Merge branches 'timers/clocksource', 'timers/hpet', 'timers/hrtimers', 'timers/nohz', 'timers/ntp', 'timers/posixtimers' and 'timers/rtc' into timers/core

This commit is contained in:
Ingo Molnar
2008-12-25 18:02:25 +01:00
18 changed files with 169 additions and 405 deletions

View File

@@ -442,22 +442,6 @@ static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif
/*
* Check, whether the timer is on the callback pending list
*/
static inline int hrtimer_cb_pending(const struct hrtimer *timer)
{
return timer->state & HRTIMER_STATE_PENDING;
}
/*
* Remove a timer from the callback pending list
*/
static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
{
list_del_init(&timer->cb_entry);
}
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS
@@ -651,6 +635,8 @@ static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
{
}
static void __run_hrtimer(struct hrtimer *timer);
/*
* When High resolution timers are active, try to reprogram. Note, that in case
* the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
@@ -661,31 +647,14 @@ static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
struct hrtimer_clock_base *base)
{
if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
/* Timer is expired, act upon the callback mode */
switch(timer->cb_mode) {
case HRTIMER_CB_IRQSAFE_PERCPU:
case HRTIMER_CB_IRQSAFE_UNLOCKED:
/*
* This is solely for the sched tick emulation with
* dynamic tick support to ensure that we do not
* restart the tick right on the edge and end up with
* the tick timer in the softirq ! The calling site
* takes care of this. Also used for hrtimer sleeper !
*/
debug_hrtimer_deactivate(timer);
return 1;
case HRTIMER_CB_SOFTIRQ:
/*
* Move everything else into the softirq pending list !
*/
list_add_tail(&timer->cb_entry,
&base->cpu_base->cb_pending);
timer->state = HRTIMER_STATE_PENDING;
return 1;
default:
BUG();
}
/*
* XXX: recursion check?
* hrtimer_forward() should round up with timer granularity
* so that we never get into inf recursion here,
* it doesn't do that though
*/
__run_hrtimer(timer);
return 1;
}
return 0;
}
@@ -724,11 +693,6 @@ static int hrtimer_switch_to_hres(void)
return 1;
}
static inline void hrtimer_raise_softirq(void)
{
raise_softirq(HRTIMER_SOFTIRQ);
}
#else
static inline int hrtimer_hres_active(void) { return 0; }
@@ -747,7 +711,6 @@ static inline int hrtimer_reprogram(struct hrtimer *timer,
{
return 0;
}
static inline void hrtimer_raise_softirq(void) { }
#endif /* CONFIG_HIGH_RES_TIMERS */
@@ -890,10 +853,7 @@ static void __remove_hrtimer(struct hrtimer *timer,
struct hrtimer_clock_base *base,
unsigned long newstate, int reprogram)
{
/* High res. callback list. NOP for !HIGHRES */
if (hrtimer_cb_pending(timer))
hrtimer_remove_cb_pending(timer);
else {
if (timer->state & HRTIMER_STATE_ENQUEUED) {
/*
* Remove the timer from the rbtree and replace the
* first entry pointer if necessary.
@@ -953,7 +913,7 @@ hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_n
{
struct hrtimer_clock_base *base, *new_base;
unsigned long flags;
int ret, raise;
int ret;
base = lock_hrtimer_base(timer, &flags);
@@ -988,26 +948,8 @@ hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_n
enqueue_hrtimer(timer, new_base,
new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
/*
* The timer may be expired and moved to the cb_pending
* list. We can not raise the softirq with base lock held due
* to a possible deadlock with runqueue lock.
*/
