sh: remove sh5 support
sh5 never became a product and has probably never really worked. Remove it by recursively deleting all associated Kconfig options and all corresponding files. Reviewed-by: Geert Uytterhoeven <geert+renesas@glider.be> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Rich Felker <dalias@libc.org>
此提交包含在:
@@ -15,8 +15,7 @@ config MMU
|
||||
|
||||
config PAGE_OFFSET
|
||||
hex
|
||||
default "0x80000000" if MMU && SUPERH32
|
||||
default "0x20000000" if MMU && SUPERH64
|
||||
default "0x80000000" if MMU
|
||||
default "0x00000000"
|
||||
|
||||
config FORCE_MAX_ZONEORDER
|
||||
@@ -72,12 +71,11 @@ config MEMORY_SIZE
|
||||
|
||||
config 29BIT
|
||||
def_bool !32BIT
|
||||
depends on SUPERH32
|
||||
select UNCACHED_MAPPING
|
||||
|
||||
config 32BIT
|
||||
bool
|
||||
default y if CPU_SH5 || !MMU
|
||||
default !MMU
|
||||
|
||||
config PMB
|
||||
bool "Support 32-bit physical addressing through PMB"
|
||||
@@ -152,7 +150,7 @@ config ARCH_MEMORY_PROBE
|
||||
|
||||
config IOREMAP_FIXED
|
||||
def_bool y
|
||||
depends on X2TLB || SUPERH64
|
||||
depends on X2TLB
|
||||
|
||||
config UNCACHED_MAPPING
|
||||
bool
|
||||
@@ -184,7 +182,7 @@ config PAGE_SIZE_16KB
|
||||
|
||||
config PAGE_SIZE_64KB
|
||||
bool "64kB"
|
||||
depends on !MMU || CPU_SH4 || CPU_SH5
|
||||
depends on !MMU || CPU_SH4
|
||||
help
|
||||
This enables support for 64kB pages, possible on all SH-4
|
||||
CPUs and later.
|
||||
@@ -216,10 +214,6 @@ config HUGETLB_PAGE_SIZE_64MB
|
||||
bool "64MB"
|
||||
depends on X2TLB
|
||||
|
||||
config HUGETLB_PAGE_SIZE_512MB
|
||||
bool "512MB"
|
||||
depends on CPU_SH5
|
||||
|
||||
endchoice
|
||||
|
||||
config SCHED_MC
|
||||
@@ -242,7 +236,7 @@ config SH7705_CACHE_32KB
|
||||
|
||||
choice
|
||||
prompt "Cache mode"
|
||||
default CACHE_WRITEBACK if CPU_SH2A || CPU_SH3 || CPU_SH4 || CPU_SH5
|
||||
default CACHE_WRITEBACK if CPU_SH2A || CPU_SH3 || CPU_SH4
|
||||
default CACHE_WRITETHROUGH if (CPU_SH2 && !CPU_SH2A)
|
||||
|
||||
config CACHE_WRITEBACK
|
||||
|
@@ -10,15 +10,14 @@ cacheops-$(CONFIG_CPU_SUBTYPE_SH7619) := cache-sh2.o
|
||||
cacheops-$(CONFIG_CPU_SH2A) := cache-sh2a.o
|
||||
cacheops-$(CONFIG_CPU_SH3) := cache-sh3.o
|
||||
cacheops-$(CONFIG_CPU_SH4) := cache-sh4.o flush-sh4.o
|
||||
cacheops-$(CONFIG_CPU_SH5) := cache-sh5.o flush-sh4.o
|
||||
cacheops-$(CONFIG_SH7705_CACHE_32KB) += cache-sh7705.o
|
||||
cacheops-$(CONFIG_CPU_SHX3) += cache-shx3.o
|
||||
|
||||
obj-y += $(cacheops-y)
|
||||
|
||||
mmu-y := nommu.o extable_32.o
|
||||
mmu-$(CONFIG_MMU) := extable_$(BITS).o fault.o ioremap.o kmap.o \
|
||||
pgtable.o tlbex_$(BITS).o tlbflush_$(BITS).o
|
||||
mmu-$(CONFIG_MMU) := extable_32.o fault.o ioremap.o kmap.o \
|
||||
pgtable.o tlbex_32.o tlbflush_32.o
|
||||
|
||||
obj-y += $(mmu-y)
|
||||
|
||||
@@ -31,7 +30,6 @@ ifdef CONFIG_MMU
|
||||
debugfs-$(CONFIG_CPU_SH4) += tlb-debugfs.o
|
||||
tlb-$(CONFIG_CPU_SH3) := tlb-sh3.o
|
||||
tlb-$(CONFIG_CPU_SH4) := tlb-sh4.o tlb-urb.o
|
||||
tlb-$(CONFIG_CPU_SH5) := tlb-sh5.o
|
||||
tlb-$(CONFIG_CPU_HAS_PTEAEX) := tlb-pteaex.o tlb-urb.o
|
||||
obj-y += $(tlb-y)
|
||||
endif
|
||||
@@ -46,29 +44,4 @@ obj-$(CONFIG_HAVE_SRAM_POOL) += sram.o
|
||||
|
||||
GCOV_PROFILE_pmb.o := n
|
||||
|
||||
# Special flags for tlbex_64.o. This puts restrictions on the number of
|
||||
# caller-save registers that the compiler can target when building this file.
|
||||
# This is required because the code is called from a context in entry.S where
|
||||
# very few registers have been saved in the exception handler (for speed
|
||||
# reasons).
|
||||
# The caller save registers that have been saved and which can be used are
|
||||
# r2,r3,r4,r5 : argument passing
|
||||
# r15, r18 : SP and LINK
|
||||
# tr0-4 : allow all caller-save TR's. The compiler seems to be able to make
|
||||
# use of them, so it's probably beneficial to performance to save them
|
||||
# and have them available for it.
|
||||
#
|
||||
# The resources not listed below are callee save, i.e. the compiler is free to
|
||||
# use any of them and will spill them to the stack itself.
|
||||
|
||||
CFLAGS_tlbex_64.o += -ffixed-r7 \
|
||||
-ffixed-r8 -ffixed-r9 -ffixed-r10 -ffixed-r11 -ffixed-r12 \
|
||||
-ffixed-r13 -ffixed-r14 -ffixed-r16 -ffixed-r17 -ffixed-r19 \
|
||||
-ffixed-r20 -ffixed-r21 -ffixed-r22 -ffixed-r23 \
|
||||
-ffixed-r24 -ffixed-r25 -ffixed-r26 -ffixed-r27 \
|
||||
-ffixed-r36 -ffixed-r37 -ffixed-r38 -ffixed-r39 -ffixed-r40 \
|
||||
-ffixed-r41 -ffixed-r42 -ffixed-r43 \
|
||||
-ffixed-r60 -ffixed-r61 -ffixed-r62 \
|
||||
-fomit-frame-pointer
|
||||
|
||||
ccflags-y := -Werror
|
||||
|
@@ -1,621 +0,0 @@
|
||||
/*
|
||||
* arch/sh/mm/cache-sh5.c
|
||||
*
|
||||
* Copyright (C) 2000, 2001 Paolo Alberelli
|
||||
* Copyright (C) 2002 Benedict Gaster
|
||||
* Copyright (C) 2003 Richard Curnow
|
||||
* Copyright (C) 2003 - 2008 Paul Mundt
|
||||
*
|
||||
* This file is subject to the terms and conditions of the GNU General Public
|
||||
* License. See the file "COPYING" in the main directory of this archive
|
||||
* for more details.
