEST_SHUTDOWN_POWEROFF, 0);
|
||||
kvm_hypercall2(LHCALL_SHUTDOWN, __pa(p), LGUEST_SHUTDOWN_POWEROFF);
|
||||
/* The hcall won't return, but to keep gcc happy, we're "done". */
|
||||
return NOTIFY_DONE;
|
||||
}
|
||||
@@ -916,7 +942,7 @@ static __init int early_put_chars(u32 vtermno, const char *buf, int count)
|
||||
len = sizeof(scratch) - 1;
|
||||
scratch[len] = '\0';
|
||||
memcpy(scratch, buf, len);
|
||||
hcall(LHCALL_NOTIFY, __pa(scratch), 0, 0);
|
||||
kvm_hypercall1(LHCALL_NOTIFY, __pa(scratch));
|
||||
|
||||
/* This routine returns the number of bytes actually written. */
|
||||
return len;
|
||||
@@ -926,7 +952,7 @@ static __init int early_put_chars(u32 vtermno, const char *buf, int count)
|
||||
* Launcher to reboot us. */
|
||||
static void lguest_restart(char *reason)
|
||||
{
|
||||
hcall(LHCALL_SHUTDOWN, __pa(reason), LGUEST_SHUTDOWN_RESTART, 0);
|
||||
kvm_hypercall2(LHCALL_SHUTDOWN, __pa(reason), LGUEST_SHUTDOWN_RESTART);
|
||||
}
|
||||
|
||||
/*G:050
|
||||
@@ -1046,6 +1072,8 @@ __init void lguest_init(void)
|
||||
pv_mmu_ops.read_cr3 = lguest_read_cr3;
|
||||
pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu;
|
||||
pv_mmu_ops.lazy_mode.leave = lguest_leave_lazy_mmu_mode;
|
||||
pv_mmu_ops.pte_update = lguest_pte_update;
|
||||
pv_mmu_ops.pte_update_defer = lguest_pte_update;
|
||||
|
||||
#ifdef CONFIG_X86_LOCAL_APIC
|
||||
/* apic read/write intercepts */
|
||||
@@ -1064,14 +1092,6 @@ __init void lguest_init(void)
|
||||
* lguest_init() where the rest of the fairly chaotic boot setup
|
||||
* occurs. */
|
||||
|
||||
/* The native boot code sets up initial page tables immediately after
|
||||
* the kernel itself, and sets init_pg_tables_end so they're not
|
||||
* clobbered. The Launcher places our initial pagetables somewhere at
|
||||
* the top of our physical memory, so we don't need extra space: set
|
||||
* init_pg_tables_end to the end of the kernel. */
|
||||
init_pg_tables_start = __pa(pg0);
|
||||
init_pg_tables_end = __pa(pg0);
|
||||
|
||||
/* As described in head_32.S, we map the first 128M of memory. */
|
||||
max_pfn_mapped = (128*1024*1024) >> PAGE_SHIFT;
|
||||
|
||||
|
@@ -27,8 +27,8 @@ ENTRY(lguest_entry)
|
||||
/* We make the "initialization" hypercall now to tell the Host about
|
||||
* us, and also find out where it put our page tables. */
|
||||
movl $LHCALL_LGUEST_INIT, %eax
|
||||
movl $lguest_data - __PAGE_OFFSET, %edx
|
||||
int $LGUEST_TRAP_ENTRY
|
||||
movl $lguest_data - __PAGE_OFFSET, %ebx
|
||||
.byte 0x0f,0x01,0xc1 /* KVM_HYPERCALL */
|
||||
|
||||
/* Set up the initial stack so we can run C code. */
|
||||
movl $(init_thread_union+THREAD_SIZE),%esp
|
||||
|
Reference in New Issue
Block a user