raise = timer->state == HRTIMER_STATE_PENDING;
/*
* We use preempt_disable to prevent this task from migrating after
* setting up the softirq and raising it. Otherwise, if me migrate
* we will raise the softirq on the wrong CPU.
*/
preempt_disable();
unlock_hrtimer_base(timer, &flags);
if (raise)
hrtimer_raise_softirq();
preempt_enable();
return ret;
}
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
@@ -1192,75 +1134,6 @@ int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
}
EXPORT_SYMBOL_GPL(hrtimer_get_res);
static void run_hrtimer_pending(struct hrtimer_cpu_base *cpu_base)
{
spin_lock_irq(&cpu_base->lock);
while (!list_empty(&cpu_base->cb_pending)) {
enum hrtimer_restart (*fn)(struct hrtimer *);
struct hrtimer *timer;
int restart;
int emulate_hardirq_ctx = 0;
timer = list_entry(cpu_base->cb_pending.next,
struct hrtimer, cb_entry);
debug_hrtimer_deactivate(timer);
timer_stats_account_hrtimer(timer);
fn = timer->function;
/*
* A timer might have been added to the cb_pending list
* when it was migrated during a cpu-offline operation.
* Emulate hardirq context for such timers.
*/
if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU ||
timer->cb_mode == HRTIMER_CB_IRQSAFE_UNLOCKED)
emulate_hardirq_ctx = 1;
__remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
spin_unlock_irq(&cpu_base->lock);
if (unlikely(emulate_hardirq_ctx)) {
local_irq_disable();
restart = fn(timer);
local_irq_enable();
} else
restart = fn(timer);
spin_lock_irq(&cpu_base->lock);
timer->state &= ~HRTIMER_STATE_CALLBACK;
if (restart == HRTIMER_RESTART) {
BUG_ON(hrtimer_active(timer));
/*
* Enqueue the timer, allow reprogramming of the event
* device
*/
enqueue_hrtimer(timer, timer->base, 1);
} else if (hrtimer_active(timer)) {
/*
* If the timer was rearmed on another CPU, reprogram
* the event device.
*/
struct hrtimer_clock_base *base = timer->base;
if (base->first == &timer->node &&
hrtimer_reprogram(timer, base)) {
/*
* Timer is expired. Thus move it from tree to
* pending list again.
*/
__remove_hrtimer(timer, base,
HRTIMER_STATE_PENDING, 0);
list_add_tail(&timer->cb_entry,
&base->cpu_base->cb_pending);
}
}
}
spin_unlock_irq(&cpu_base->lock);
}
static void __run_hrtimer(struct hrtimer *timer)
{
struct hrtimer_clock_base *base = timer->base;
@@ -1268,25 +1141,21 @@ static void __run_hrtimer(struct hrtimer *timer)
enum hrtimer_restart (*fn)(struct hrtimer *);
int restart;
WARN_ON(!irqs_disabled());
debug_hrtimer_deactivate(timer);
__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
timer_stats_account_hrtimer(timer);
fn = timer->function;
if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU ||
timer->cb_mode == HRTIMER_CB_IRQSAFE_UNLOCKED) {
/*
* Used for scheduler timers, avoid lock inversion with
* rq->lock and tasklist_lock.
*
* These timers are required to deal with enqueue expiry
* themselves and are not allowed to migrate.
*/
spin_unlock(&cpu_base->lock);
restart = fn(timer);
spin_lock(&cpu_base->lock);
} else
restart = fn(timer);
/*
* Because we run timers from hardirq context, there is no chance
* they get migrated to another cpu, therefore its safe to unlock
* the timer base.
*/
spin_unlock(&cpu_base->lock);
restart = fn(timer);
spin_lock(&cpu_base->lock);
/*
* Note: We clear the CALLBACK bit after enqueue_hrtimer to avoid
@@ -1311,7 +1180,7 @@ void hrtimer_interrupt(struct clock_event_device *dev)
struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
struct hrtimer_clock_base *base;
ktime_t expires_next, now;