|
||||
*/
|
||||
#include <linux/init.h>
|
||||
#include <linux/mman.h>
|
||||
#include <linux/mm.h>
|
||||
#include <asm/tlb.h>
|
||||
#include <asm/processor.h>
|
||||
#include <asm/cache.h>
|
||||
#include <asm/pgalloc.h>
|
||||
#include <linux/uaccess.h>
|
||||
#include <asm/mmu_context.h>
|
||||
|
||||
extern void __weak sh4__flush_region_init(void);
|
||||
|
||||
/* Wired TLB entry for the D-cache */
|
||||
static unsigned long long dtlb_cache_slot;
|
||||
|
||||
/*
|
||||
* The following group of functions deal with mapping and unmapping a
|
||||
* temporary page into a DTLB slot that has been set aside for exclusive
|
||||
* use.
|
||||
*/
|
||||
static inline void
|
||||
sh64_setup_dtlb_cache_slot(unsigned long eaddr, unsigned long asid,
|
||||
unsigned long paddr)
|
||||
{
|
||||
local_irq_disable();
|
||||
sh64_setup_tlb_slot(dtlb_cache_slot, eaddr, asid, paddr);
|
||||
}
|
||||
|
||||
static inline void sh64_teardown_dtlb_cache_slot(void)
|
||||
{
|
||||
sh64_teardown_tlb_slot(dtlb_cache_slot);
|
||||
local_irq_enable();
|
||||
}
|
||||
|
||||
static inline void sh64_icache_inv_all(void)
|
||||
{
|
||||
unsigned long long addr, flag, data;
|
||||
unsigned long flags;
|
||||
|
||||
addr = ICCR0;
|
||||
flag = ICCR0_ICI;
|
||||
data = 0;
|
||||
|
||||
/* Make this a critical section for safety (probably not strictly necessary.) */
|
||||
local_irq_save(flags);
|
||||
|
||||
/* Without %1 it gets unexplicably wrong */
|
||||
__asm__ __volatile__ (
|
||||
"getcfg %3, 0, %0\n\t"
|
||||
"or %0, %2, %0\n\t"
|
||||
"putcfg %3, 0, %0\n\t"
|
||||
"synci"
|
||||
: "=&r" (data)
|
||||
: "0" (data), "r" (flag), "r" (addr));
|
||||
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
static void sh64_icache_inv_kernel_range(unsigned long start, unsigned long end)
|
||||
{
|
||||
/* Invalidate range of addresses [start,end] from the I-cache, where
|
||||
* the addresses lie in the kernel superpage. */
|
||||
|
||||
unsigned long long ullend, addr, aligned_start;
|
||||
aligned_start = (unsigned long long)(signed long long)(signed long) start;
|
||||
addr = L1_CACHE_ALIGN(aligned_start);
|
||||
ullend = (unsigned long long) (signed long long) (signed long) end;
|
||||
|
||||
while (addr <= ullend) {
|
||||
__asm__ __volatile__ ("icbi %0, 0" : : "r" (addr));
|
||||
addr += L1_CACHE_BYTES;
|
||||
}
|
||||
}
|
||||
|
||||
static void sh64_icache_inv_user_page(struct vm_area_struct *vma, unsigned long eaddr)
|
||||
{
|
||||
/* If we get called, we know that vma->vm_flags contains VM_EXEC.
|
||||
Also, eaddr is page-aligned. */
|
||||
unsigned int cpu = smp_processor_id();
|
||||
unsigned long long addr, end_addr;
|
||||
unsigned long flags = 0;
|
||||
unsigned long running_asid, vma_asid;
|
||||
addr = eaddr;
|
||||
end_addr = addr + PAGE_SIZE;
|
||||
|
||||
/* Check whether we can use the current ASID for the I-cache
|
||||
invalidation. For example, if we're called via
|
||||
access_process_vm->flush_cache_page->here, (e.g. when reading from
|
||||
/proc), 'running_asid' will be that of the reader, not of the
|
||||
victim.
|
||||
|
||||
Also, note the risk that we might get pre-empted between the ASID
|
||||
compare and blocking IRQs, and before we regain control, the
|
||||
pid->ASID mapping changes. However, the whole cache will get
|
||||
invalidated when the mapping is renewed, so the worst that can
|
||||
happen is that the loop below ends up invalidating somebody else's
|
||||
cache entries.
|
||||
*/
|
||||
|
||||
running_asid = get_asid();
|
||||
vma_asid = cpu_asid(cpu, vma->vm_mm);
|
||||
if (running_asid != vma_asid) {
|
||||
local_irq_save(flags);
|
||||
switch_and_save_asid(vma_asid);
|
||||
}
|
||||
while (addr < end_addr) {
|
||||
/* Worth unrolling a little */
|
||||
__asm__ __volatile__("icbi %0, 0" : : "r" (addr));
|
||||
__asm__ __volatile__("icbi %0, 32" : : "r" (addr));
|
||||
__asm__ __volatile__("icbi %0, 64" : : "r" (addr));
|
||||
__asm__ __volatile__("icbi %0, 96" : : "r" (addr));
|
||||
addr += 128;
|
||||
}
|
||||
if (running_asid != vma_asid) {
|
||||
switch_and_save_asid(running_asid);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
}
|
||||
|
||||
static void sh64_icache_inv_user_page_range(struct mm_struct *mm,
|
||||
unsigned long start, unsigned long end)
|
||||
{
|
||||
/* Used for invalidating big chunks of I-cache, i.e. assume the range
|
||||
is whole pages. If 'start' or 'end' is not page aligned, the code
|
||||
is conservative and invalidates to the ends of the enclosing pages.
|
||||
This is functionally OK, just a performance loss. */
|
||||
|
||||
/* See the comments below in sh64_dcache_purge_user_range() regarding
|
||||
the choice of algorithm. However, for the I-cache option (2) isn't
|
||||
available because there are no physical tags so aliases can't be
|
||||
resolved. The icbi instruction has to be used through the user
|
||||
mapping. Because icbi is cheaper than ocbp on a cache hit, it
|
||||
would be cheaper to use the selective code for a large range than is
|
||||
possible with the D-cache. Just assume 64 for now as a working
|
||||
figure.
