docs: filesystems: convert ubifs.txt to ReST
- Add a SPDX header; - Add a document title; - Adjust section titles; - Some whitespace fixes and new line breaks; - Mark literal blocks as such; - Add table markups; - Add lists markups; - Add it to filesystems/index.rst. Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org> Link: https://lore.kernel.org/r/9043dc2965cafc64e6a521e2317c00ecc8303bf6.1581955849.git.mchehab+huawei@kernel.org Signed-off-by: Jonathan Corbet <corbet@lwn.net>
This commit is contained in:

committed by
Jonathan Corbet

parent
688f118e31
commit
38e56b4ec4
137
Documentation/filesystems/ubifs.rst
Normal file
137
Documentation/filesystems/ubifs.rst
Normal file
@@ -0,0 +1,137 @@
|
||||
.. SPDX-License-Identifier: GPL-2.0
|
||||
|
||||
===============
|
||||
UBI File System
|
||||
===============
|
||||
|
||||
Introduction
|
||||
============
|
||||
|
||||
UBIFS file-system stands for UBI File System. UBI stands for "Unsorted
|
||||
Block Images". UBIFS is a flash file system, which means it is designed
|
||||
to work with flash devices. It is important to understand, that UBIFS
|
||||
is completely different to any traditional file-system in Linux, like
|
||||
Ext2, XFS, JFS, etc. UBIFS represents a separate class of file-systems
|
||||
which work with MTD devices, not block devices. The other Linux
|
||||
file-system of this class is JFFS2.
|
||||
|
||||
To make it more clear, here is a small comparison of MTD devices and
|
||||
block devices.
|
||||
|
||||
1 MTD devices represent flash devices and they consist of eraseblocks of
|
||||
rather large size, typically about 128KiB. Block devices consist of
|
||||
small blocks, typically 512 bytes.
|
||||
2 MTD devices support 3 main operations - read from some offset within an
|
||||
eraseblock, write to some offset within an eraseblock, and erase a whole
|
||||
eraseblock. Block devices support 2 main operations - read a whole
|
||||
block and write a whole block.
|
||||
3 The whole eraseblock has to be erased before it becomes possible to
|
||||
re-write its contents. Blocks may be just re-written.
|
||||
4 Eraseblocks become worn out after some number of erase cycles -
|
||||
typically 100K-1G for SLC NAND and NOR flashes, and 1K-10K for MLC
|
||||
NAND flashes. Blocks do not have the wear-out property.
|
||||
5 Eraseblocks may become bad (only on NAND flashes) and software should
|
||||
deal with this. Blocks on hard drives typically do not become bad,
|
||||
because hardware has mechanisms to substitute bad blocks, at least in
|
||||
modern LBA disks.
|
||||
|
||||
It should be quite obvious why UBIFS is very different to traditional
|
||||
file-systems.
|
||||
|
||||
UBIFS works on top of UBI. UBI is a separate software layer which may be
|
||||
found in drivers/mtd/ubi. UBI is basically a volume management and
|
||||
wear-leveling layer. It provides so called UBI volumes which is a higher
|
||||
level abstraction than a MTD device. The programming model of UBI devices
|
||||
is very similar to MTD devices - they still consist of large eraseblocks,
|
||||
they have read/write/erase operations, but UBI devices are devoid of
|
||||
limitations like wear and bad blocks (items 4 and 5 in the above list).
|
||||
|
||||
In a sense, UBIFS is a next generation of JFFS2 file-system, but it is
|
||||
very different and incompatible to JFFS2. The following are the main
|
||||
differences.
|
||||
|
||||
* JFFS2 works on top of MTD devices, UBIFS depends on UBI and works on
|
||||
top of UBI volumes.
|
||||
* JFFS2 does not have on-media index and has to build it while mounting,
|
||||
which requires full media scan. UBIFS maintains the FS indexing
|
||||
information on the flash media and does not require full media scan,
|
||||
so it mounts many times faster than JFFS2.