int i, raise = 0;
int i;
BUG_ON(!cpu_base->hres_active);
cpu_base->nr_events++;
@@ -1360,16 +1229,6 @@ void hrtimer_interrupt(struct clock_event_device *dev)
break;
}
/* Move softirq callbacks to the pending list */
if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
__remove_hrtimer(timer, base,
HRTIMER_STATE_PENDING, 0);
list_add_tail(&timer->cb_entry,
&base->cpu_base->cb_pending);
raise = 1;
continue;
}
__run_hrtimer(timer);
}
spin_unlock(&cpu_base->lock);
@@ -1383,10 +1242,6 @@ void hrtimer_interrupt(struct clock_event_device *dev)
if (tick_program_event(expires_next, 0))
goto retry;
}
/* Raise softirq ? */
if (raise)
raise_softirq(HRTIMER_SOFTIRQ);
}
/**
@@ -1413,11 +1268,6 @@ void hrtimer_peek_ahead_timers(void)
local_irq_restore(flags);
}
static void run_hrtimer_softirq(struct softirq_action *h)
{
run_hrtimer_pending(&__get_cpu_var(hrtimer_bases));
}
#endif /* CONFIG_HIGH_RES_TIMERS */
/*
@@ -1429,8 +1279,6 @@ static void run_hrtimer_softirq(struct softirq_action *h)
*/
void hrtimer_run_pending(void)
{
struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
if (hrtimer_hres_active())
return;
@@ -1444,8 +1292,6 @@ void hrtimer_run_pending(void)
*/
if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
hrtimer_switch_to_hres();
run_hrtimer_pending(cpu_base);
}
/*
@@ -1482,14 +1328,6 @@ void hrtimer_run_queues(void)
hrtimer_get_expires_tv64(timer))
break;
if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
__remove_hrtimer(timer, base,
HRTIMER_STATE_PENDING, 0);
list_add_tail(&timer->cb_entry,
&base->cpu_base->cb_pending);
continue;
}
__run_hrtimer(timer);
}
spin_unlock(&cpu_base->lock);
@@ -1516,9 +1354,6 @@ void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
{
sl->timer.function = hrtimer_wakeup;
sl->task = task;
#ifdef CONFIG_HIGH_RES_TIMERS
sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
#endif
}
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
@@ -1655,36 +1490,22 @@ static void __cpuinit init_hrtimers_cpu(int cpu)
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
cpu_base->clock_base[i].cpu_base = cpu_base;
INIT_LIST_HEAD(&cpu_base->cb_pending);
hrtimer_init_hres(cpu_base);
}
#ifdef CONFIG_HOTPLUG_CPU
static int migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
struct hrtimer_clock_base *new_base, int dcpu)
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
struct hrtimer_clock_base *new_base)
{
struct hrtimer *timer;
struct rb_node *node;
int raise = 0;
while ((node = rb_first(&old_base->active))) {
timer = rb_entry(node, struct hrtimer, node);
BUG_ON(hrtimer_callback_running(timer));
debug_hrtimer_deactivate(timer);
/*
* Should not happen. Per CPU timers should be
* canceled _before_ the migration code is called
*/
if (timer->cb_mode == HRTIMER_CB_IRQSAFE_PERCPU) {
__remove_hrtimer(timer, old_base,
HRTIMER_STATE_INACTIVE, 0);
WARN(1, "hrtimer (%p %p)active but cpu %d dead\n",
timer, timer->function, dcpu);
continue;
}
/*
* Mark it as STATE_MIGRATE not INACTIVE otherwise the
* timer could be seen as !active and just vanish away
@@ -1693,69 +1514,34 @@ static int migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
timer->base = new_base;
/*
* Enqueue the timer. Allow reprogramming of the event device
* Enqueue the timers on the new cpu, but do not reprogram
* the timer as that would enable a deadlock between
* hrtimer_enqueue_reprogramm() running the timer and us still
* holding a nested base lock.
*