|
||||
*/
|
||||
int n_pages;
|
||||
|
||||
if (!mm)
|
||||
return;
|
||||
|
||||
n_pages = ((end - start) >> PAGE_SHIFT);
|
||||
if (n_pages >= 64) {
|
||||
sh64_icache_inv_all();
|
||||
} else {
|
||||
unsigned long aligned_start;
|
||||
unsigned long eaddr;
|
||||
unsigned long after_last_page_start;
|
||||
unsigned long mm_asid, current_asid;
|
||||
unsigned long flags = 0;
|
||||
|
||||
mm_asid = cpu_asid(smp_processor_id(), mm);
|
||||
current_asid = get_asid();
|
||||
|
||||
if (mm_asid != current_asid) {
|
||||
/* Switch ASID and run the invalidate loop under cli */
|
||||
local_irq_save(flags);
|
||||
switch_and_save_asid(mm_asid);
|
||||
}
|
||||
|
||||
aligned_start = start & PAGE_MASK;
|
||||
after_last_page_start = PAGE_SIZE + ((end - 1) & PAGE_MASK);
|
||||
|
||||
while (aligned_start < after_last_page_start) {
|
||||
struct vm_area_struct *vma;
|
||||
unsigned long vma_end;
|
||||
vma = find_vma(mm, aligned_start);
|
||||
if (!vma || (aligned_start <= vma->vm_end)) {
|
||||
/* Avoid getting stuck in an error condition */
|
||||
aligned_start += PAGE_SIZE;
|
||||
continue;
|
||||
}
|
||||
vma_end = vma->vm_end;
|
||||
if (vma->vm_flags & VM_EXEC) {
|
||||
/* Executable */
|
||||
eaddr = aligned_start;
|
||||
while (eaddr < vma_end) {
|
||||
sh64_icache_inv_user_page(vma, eaddr);
|
||||
eaddr += PAGE_SIZE;
|
||||
}
|
||||
}
|
||||
aligned_start = vma->vm_end; /* Skip to start of next region */
|
||||
}
|
||||
|
||||
if (mm_asid != current_asid) {
|
||||
switch_and_save_asid(current_asid);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void sh64_icache_inv_current_user_range(unsigned long start, unsigned long end)
|
||||
{
|
||||
/* The icbi instruction never raises ITLBMISS. i.e. if there's not a
|
||||
cache hit on the virtual tag the instruction ends there, without a
|
||||
TLB lookup. */
|
||||
|
||||
unsigned long long aligned_start;
|
||||
unsigned long long ull_end;
|
||||
unsigned long long addr;
|
||||
|
||||
ull_end = end;
|
||||
|
||||
/* Just invalidate over the range using the natural addresses. TLB
|
||||
miss handling will be OK (TBC). Since it's for the current process,
|
||||
either we're already in the right ASID context, or the ASIDs have
|
||||
been recycled since we were last active in which case we might just
|
||||
invalidate another processes I-cache entries : no worries, just a
|
||||
performance drop for him. */
|
||||
aligned_start = L1_CACHE_ALIGN(start);
|
||||
addr = aligned_start;
|
||||
while (addr < ull_end) {
|
||||
__asm__ __volatile__ ("icbi %0, 0" : : "r" (addr));
|
||||
__asm__ __volatile__ ("nop");
|
||||
__asm__ __volatile__ ("nop");
|
||||
addr += L1_CACHE_BYTES;
|
||||
}
|
||||
}
|
||||
|
||||
/* Buffer used as the target of alloco instructions to purge data from cache
|
||||
sets by natural eviction. -- RPC */
|
||||
#define DUMMY_ALLOCO_AREA_SIZE ((L1_CACHE_BYTES << 10) + (1024 * 4))
|
||||
static unsigned char dummy_alloco_area[DUMMY_ALLOCO_AREA_SIZE] __cacheline_aligned = { 0, };
|
||||
|
||||
static inline void sh64_dcache_purge_sets(int sets_to_purge_base, int n_sets)
|
||||
{
|
||||
/* Purge all ways in a particular block of sets, specified by the base
|
||||
set number and number of sets. Can handle wrap-around, if that's
|
||||
needed. */
|
||||
|
||||
int dummy_buffer_base_set;
|
||||
unsigned long long eaddr, eaddr0, eaddr1;
|
||||
int j;
|
||||
int set_offset;
|
||||
|
||||
dummy_buffer_base_set = ((int)&dummy_alloco_area &
|
||||
cpu_data->dcache.entry_mask) >>
|
||||
cpu_data->dcache.entry_shift;
|
||||
set_offset = sets_to_purge_base - dummy_buffer_base_set;
|
||||
|
||||
for (j = 0; j < n_sets; j++, set_offset++) {
|
||||
set_offset &= (cpu_data->dcache.sets - 1);
|
||||
eaddr0 = (unsigned long long)dummy_alloco_area +
|
||||
(set_offset << cpu_data->dcache.entry_shift);
|
||||
|
||||
/*
|
||||
* Do one alloco which hits the required set per cache
|
||||
* way. For write-back mode, this will purge the #ways
|
||||
* resident lines. There's little point unrolling this
|
||||
* loop because the allocos stall more if they're too
|
||||
* close together.
|
||||
*/
|
||||
eaddr1 = eaddr0 + cpu_data->dcache.way_size *
|
||||
cpu_data->dcache.ways;
|
||||
|
||||
for (eaddr = eaddr0; eaddr < eaddr1;
|
||||
eaddr += cpu_data->dcache.way_size) {
|
||||
__asm__ __volatile__ ("alloco %0, 0" : : "r" (eaddr));
|
||||
__asm__ __volatile__ ("synco"); /* TAKum03020 */
|
||||
}
|
||||
|
||||
eaddr1 = eaddr0 + cpu_data->dcache.way_size *
|
||||
cpu_data->dcache.ways;
|
||||
|
||||
for (eaddr = eaddr0; eaddr < eaddr1;
|
||||
eaddr += cpu_data->dcache.way_size) {
|
||||
/*
|
||||
* Load from each address. Required because
|
||||
* alloco is a NOP if the cache is write-through.
|
||||
*/
|
||||
if (test_bit(SH_CACHE_MODE_WT, &(cpu_data->dcache.flags)))
|
||||
__raw_readb((unsigned long)eaddr);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Don't use OCBI to invalidate the lines. That costs cycles
|
||||
* directly. If the dummy block is just left resident, it will
|
||||
* naturally get evicted as required.
|
||||
*/
|
||||
}
|
||||
|
||||
/*
|
||||
* Purge the entire contents of the dcache. The most efficient way to
|
||||
* achieve this is to use alloco instructions on a region of unused
|
||||
* memory equal in size to the cache, thereby causing the current
|
||||
* contents to be discarded by natural eviction. The alternative, namely
|
||||
* reading every tag, setting up a mapping for the corresponding page and
|
||||
* doing an OCBP for the line, would be much more expensive.
|
||||
*/
|
||||
static void sh64_dcache_purge_all(void)
|
||||
{
|
||||
|
||||
sh64_dcache_purge_sets(0, cpu_data->dcache.sets);
|
||||
}
|
||||
|
||||
|
||||
/* Assumes this address (+ (2**n_synbits) pages up from it) aren't used for
|
||||
anything else in the kernel */
|
||||
#define MAGIC_PAGE0_START 0xffffffffec000000ULL
|
||||
|
||||
/* Purge the physical page 'paddr' from the cache. It's known that any
|
||||
* cache lines requiring attention have the same page colour as the the
|
||||
* address 'eaddr'.
|
||||
*
|
||||
* This relies on the fact that the D-cache matches on physical tags when
|
||||
* no virtual tag matches. So we create an alias for the original page
|
||||
* and purge through that. (Alternatively, we could have done this by
|
||||
* switching ASID to match the original mapping and purged through that,
|
||||
* but that involves ASID switching cost + probably a TLBMISS + refill
|
||||
* anyway.)
|
||||
*/
|
||||
static void sh64_dcache_purge_coloured_phy_page(unsigned long paddr,
|
||||
unsigned long eaddr)
|
||||
{
|
||||
unsigned long long magic_page_start;
|
||||
unsigned long long magic_eaddr, magic_eaddr_end;
|
||||
|
||||
magic_page_start = MAGIC_PAGE0_START + (eaddr & CACHE_OC_SYN_MASK);
|
||||
|
||||
/* As long as the kernel is not pre-emptible, this doesn't need to be
|
||||
under cli/sti. */
|
||||
sh64_setup_dtlb_cache_slot(magic_page_start, get_asid(), paddr);
|
||||
|
||||
magic_eaddr = magic_page_start;
|
||||
magic_eaddr_end = magic_eaddr + PAGE_SIZE;
|
||||
|
||||
while (magic_eaddr < magic_eaddr_end) {
|
||||
/* Little point in unrolling this loop - the OCBPs are blocking
|
||||
and won't go any quicker (i.e. the loop overhead is parallel
|
||||
to part of the OCBP execution.) */
|
||||
__asm__ __volatile__ ("ocbp %0, 0" : : "r" (magic_eaddr));
|
||||
magic_eaddr += L1_CACHE_BYTES;
|
||||
}
|
||||
|
||||
sh64_teardown_dtlb_cache_slot();
|
||||
}
|
||||
|
||||
/*
|
||||
* Purge a page given its physical start address, by creating a temporary
|
||||
* 1 page mapping and purging across that. Even if we know the virtual
|
||||
* address (& vma or mm) of the page, the method here is more elegant
|
||||
* because it avoids issues of coping with page faults on the purge
|
||||
* instructions (i.e. no special-case code required in the critical path
|
||||
* in the TLB miss handling).