|
||||
* JFFS2 is a write-through file-system, while UBIFS supports write-back,
|
||||
which makes UBIFS much faster on writes.
|
||||
|
||||
Similarly to JFFS2, UBIFS supports on-the-flight compression which makes
|
||||
it possible to fit quite a lot of data to the flash.
|
||||
|
||||
Similarly to JFFS2, UBIFS is tolerant of unclean reboots and power-cuts.
|
||||
It does not need stuff like fsck.ext2. UBIFS automatically replays its
|
||||
journal and recovers from crashes, ensuring that the on-flash data
|
||||
structures are consistent.
|
||||
|
||||
UBIFS scales logarithmically (most of the data structures it uses are
|
||||
trees), so the mount time and memory consumption do not linearly depend
|
||||
on the flash size, like in case of JFFS2. This is because UBIFS
|
||||
maintains the FS index on the flash media. However, UBIFS depends on
|
||||
UBI, which scales linearly. So overall UBI/UBIFS stack scales linearly.
|
||||
Nevertheless, UBI/UBIFS scales considerably better than JFFS2.
|
||||
|
||||
The authors of UBIFS believe, that it is possible to develop UBI2 which
|
||||
would scale logarithmically as well. UBI2 would support the same API as UBI,
|
||||
but it would be binary incompatible to UBI. So UBIFS would not need to be
|
||||
changed to use UBI2
|
||||
|
||||
|
||||
Mount options
|
||||
=============
|
||||
|
||||
(*) == default.
|
||||
|
||||
==================== =======================================================
|
||||
bulk_read read more in one go to take advantage of flash
|
||||
media that read faster sequentially
|
||||
no_bulk_read (*) do not bulk-read
|
||||
no_chk_data_crc (*) skip checking of CRCs on data nodes in order to
|
||||
improve read performance. Use this option only
|
||||
if the flash media is highly reliable. The effect
|
||||
of this option is that corruption of the contents
|
||||
of a file can go unnoticed.
|
||||
chk_data_crc do not skip checking CRCs on data nodes
|
||||
compr=none override default compressor and set it to "none"
|
||||
compr=lzo override default compressor and set it to "lzo"
|
||||
compr=zlib override default compressor and set it to "zlib"
|
||||
auth_key= specify the key used for authenticating the filesystem.
|
||||
Passing this option makes authentication mandatory.
|
||||
The passed key must be present in the kernel keyring
|
||||
and must be of type 'logon'
|
||||
auth_hash_name= The hash algorithm used for authentication. Used for
|
||||
both hashing and for creating HMACs. Typical values
|
||||
include "sha256" or "sha512"
|
||||
==================== =======================================================
|
||||
|
||||
|
||||
Quick usage instructions
|
||||
========================
|
||||
|
||||
The UBI volume to mount is specified using "ubiX_Y" or "ubiX:NAME" syntax,
|
||||
where "X" is UBI device number, "Y" is UBI volume number, and "NAME" is
|
||||
UBI volume name.
|
||||
|
||||
Mount volume 0 on UBI device 0 to /mnt/ubifs::
|
||||
|
||||
$ mount -t ubifs ubi0_0 /mnt/ubifs
|
||||
|
||||
Mount "rootfs" volume of UBI device 0 to /mnt/ubifs ("rootfs" is volume
|
||||
name)::
|
||||
|
||||
$ mount -t ubifs ubi0:rootfs /mnt/ubifs
|
||||
|
||||
The following is an example of the kernel boot arguments to attach mtd0
|
||||
to UBI and mount volume "rootfs":
|
||||
ubi.mtd=0 root=ubi0:rootfs rootfstype=ubifs
|
||||
|
||||
References
|
||||
==========
|
||||
|
||||
UBIFS documentation and FAQ/HOWTO at the MTD web site:
|
||||
|
||||
- http://www.linux-mtd.infradead.org/doc/ubifs.html
|
||||
- http://www.linux-mtd.infradead.org/faq/ubifs.html
|
Reference in New Issue
Block a user