* Instead we tickle the hrtimer interrupt after the migration
* is done, which will run all expired timers and re-programm
* the timer device.
*/
enqueue_hrtimer(timer, new_base, 1);
enqueue_hrtimer(timer, new_base, 0);
#ifdef CONFIG_HIGH_RES_TIMERS
/*
* Happens with high res enabled when the timer was
* already expired and the callback mode is
* HRTIMER_CB_IRQSAFE_UNLOCKED (hrtimer_sleeper). The
* enqueue code does not move them to the soft irq
* pending list for performance/latency reasons, but
* in the migration state, we need to do that
* otherwise we end up with a stale timer.
*/
if (timer->state == HRTIMER_STATE_MIGRATE) {
timer->state = HRTIMER_STATE_PENDING;
list_add_tail(&timer->cb_entry,
&new_base->cpu_base->cb_pending);
raise = 1;
}
#endif
/* Clear the migration state bit */
timer->state &= ~HRTIMER_STATE_MIGRATE;
}
return raise;
}
#ifdef CONFIG_HIGH_RES_TIMERS
static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
struct hrtimer_cpu_base *new_base)
{
struct hrtimer *timer;
int raise = 0;
while (!list_empty(&old_base->cb_pending)) {
timer = list_entry(old_base->cb_pending.next,
struct hrtimer, cb_entry);
__remove_hrtimer(timer, timer->base, HRTIMER_STATE_PENDING, 0);
timer->base = &new_base->clock_base[timer->base->index];
list_add_tail(&timer->cb_entry, &new_base->cb_pending);
raise = 1;
}
return raise;
}
#else
static int migrate_hrtimer_pending(struct hrtimer_cpu_base *old_base,
struct hrtimer_cpu_base *new_base)
{
return 0;
}
#endif
static void migrate_hrtimers(int cpu)
static int migrate_hrtimers(int scpu)
{
struct hrtimer_cpu_base *old_base, *new_base;
int i, raise = 0;
int dcpu, i;
BUG_ON(cpu_online(cpu));
old_base = &per_cpu(hrtimer_bases, cpu);
BUG_ON(cpu_online(scpu));
old_base = &per_cpu(hrtimer_bases, scpu);
new_base = &get_cpu_var(hrtimer_bases);
tick_cancel_sched_timer(cpu);
dcpu = smp_processor_id();
tick_cancel_sched_timer(scpu);
/*
* The caller is globally serialized and nobody else
* takes two locks at once, deadlock is not possible.
@@ -1764,41 +1550,47 @@ static void migrate_hrtimers(int cpu)
spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
if (migrate_hrtimer_list(&old_base->clock_base[i],
&new_base->clock_base[i], cpu))
raise = 1;
migrate_hrtimer_list(&old_base->clock_base[i],
&new_base->clock_base[i]);
}
if (migrate_hrtimer_pending(old_base, new_base))
raise = 1;
spin_unlock(&old_base->lock);
spin_unlock_irq(&new_base->lock);
put_cpu_var(hrtimer_bases);
if (raise)
hrtimer_raise_softirq();
return dcpu;
}
static void tickle_timers(void *arg)
{
hrtimer_peek_ahead_timers();
}
#endif /* CONFIG_HOTPLUG_CPU */
static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
unsigned long action, void *hcpu)
{
unsigned int cpu = (long)hcpu;
int scpu = (long)hcpu;
switch (action) {
case CPU_UP_PREPARE:
case CPU_UP_PREPARE_FROZEN:
init_hrtimers_cpu(cpu);
init_hrtimers_cpu(scpu);
break;
#ifdef CONFIG_HOTPLUG_CPU
case CPU_DEAD:
case CPU_DEAD_FROZEN:
clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
migrate_hrtimers(cpu);
{
int dcpu;
clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
dcpu = migrate_hrtimers(scpu);
smp_call_function_single(dcpu, tickle_timers, NULL, 0);
break;
}
#endif
default:
@@ -1817,9 +1609,6 @@ void __init hrtimers_init(void)
hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
(void *)(long)smp_processor_id());
register_cpu_notifier(&hrtimers_nb);
#ifdef CONFIG_HIGH_RES_TIMERS
open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
#endif
}
/**