|
||||
*/
|
||||
static void sh64_dcache_purge_phy_page(unsigned long paddr)
|
||||
{
|
||||
unsigned long long eaddr_start, eaddr, eaddr_end;
|
||||
int i;
|
||||
|
||||
/* As long as the kernel is not pre-emptible, this doesn't need to be
|
||||
under cli/sti. */
|
||||
eaddr_start = MAGIC_PAGE0_START;
|
||||
for (i = 0; i < (1 << CACHE_OC_N_SYNBITS); i++) {
|
||||
sh64_setup_dtlb_cache_slot(eaddr_start, get_asid(), paddr);
|
||||
|
||||
eaddr = eaddr_start;
|
||||
eaddr_end = eaddr + PAGE_SIZE;
|
||||
while (eaddr < eaddr_end) {
|
||||
__asm__ __volatile__ ("ocbp %0, 0" : : "r" (eaddr));
|
||||
eaddr += L1_CACHE_BYTES;
|
||||
}
|
||||
|
||||
sh64_teardown_dtlb_cache_slot();
|
||||
eaddr_start += PAGE_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
static void sh64_dcache_purge_user_pages(struct mm_struct *mm,
|
||||
unsigned long addr, unsigned long end)
|
||||
{
|
||||
pgd_t *pgd;
|
||||
pud_t *pud;
|
||||
pmd_t *pmd;
|
||||
pte_t *pte;
|
||||
pte_t entry;
|
||||
spinlock_t *ptl;
|
||||
unsigned long paddr;
|
||||
|
||||
if (!mm)
|
||||
return; /* No way to find physical address of page */
|
||||
|
||||
pgd = pgd_offset(mm, addr);
|
||||
if (pgd_bad(*pgd))
|
||||
return;
|
||||
|
||||
pud = pud_offset(pgd, addr);
|
||||
if (pud_none(*pud) || pud_bad(*pud))
|
||||
return;
|
||||
|
||||
pmd = pmd_offset(pud, addr);
|
||||
if (pmd_none(*pmd) || pmd_bad(*pmd))
|
||||
return;
|
||||
|
||||
pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
|
||||
do {
|
||||
entry = *pte;
|
||||
if (pte_none(entry) || !pte_present(entry))
|
||||
continue;
|
||||
paddr = pte_val(entry) & PAGE_MASK;
|
||||
sh64_dcache_purge_coloured_phy_page(paddr, addr);
|
||||
} while (pte++, addr += PAGE_SIZE, addr != end);
|
||||
pte_unmap_unlock(pte - 1, ptl);
|
||||
}
|
||||
|
||||
/*
|
||||
* There are at least 5 choices for the implementation of this, with
|
||||
* pros (+), cons(-), comments(*):
|
||||
*
|
||||
* 1. ocbp each line in the range through the original user's ASID
|
||||
* + no lines spuriously evicted
|
||||
* - tlbmiss handling (must either handle faults on demand => extra
|
||||
* special-case code in tlbmiss critical path), or map the page in
|
||||
* advance (=> flush_tlb_range in advance to avoid multiple hits)
|
||||
* - ASID switching
|
||||
* - expensive for large ranges
|
||||
*
|
||||
* 2. temporarily map each page in the range to a special effective
|
||||
* address and ocbp through the temporary mapping; relies on the
|
||||
* fact that SH-5 OCB* always do TLB lookup and match on ptags (they
|
||||
* never look at the etags)
|
||||
* + no spurious evictions
|
||||
* - expensive for large ranges
|
||||
* * surely cheaper than (1)
|
||||
*
|
||||
* 3. walk all the lines in the cache, check the tags, if a match
|
||||
* occurs create a page mapping to ocbp the line through
|
||||
* + no spurious evictions
|
||||
* - tag inspection overhead
|
||||
* - (especially for small ranges)
|
||||
* - potential cost of setting up/tearing down page mapping for
|
||||
* every line that matches the range
|
||||
* * cost partly independent of range size
|
||||
*
|
||||
* 4. walk all the lines in the cache, check the tags, if a match
|
||||
* occurs use 4 * alloco to purge the line (+3 other probably
|
||||
* innocent victims) by natural eviction
|
||||
* + no tlb mapping overheads
|
||||
* - spurious evictions
|
||||
* - tag inspection overhead
|
||||
*
|
||||
* 5. implement like flush_cache_all
|
||||
* + no tag inspection overhead
|
||||
* - spurious evictions
|
||||
* - bad for small ranges
|
||||
*
|
||||
* (1) can be ruled out as more expensive than (2). (2) appears best
|
||||
* for small ranges. The choice between (3), (4) and (5) for large
|
||||
* ranges and the range size for the large/small boundary need
|
||||
* benchmarking to determine.
|
||||
*
|
||||
* For now use approach (2) for small ranges and (5) for large ones.
|
||||
*/
|
||||
static void sh64_dcache_purge_user_range(struct mm_struct *mm,
|
||||
unsigned long start, unsigned long end)
|
||||
{
|
||||
int n_pages = ((end - start) >> PAGE_SHIFT);
|
||||
|
||||
if (n_pages >= 64 || ((start ^ (end - 1)) & PMD_MASK)) {
|
||||
sh64_dcache_purge_all();
|
||||
} else {
|
||||
/* Small range, covered by a single page table page */
|
||||
start &= PAGE_MASK; /* should already be so */
|
||||
end = PAGE_ALIGN(end); /* should already be so */
|
||||
sh64_dcache_purge_user_pages(mm, start, end);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Invalidate the entire contents of both caches, after writing back to
|
||||
* memory any dirty data from the D-cache.
|
||||
*/
|
||||
static void sh5_flush_cache_all(void *unused)
|
||||
{
|
||||
sh64_dcache_purge_all();
|
||||
sh64_icache_inv_all();
|
||||
}
|
||||
|
||||
/*
|
||||
* Invalidate an entire user-address space from both caches, after
|
||||
* writing back dirty data (e.g. for shared mmap etc).
|
||||
*
|
||||
* This could be coded selectively by inspecting all the tags then
|
||||
* doing 4*alloco on any set containing a match (as for
|
||||
* flush_cache_range), but fork/exit/execve (where this is called from)
|
||||
* are expensive anyway.
|
||||
*
|
||||
* Have to do a purge here, despite the comments re I-cache below.
|
||||
* There could be odd-coloured dirty data associated with the mm still
|
||||
* in the cache - if this gets written out through natural eviction
|
||||
* after the kernel has reused the page there will be chaos.
|
||||
*
|
||||
* The mm being torn down won't ever be active again, so any Icache
|
||||
* lines tagged with its ASID won't be visible for the rest of the
|
||||
* lifetime of this ASID cycle. Before the ASID gets reused, there
|
||||
* will be a flush_cache_all. Hence we don't need to touch the
|
||||
* I-cache. This is similar to the lack of action needed in
|
||||
* flush_tlb_mm - see fault.c.