View File

@@ -116,7 +116,7 @@ static DEFINE_SPINLOCK(idr_lock);
* must supply functions here, even if the function just returns
* ENOSYS. The standard POSIX timer management code assumes the
* following: 1.) The k_itimer struct (sched.h) is used for the
* timer. 2.) The list, it_lock, it_clock, it_id and it_process
* timer. 2.) The list, it_lock, it_clock, it_id and it_pid
* fields are not modified by timer code.
*
* At this time all functions EXCEPT clock_nanosleep can be
@@ -319,7 +319,8 @@ void do_schedule_next_timer(struct siginfo *info)
int posix_timer_event(struct k_itimer *timr, int si_private)
{
int shared, ret;
struct task_struct *task;
int shared, ret = -1;
/*
* FIXME: if ->sigq is queued we can race with
* dequeue_signal()->do_schedule_next_timer().
@@ -333,8 +334,13 @@ int posix_timer_event(struct k_itimer *timr, int si_private)
*/
timr->sigq->info.si_sys_private = si_private;
shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
ret = send_sigqueue(timr->sigq, timr->it_process, shared);
rcu_read_lock();
task = pid_task(timr->it_pid, PIDTYPE_PID);
if (task) {
shared = !(timr->it_sigev_notify & SIGEV_THREAD_ID);
ret = send_sigqueue(timr->sigq, task, shared);
}
rcu_read_unlock();
/* If we failed to send the signal the timer stops. */
return ret > 0;
}
@@ -411,7 +417,7 @@ static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
return ret;
}
static struct task_struct * good_sigevent(sigevent_t * event)
static struct pid *good_sigevent(sigevent_t * event)
{
struct task_struct *rtn = current->group_leader;
@@ -425,7 +431,7 @@ static struct task_struct * good_sigevent(sigevent_t * event)
((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
return NULL;
return rtn;
return task_pid(rtn);
}
void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
@@ -464,6 +470,7 @@ static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
idr_remove(&posix_timers_id, tmr->it_id);
spin_unlock_irqrestore(&idr_lock, flags);
}
put_pid(tmr->it_pid);
sigqueue_free(tmr->sigq);
kmem_cache_free(posix_timers_cache, tmr);
}
@@ -477,7 +484,6 @@ sys_timer_create(const clockid_t which_clock,
{
struct k_itimer *new_timer;
int error, new_timer_id;
struct task_struct *process;
sigevent_t event;
int it_id_set = IT_ID_NOT_SET;
@@ -531,11 +537,9 @@ sys_timer_create(const clockid_t which_clock,
goto out;
}
rcu_read_lock();
process = good_sigevent(&event);
if (process)
get_task_struct(process);
new_timer->it_pid = get_pid(good_sigevent(&event));
rcu_read_unlock();
if (!process) {
if (!new_timer->it_pid) {
error = -EINVAL;
goto out;
}
@@ -543,8 +547,7 @@ sys_timer_create(const clockid_t which_clock,
event.sigev_notify = SIGEV_SIGNAL;
event.sigev_signo = SIGALRM;
event.sigev_value.sival_int = new_timer->it_id;
process = current->group_leader;
get_task_struct(process);
new_timer->it_pid = get_pid(task_tgid(current));
}
new_timer->it_sigev_notify = event.sigev_notify;
@@ -554,7 +557,7 @@ sys_timer_create(const clockid_t which_clock,
new_timer->sigq->info.si_code = SI_TIMER;
spin_lock_irq(&current->sighand->siglock);
new_timer->it_process = process;
new_timer->it_signal = current->signal;
list_add(&new_timer->list, &current->signal->posix_timers);
spin_unlock_irq(&current->sighand->siglock);
@@ -589,8 +592,7 @@ static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags)
timr = idr_find(&posix_timers_id, (int)timer_id);
if (timr) {
spin_lock(&timr->it_lock);
if (timr->it_process &&
same_thread_group(timr->it_process, current)) {
if (timr->it_signal == current->signal) {
spin_unlock(&idr_lock);
return timr;
}
@@ -837,8 +839,7 @@ retry_delete:
* This keeps any tasks waiting on the spin lock from thinking
* they got something (see the lock code above).
*/
put_task_struct(timer->it_process);
timer->it_process = NULL;
timer->it_signal = NULL;
unlock_timer(timer, flags);
release_posix_timer(timer, IT_ID_SET);
@@ -864,8 +865,7 @@ retry_delete:
* This keeps any tasks waiting on the spin lock from thinking
* they got something (see the lock code above).
*/
put_task_struct(timer->it_process);
timer->it_process = NULL;
timer->it_signal = NULL;
unlock_timer(timer, flags);
release_posix_timer(timer, IT_ID_SET);

View File

@@ -203,7 +203,6 @@ void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
hrtimer_init(&rt_b->rt_period_timer,
CLOCK_MONOTONIC, HRTIMER_MODE_REL);
rt_b->rt_period_timer.function = sched_rt_period_timer;
rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
}
static inline int rt_bandwidth_enabled(void)
@@ -1139,7 +1138,6 @@ static void init_rq_hrtick(struct rq *rq)
hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
rq->hrtick_timer.function = hrtick;
rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
}
#else /* CONFIG_SCHED_HRTICK */
static inline void hrtick_clear(struct rq *rq)

View File

@@ -131,7 +131,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
{
enum hrtimer_restart res = HRTIMER_NORESTART;
write_seqlock_irq(&xtime_lock);
write_seqlock(&xtime_lock);
switch (time_state) {
case TIME_OK:
@@ -164,7 +164,7 @@ static enum hrtimer_restart ntp_leap_second(struct hrtimer *timer)
}
update_vsyscall(&xtime, clock);
write_sequnlock_irq(&xtime_lock);
write_sequnlock(&xtime_lock);
return res;
}

View File

@@ -247,7 +247,7 @@ void tick_nohz_stop_sched_tick(int inidle)
if (need_resched())
goto end;
if (unlikely(local_softirq_pending())) {
if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
static int ratelimit;
if (ratelimit < 10) {
@@ -282,8 +282,31 @@ void tick_nohz_stop_sched_tick(int inidle)
/* Schedule the tick, if we are at least one jiffie off */
if ((long)delta_jiffies >= 1) {
/*
* calculate the expiry time for the next timer wheel
* timer
*/
expires = ktime_add_ns(last_update, tick_period.tv64 *
delta_jiffies);
/*
* If this cpu is the one which updates jiffies, then
* give up the assignment and let it be taken by the
* cpu which runs the tick timer next, which might be
* this cpu as well. If we don't drop this here the
* jiffies might be stale and do_timer() never
* invoked.
*/
if (cpu == tick_do_timer_cpu)
tick_do_timer_cpu = TICK_DO_TIMER_NONE;
if (delta_jiffies > 1)
cpu_set(cpu, nohz_cpu_mask);
/* Skip reprogram of event if its not changed */
if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
goto out;
/*
* nohz_stop_sched_tick can be called several times before
* the nohz_restart_sched_tick is called. This happens when
@@ -306,17 +329,6 @@ void tick_nohz_stop_sched_tick(int inidle)
rcu_enter_nohz();
}
/*
* If this cpu is the one which updates jiffies, then
* give up the assignment and let it be taken by the
* cpu which runs the tick timer next, which might be
* this cpu as well. If we don't drop this here the
* jiffies might be stale and do_timer() never
* invoked.
*/
if (cpu == tick_do_timer_cpu)
tick_do_timer_cpu = TICK_DO_TIMER_NONE;
ts->idle_sleeps++;
/*
@@ -332,12 +344,7 @@ void tick_nohz_stop_sched_tick(int inidle)
goto out;
}
/*
* calculate the expiry time for the next timer wheel
* timer
*/
expires = ktime_add_ns(last_update, tick_period.tv64 *
delta_jiffies);
/* Mark expiries */
ts->idle_expires = expires;
if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
@@ -681,7 +688,6 @@ void tick_setup_sched_timer(void)
*/
hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
ts->sched_timer.function = tick_sched_timer;
ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
/* Get the next period (per cpu) */
hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());

View File

@@ -202,7 +202,6 @@ static void start_stack_timer(int cpu)
hrtimer_init(hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
hrtimer->function = stack_trace_timer_fn;
hrtimer->cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
hrtimer_start(hrtimer, ns_to_ktime(sample_period), HRTIMER_MODE_REL);
}