|
||||
*/
|
||||
static void sh5_flush_cache_mm(void *unused)
|
||||
{
|
||||
sh64_dcache_purge_all();
|
||||
}
|
||||
|
||||
/*
|
||||
* Invalidate (from both caches) the range [start,end) of virtual
|
||||
* addresses from the user address space specified by mm, after writing
|
||||
* back any dirty data.
|
||||
*
|
||||
* Note, 'end' is 1 byte beyond the end of the range to flush.
|
||||
*/
|
||||
static void sh5_flush_cache_range(void *args)
|
||||
{
|
||||
struct flusher_data *data = args;
|
||||
struct vm_area_struct *vma;
|
||||
unsigned long start, end;
|
||||
|
||||
vma = data->vma;
|
||||
start = data->addr1;
|
||||
end = data->addr2;
|
||||
|
||||
sh64_dcache_purge_user_range(vma->vm_mm, start, end);
|
||||
sh64_icache_inv_user_page_range(vma->vm_mm, start, end);
|
||||
}
|
||||
|
||||
/*
|
||||
* Invalidate any entries in either cache for the vma within the user
|
||||
* address space vma->vm_mm for the page starting at virtual address
|
||||
* 'eaddr'. This seems to be used primarily in breaking COW. Note,
|
||||
* the I-cache must be searched too in case the page in question is
|
||||
* both writable and being executed from (e.g. stack trampolines.)
|
||||
*
|
||||
* Note, this is called with pte lock held.
|
||||
*/
|
||||
static void sh5_flush_cache_page(void *args)
|
||||
{
|
||||
struct flusher_data *data = args;
|
||||
struct vm_area_struct *vma;
|
||||
unsigned long eaddr, pfn;
|
||||
|
||||
vma = data->vma;
|
||||
eaddr = data->addr1;
|
||||
pfn = data->addr2;
|
||||
|
||||
sh64_dcache_purge_phy_page(pfn << PAGE_SHIFT);
|
||||
|
||||
if (vma->vm_flags & VM_EXEC)
|
||||
sh64_icache_inv_user_page(vma, eaddr);
|
||||
}
|
||||
|
||||
static void sh5_flush_dcache_page(void *page)
|
||||
{
|
||||
sh64_dcache_purge_phy_page(page_to_phys((struct page *)page));
|
||||
wmb();
|
||||
}
|
||||
|
||||
/*
|
||||
* Flush the range [start,end] of kernel virtual address space from
|
||||
* the I-cache. The corresponding range must be purged from the
|
||||
* D-cache also because the SH-5 doesn't have cache snooping between
|
||||
* the caches. The addresses will be visible through the superpage
|
||||
* mapping, therefore it's guaranteed that there no cache entries for
|
||||
* the range in cache sets of the wrong colour.
|
||||
*/
|
||||
static void sh5_flush_icache_range(void *args)
|
||||
{
|
||||
struct flusher_data *data = args;
|
||||
unsigned long start, end;
|
||||
|
||||
start = data->addr1;
|
||||
end = data->addr2;
|
||||
|
||||
__flush_purge_region((void *)start, end);
|
||||
wmb();
|
||||
sh64_icache_inv_kernel_range(start, end);
|
||||
}
|
||||
|
||||
/*
|
||||
* For the address range [start,end), write back the data from the
|
||||
* D-cache and invalidate the corresponding region of the I-cache for the
|
||||
* current process. Used to flush signal trampolines on the stack to
|
||||
* make them executable.
|
||||
*/
|
||||
static void sh5_flush_cache_sigtramp(void *vaddr)
|
||||
{
|
||||
unsigned long end = (unsigned long)vaddr + L1_CACHE_BYTES;
|
||||
|
||||
__flush_wback_region(vaddr, L1_CACHE_BYTES);
|
||||
wmb();
|
||||
sh64_icache_inv_current_user_range((unsigned long)vaddr, end);
|
||||
}
|
||||
|
||||
void __init sh5_cache_init(void)
|
||||
{
|
||||
local_flush_cache_all = sh5_flush_cache_all;
|
||||
local_flush_cache_mm = sh5_flush_cache_mm;
|
||||
local_flush_cache_dup_mm = sh5_flush_cache_mm;
|
||||
local_flush_cache_page = sh5_flush_cache_page;
|
||||
local_flush_cache_range = sh5_flush_cache_range;
|
||||
local_flush_dcache_page = sh5_flush_dcache_page;
|
||||
local_flush_icache_range = sh5_flush_icache_range;
|
||||
local_flush_cache_sigtramp = sh5_flush_cache_sigtramp;
|
||||
|
||||
/* Reserve a slot for dcache colouring in the DTLB */
|
||||
dtlb_cache_slot = sh64_get_wired_dtlb_entry();
|
||||
|
||||
sh4__flush_region_init();
|
||||
}
|
@@ -355,12 +355,6 @@ void __init cpu_cache_init(void)
|
||||
}
|
||||
}
|
||||
|
||||
if (boot_cpu_data.family == CPU_FAMILY_SH5) {
|
||||
extern void __weak sh5_cache_init(void);
|
||||
|
||||
sh5_cache_init();
|
||||
}
|
||||
|
||||
skip:
|
||||
emit_cache_params();
|
||||
}
|
||||
|
@@ -1,84 +0,0 @@
|
||||
/*
|
||||
* arch/sh/mm/extable_64.c
|
||||
*
|
||||
* Copyright (C) 2003 Richard Curnow
|
||||
* Copyright (C) 2003, 2004 Paul Mundt
|
||||
*
|
||||
* Cloned from the 2.5 SH version..
|
||||
*
|
||||
* This file is subject to the terms and conditions of the GNU General Public
|
||||
* License. See the file "COPYING" in the main directory of this archive
|
||||
* for more details.
|
||||
*/
|
||||
#include <linux/bsearch.h>
|
||||
#include <linux/rwsem.h>
|
||||
#include <linux/extable.h>
|
||||
#include <linux/uaccess.h>
|
||||
|
||||
extern unsigned long copy_user_memcpy, copy_user_memcpy_end;
|
||||
extern void __copy_user_fixup(void);
|
||||
|
||||
static const struct exception_table_entry __copy_user_fixup_ex = {
|
||||
.fixup = (unsigned long)&__copy_user_fixup,
|
||||
};
|
||||
|
||||
/*
|
||||
* Some functions that may trap due to a bad user-mode address have too
|
||||
* many loads and stores in them to make it at all practical to label
|
||||
* each one and put them all in the main exception table.
|
||||
*
|
||||
* In particular, the fast memcpy routine is like this. It's fix-up is
|
||||
* just to fall back to a slow byte-at-a-time copy, which is handled the
|
||||
* conventional way. So it's functionally OK to just handle any trap
|
||||
* occurring in the fast memcpy with that fixup.
|
||||
*/
|
||||
static const struct exception_table_entry *check_exception_ranges(unsigned long addr)
|
||||
{
|
||||
if ((addr >= (unsigned long)©_user_memcpy) &&
|
||||
(addr <= (unsigned long)©_user_memcpy_end))
|
||||
return &__copy_user_fixup_ex;
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static int cmp_ex_search(const void *key, const void *elt)
|
||||
{
|
||||
const struct exception_table_entry *_elt = elt;
|
||||
unsigned long _key = *(unsigned long *)key;
|
||||
|
||||
/* avoid overflow */
|
||||
if (_key > _elt->insn)
|
||||
return 1;
|
||||
if (_key < _elt->insn)
|
||||
return -1;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Simple binary search */
|
||||
const struct exception_table_entry *
|
||||
search_extable(const struct exception_table_entry *base,
|
||||
const size_t num,
|
||||
unsigned long value)
|
||||
{
|
||||
const struct exception_table_entry *mid;
|
||||
|
||||
mid = check_exception_ranges(value);
|
||||
if (mid)
|
||||
return mid;
|
||||
|
||||
return bsearch(&value, base, num,
|
||||
sizeof(struct exception_table_entry), cmp_ex_search);
|
||||
}
|
||||
|
||||
int fixup_exception(struct pt_regs *regs)
|
||||
{
|
||||
const struct exception_table_entry *fixup;
|
||||
|
||||
fixup = search_exception_tables(regs->pc);
|
||||
if (fixup) {
|
||||
regs->pc = fixup->fixup;
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
@@ -1,224 +0,0 @@
|
||||
/*
|
||||
* arch/sh/mm/tlb-sh5.c
|
||||
*
|
||||
* Copyright (C) 2003 Paul Mundt <lethal@linux-sh.org>
|
||||
* Copyright (C) 2003 Richard Curnow <richard.curnow@superh.com>
|
||||
*
|
||||
* This file is subject to the terms and conditions of the GNU General Public
|
||||
* License. See the file "COPYING" in the main directory of this archive
|
||||
* for more details.
|
||||
*/
|
||||
#include <linux/mm.h>
|
||||
#include <linux/init.h>
|
||||
#include <asm/page.h>
|
||||
#include <asm/tlb.h>
|
||||
#include <asm/mmu_context.h>
|
||||
|
||||
/**
|
||||
* sh64_tlb_init - Perform initial setup for the DTLB and ITLB.
|
||||
*/
|
||||
int sh64_tlb_init(void)
|
||||
{
|
||||
/* Assign some sane DTLB defaults */
|
||||
cpu_data->dtlb.entries = 64;
|
||||
cpu_data->dtlb.step = 0x10;
|
||||
|
||||
cpu_data->dtlb.first = DTLB_FIXED | cpu_data->dtlb.step;
|
||||
cpu_data->dtlb.next = cpu_data->dtlb.first;
|
||||
|
||||
cpu_data->dtlb.last = DTLB_FIXED |
|
||||
((cpu_data->dtlb.entries - 1) *
|
||||
cpu_data->dtlb.step);
|
||||
|
||||
/* And again for the ITLB */
|
||||
cpu_data->itlb.entries = 64;
|
||||
cpu_data->itlb.step = 0x10;
|
||||
|
||||
cpu_data->itlb.first = ITLB_FIXED | cpu_data->itlb.step;
|
||||
cpu_data->itlb.next = cpu_data->itlb.first;
|
||||
cpu_data->itlb.last = ITLB_FIXED |
|
||||
((cpu_data->itlb.entries - 1) *
|
||||
cpu_data->itlb.step);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* sh64_next_free_dtlb_entry - Find the next available DTLB entry
|
||||
*/
|
||||
unsigned long long sh64_next_free_dtlb_entry(void)
|
||||
{
|
||||
return cpu_data->dtlb.next;
|
||||
}
|
||||
|
||||
/**
|
||||
* sh64_get_wired_dtlb_entry - Allocate a wired (locked-in) entry in the DTLB
|
||||
*/
|
||||
unsigned long long sh64_get_wired_dtlb_entry(void)
|
||||
{
|
||||
unsigned long long entry = sh64_next_free_dtlb_entry();
|
||||
|
||||
cpu_data->dtlb.first += cpu_data->dtlb.step;
|
||||
cpu_data->dtlb.next += cpu_data->dtlb.step;
|
||||
|
||||
return entry;
|
||||
}
|
||||
|
||||
/**
|
||||
* sh64_put_wired_dtlb_entry - Free a wired (locked-in) entry in the DTLB.
|
||||
*
|
||||
* @entry: Address of TLB slot.
|
||||
*
|
||||
* Works like a stack, last one to allocate must be first one to free.
|
||||
*/
|
||||
int sh64_put_wired_dtlb_entry(unsigned long long entry)
|
||||
{
|
||||
__flush_tlb_slot(entry);
|
||||
|
||||
/*
|
||||
* We don't do any particularly useful tracking of wired entries,
|
||||
* so this approach works like a stack .. last one to be allocated
|
||||
* has to be the first one to be freed.
|
||||
*
|
||||
* We could potentially load wired entries into a list and work on
|
||||
* rebalancing the list periodically (which also entails moving the
|
||||
* contents of a TLB entry) .. though I have a feeling that this is
|
||||
* more trouble than it's worth.
|
||||
*/
|
||||
|
||||
/*
|
||||
* Entry must be valid .. we don't want any ITLB addresses!
|
||||
*/
|
||||
if (entry <= DTLB_FIXED)
|
||||
return -EINVAL;
|
||||
|
||||
/*
|
||||
* Next, check if we're within range to be freed. (ie, must be the
|
||||
* entry beneath the first 'free' entry!
|
||||
*/
|
||||
if (entry < (cpu_data->dtlb.first - cpu_data->dtlb.step))
|
||||
return -EINVAL;
|
||||
|
||||
/* If we are, then bring this entry back into the list */
|
||||
cpu_data->dtlb.first -= cpu_data->dtlb.step;
|
||||
cpu_data->dtlb.next = entry;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* sh64_setup_tlb_slot - Load up a translation in a wired slot.
|
||||
*
|
||||
* @config_addr: Address of TLB slot.
|
||||
* @eaddr: Virtual address.
|
||||
* @asid: Address Space Identifier.
|
||||
* @paddr: Physical address.
|
||||
*
|
||||
* Load up a virtual<->physical translation for @eaddr<->@paddr in the
|
||||
* pre-allocated TLB slot @config_addr (see sh64_get_wired_dtlb_entry).
|
||||
*/
|
||||
void sh64_setup_tlb_slot(unsigned long long config_addr, unsigned long eaddr,
|
||||
unsigned long asid, unsigned long paddr)
|
||||
{
|
||||
unsigned long long pteh, ptel;
|
||||
|
||||
pteh = neff_sign_extend(eaddr);
|
||||
pteh &= PAGE_MASK;
|
||||
pteh |= (asid << PTEH_ASID_SHIFT) | PTEH_VALID;
|
||||
ptel = neff_sign_extend(paddr);
|
||||
ptel &= PAGE_MASK;
|
||||
ptel |= (_PAGE_CACHABLE | _PAGE_READ | _PAGE_WRITE);
|
||||
|
||||
asm volatile("putcfg %0, 1, %1\n\t"
|
||||
"putcfg %0, 0, %2\n"
|
||||
: : "r" (config_addr), "r" (ptel), "r" (pteh));
|
||||
}
|
||||
|
||||
/**
|
||||
* sh64_teardown_tlb_slot - Teardown a translation.
|
||||
*
|
||||
* @config_addr: Address of TLB slot.
|
||||
*
|
||||
* Teardown any existing mapping in the TLB slot @config_addr.
|
||||
*/
|
||||
void sh64_teardown_tlb_slot(unsigned long long config_addr)
|
||||
__attribute__ ((alias("__flush_tlb_slot")));
|
||||
|
||||
static int dtlb_entry;
|
||||
static unsigned long long dtlb_entries[64];
|
||||
|
||||
void tlb_wire_entry(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
|
||||
{
|
||||
unsigned long long entry;
|
||||
unsigned long paddr, flags;
|
||||
|
||||
BUG_ON(dtlb_entry == ARRAY_SIZE(dtlb_entries));
|
||||
|
||||
local_irq_save(flags);
|
||||
|
||||
entry = sh64_get_wired_dtlb_entry();
|
||||
dtlb_entries[dtlb_entry++] = entry;
|
||||
|
||||
paddr = pte_val(pte) & _PAGE_FLAGS_HARDWARE_MASK;
|
||||
paddr &= ~PAGE_MASK;
|
||||
|
||||
sh64_setup_tlb_slot(entry, addr, get_asid(), paddr);
|
||||
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
void tlb_unwire_entry(void)
|
||||
{
|
||||
unsigned long long entry;
|
||||
unsigned long flags;
|
||||
|
||||
BUG_ON(!dtlb_entry);
|
||||
|
||||
local_irq_save(flags);
|
||||
entry = dtlb_entries[dtlb_entry--];
|
||||
|
||||
sh64_teardown_tlb_slot(entry);
|
||||
sh64_put_wired_dtlb_entry(entry);
|
||||
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
void __update_tlb(struct vm_area_struct *vma, unsigned long address, pte_t pte)
|
||||
{
|
||||
unsigned long long ptel;
|
||||
unsigned long long pteh=0;
|
||||
struct tlb_info *tlbp;
|
||||
unsigned long long next;
|
||||
unsigned int fault_code = get_thread_fault_code();
|
||||
|
||||
/* Get PTEL first */
|
||||
ptel = pte.pte_low;
|
||||
|
||||
/*
|
||||
* Set PTEH register
|
||||
*/
|
||||
pteh = neff_sign_extend(address & MMU_VPN_MASK);
|
||||
|
||||
/* Set the ASID. */
|
||||
pteh |= get_asid() << PTEH_ASID_SHIFT;
|
||||
pteh |= PTEH_VALID;
|
||||
|
||||
/* Set PTEL register, set_pte has performed the sign extension */
|
||||
ptel &= _PAGE_FLAGS_HARDWARE_MASK; /* drop software flags */
|
||||
|
||||
if (fault_code & FAULT_CODE_ITLB)
|
||||
tlbp = &cpu_data->itlb;
|
||||
else
|
||||
tlbp = &cpu_data->dtlb;
|
||||
|
||||
next = tlbp->next;
|
||||
__flush_tlb_slot(next);
|
||||
asm volatile ("putcfg %0,1,%2\n\n\t"
|
||||
"putcfg %0,0,%1\n"
|
||||
: : "r" (next), "r" (pteh), "r" (ptel) );
|
||||
|
||||
next += TLB_STEP;
|
||||
if (next > tlbp->last)
|
||||
next = tlbp->first;
|
||||
tlbp->next = next;
|
||||
}
|
@@ -1,166 +0,0 @@
|
||||
/*
|
||||
* The SH64 TLB miss.
|
||||
*
|
||||
* Original code from fault.c
|
||||
* Copyright (C) 2000, 2001 Paolo Alberelli
|
||||
*
|
||||
* Fast PTE->TLB refill path
|
||||
* Copyright (C) 2003 Richard.Curnow@superh.com
|
||||
*
|
||||
* IMPORTANT NOTES :
|
||||
* The do_fast_page_fault function is called from a context in entry.S
|
||||
* where very few registers have been saved. In particular, the code in
|
||||
* this file must be compiled not to use ANY caller-save registers that
|
||||
* are not part of the restricted save set. Also, it means that code in
|
||||
* this file must not make calls to functions elsewhere in the kernel, or
|
||||
* else the excepting context will see corruption in its caller-save
|
||||
* registers. Plus, the entry.S save area is non-reentrant, so this code
|
||||
* has to run with SR.BL==1, i.e. no interrupts taken inside it and panic
|
||||
* on any exception.
|
||||
*
|
||||
* This file is subject to the terms and conditions of the GNU General Public
|
||||
* License. See the file "COPYING" in the main directory of this archive
|
||||
* for more details.
|
||||
*/
|
||||
#include <linux/signal.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/ptrace.h>
|
||||
#include <linux/mman.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/smp.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/kprobes.h>
|
||||
#include <asm/tlb.h>
|
||||
#include <asm/io.h>
|
||||
#include <linux/uaccess.h>
|
||||
#include <asm/pgalloc.h>
|
||||
#include <asm/mmu_context.h>
|
||||
|
||||
static int handle_tlbmiss(unsigned long long protection_flags,
|
||||
unsigned long address)
|
||||
{
|
||||
pgd_t *pgd;
|
||||
pud_t *pud;
|
||||
pmd_t *pmd;
|
||||
pte_t *pte;
|
||||
pte_t entry;
|
||||
|
||||
if (is_vmalloc_addr((void *)address)) {
|
||||
pgd = pgd_offset_k(address);
|
||||
} else {
|
||||
if (unlikely(address >= TASK_SIZE || !current->mm))
|
||||
return 1;
|
||||
|
||||
pgd = pgd_offset(current->mm, address);
|
||||
}
|
||||
|
||||
pud = pud_offset(pgd, address);
|
||||
if (pud_none(*pud) || !pud_present(*pud))
|
||||
return 1;
|
||||
|
||||
pmd = pmd_offset(pud, address);
|
||||
if (pmd_none(*pmd) || !pmd_present(*pmd))
|
||||
return 1;
|
||||
|
||||
pte = pte_offset_kernel(pmd, address);
|
||||
entry = *pte;
|
||||
if (pte_none(entry) || !pte_present(entry))
|
||||
return 1;
|
||||
|
||||
/*
|
||||
* If the page doesn't have sufficient protection bits set to
|
||||
* service the kind of fault being handled, there's not much
|
||||
* point doing the TLB refill. Punt the fault to the general
|
||||
* handler.
|
||||
*/
|
||||
if ((pte_val(entry) & protection_flags) != protection_flags)
|
||||
return 1;
|
||||
|
||||
update_mmu_cache(NULL, address, pte);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Put all this information into one structure so that everything is just
|
||||
* arithmetic relative to a single base address. This reduces the number
|
||||
* of movi/shori pairs needed just to load addresses of static data.
|
||||
*/
|
||||
struct expevt_lookup {
|
||||
unsigned short protection_flags[8];
|
||||
unsigned char is_text_access[8];
|
||||
unsigned char is_write_access[8];
|
||||
};
|
||||
|
||||
#define PRU (1<<9)
|
||||
#define PRW (1<<8)
|
||||
#define PRX (1<<7)
|
||||
#define PRR (1<<6)
|
||||
|
||||
/* Sized as 8 rather than 4 to allow checking the PTE's PRU bit against whether
|
||||
the fault happened in user mode or privileged mode. */
|
||||
static struct expevt_lookup expevt_lookup_table = {
|
||||
.protection_flags = {PRX, PRX, 0, 0, PRR, PRR, PRW, PRW},
|
||||
.is_text_access = {1, 1, 0, 0, 0, 0, 0, 0}
|
||||
};
|
||||
|
||||
static inline unsigned int
|
||||
expevt_to_fault_code(unsigned long expevt)
|
||||
{
|
||||
if (expevt == 0xa40)
|
||||
return FAULT_CODE_ITLB;
|
||||
else if (expevt == 0x060)
|
||||
return FAULT_CODE_WRITE;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
This routine handles page faults that can be serviced just by refilling a
|
||||
TLB entry from an existing page table entry. (This case represents a very
|
||||
large majority of page faults.) Return 1 if the fault was successfully
|
||||
handled. Return 0 if the fault could not be handled. (This leads into the
|
||||
general fault handling in fault.c which deals with mapping file-backed
|
||||
pages, stack growth, segmentation faults, swapping etc etc)
|
||||
*/
|
||||
asmlinkage int __kprobes
|
||||
do_fast_page_fault(unsigned long long ssr_md, unsigned long long expevt,
|
||||
unsigned long address)
|
||||
{
|
||||
unsigned long long protection_flags;
|
||||
unsigned long long index;
|
||||
unsigned long long expevt4;
|
||||
unsigned int fault_code;
|
||||
|
||||
/* The next few lines implement a way of hashing EXPEVT into a
|
||||
* small array index which can be used to lookup parameters
|
||||
* specific to the type of TLBMISS being handled.
|
||||
*
|
||||
* Note:
|
||||
* ITLBMISS has EXPEVT==0xa40
|
||||
* RTLBMISS has EXPEVT==0x040
|
||||
* WTLBMISS has EXPEVT==0x060
|
||||
*/
|
||||
expevt4 = (expevt >> 4);
|
||||
/* TODO : xor ssr_md into this expression too. Then we can check
|
||||
* that PRU is set when it needs to be. */
|
||||
index = expevt4 ^ (expevt4 >> 5);
|
||||
index &= 7;
|
||||
|
||||
fault_code = expevt_to_fault_code(expevt);
|
||||
|
||||
protection_flags = expevt_lookup_table.protection_flags[index];
|
||||
|
||||
if (expevt_lookup_table.is_text_access[index])
|
||||
fault_code |= FAULT_CODE_ITLB;
|
||||
if (!ssr_md)
|
||||
fault_code |= FAULT_CODE_USER;
|
||||
|
||||
set_thread_fault_code(fault_code);
|
||||
|
||||
return handle_tlbmiss(protection_flags, address);
|
||||
}
|
@@ -1,172 +0,0 @@
|
||||
/*
|
||||
* arch/sh/mm/tlb-flush_64.c
|
||||
*
|
||||
* Copyright (C) 2000, 2001 Paolo Alberelli
|
||||
* Copyright (C) 2003 Richard Curnow (/proc/tlb, bug fixes)
|
||||
* Copyright (C) 2003 - 2012 Paul Mundt
|
||||
*
|
||||
* This file is subject to the terms and conditions of the GNU General Public
|
||||
* License. See the file "COPYING" in the main directory of this archive
|
||||
* for more details.
|
||||
*/
|
||||
#include <linux/signal.h>
|
||||
#include <linux/rwsem.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/ptrace.h>
|
||||
#include <linux/mman.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/smp.h>
|
||||
#include <linux/perf_event.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/tlb.h>
|
||||
#include <linux/uaccess.h>
|
||||
#include <asm/pgalloc.h>
|
||||
#include <asm/mmu_context.h>
|
||||
|
||||
void local_flush_tlb_one(unsigned long asid, unsigned long page)
|
||||
{
|
||||
unsigned long long match, pteh=0, lpage;
|
||||
unsigned long tlb;
|
||||
|
||||
/*
|
||||
* Sign-extend based on neff.
|
||||
*/
|
||||
lpage = neff_sign_extend(page);
|
||||
match = (asid << PTEH_ASID_SHIFT) | PTEH_VALID;
|
||||
match |= lpage;
|
||||
|
||||
for_each_itlb_entry(tlb) {
|
||||
asm volatile ("getcfg %1, 0, %0"
|
||||
: "=r" (pteh)
|
||||
: "r" (tlb) );
|
||||
|
||||
if (pteh == match) {
|
||||
__flush_tlb_slot(tlb);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
for_each_dtlb_entry(tlb) {
|
||||
asm volatile ("getcfg %1, 0, %0"
|
||||
: "=r" (pteh)
|
||||
: "r" (tlb) );
|
||||
|
||||
if (pteh == match) {
|
||||
__flush_tlb_slot(tlb);
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
|
||||
{
|
||||
unsigned long flags;
|
||||
|
||||
if (vma->vm_mm) {
|
||||
page &= PAGE_MASK;
|
||||
local_irq_save(flags);
|
||||
local_flush_tlb_one(get_asid(), page);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
}
|
||||
|
||||
void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
|
||||
unsigned long end)
|
||||
{
|
||||
unsigned long flags;
|
||||
unsigned long long match, pteh=0, pteh_epn, pteh_low;
|
||||
unsigned long tlb;
|
||||
unsigned int cpu = smp_processor_id();
|
||||
struct mm_struct *mm;
|
||||
|
||||
mm = vma->vm_mm;
|
||||
if (cpu_context(cpu, mm) == NO_CONTEXT)
|
||||
return;
|
||||
|
||||
local_irq_save(flags);
|
||||
|
||||
start &= PAGE_MASK;
|
||||
end &= PAGE_MASK;
|
||||
|
||||
match = (cpu_asid(cpu, mm) << PTEH_ASID_SHIFT) | PTEH_VALID;
|
||||
|
||||
/* Flush ITLB */
|
||||
for_each_itlb_entry(tlb) {
|
||||
asm volatile ("getcfg %1, 0, %0"
|
||||
: "=r" (pteh)
|
||||
: "r" (tlb) );
|
||||
|
||||
pteh_epn = pteh & PAGE_MASK;
|
||||
pteh_low = pteh & ~PAGE_MASK;
|
||||
|
||||
if (pteh_low == match && pteh_epn >= start && pteh_epn <= end)
|
||||
__flush_tlb_slot(tlb);
|
||||
}
|
||||
|
||||
/* Flush DTLB */
|
||||
for_each_dtlb_entry(tlb) {
|
||||
asm volatile ("getcfg %1, 0, %0"
|
||||
: "=r" (pteh)
|
||||
: "r" (tlb) );
|
||||
|
||||
pteh_epn = pteh & PAGE_MASK;
|
||||
pteh_low = pteh & ~PAGE_MASK;
|
||||
|
||||
if (pteh_low == match && pteh_epn >= start && pteh_epn <= end)
|
||||
__flush_tlb_slot(tlb);
|
||||
}
|
||||
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
void local_flush_tlb_mm(struct mm_struct *mm)
|
||||
{
|
||||
unsigned long flags;
|
||||
unsigned int cpu = smp_processor_id();
|
||||
|
||||
if (cpu_context(cpu, mm) == NO_CONTEXT)
|
||||
return;
|
||||
|
||||
local_irq_save(flags);
|
||||
|
||||
cpu_context(cpu, mm) = NO_CONTEXT;
|
||||
if (mm == current->mm)
|
||||
activate_context(mm, cpu);
|
||||
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
void local_flush_tlb_all(void)
|
||||
{
|
||||
/* Invalidate all, including shared pages, excluding fixed TLBs */
|
||||
unsigned long flags, tlb;
|
||||
|
||||
local_irq_save(flags);
|
||||
|
||||
/* Flush each ITLB entry */
|
||||
for_each_itlb_entry(tlb)
|
||||
__flush_tlb_slot(tlb);
|
||||
|
||||
/* Flush each DTLB entry */
|
||||
for_each_dtlb_entry(tlb)
|
||||
__flush_tlb_slot(tlb);
|
||||
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
|
||||
{
|
||||
/* FIXME: Optimize this later.. */
|
||||
flush_tlb_all();
|
||||
}
|
||||
|
||||
void __flush_tlb_global(void)
|
||||
{
|
||||
flush_tlb_all();
|
||||
}
|
新增問題並參考
封鎖使用者