Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
Conflicts: arch/x86/kernel/io_apic.c
This commit is contained in:
@@ -16,6 +16,8 @@ RTFP.txt
|
||||
- List of RCU papers (bibliography) going back to 1980.
|
||||
torture.txt
|
||||
- RCU Torture Test Operation (CONFIG_RCU_TORTURE_TEST)
|
||||
trace.txt
|
||||
- CONFIG_RCU_TRACE debugfs files and formats
|
||||
UP.txt
|
||||
- RCU on Uniprocessor Systems
|
||||
whatisRCU.txt
|
||||
|
413
Documentation/RCU/trace.txt
Normal file
413
Documentation/RCU/trace.txt
Normal file
@@ -0,0 +1,413 @@
|
||||
CONFIG_RCU_TRACE debugfs Files and Formats
|
||||
|
||||
|
||||
The rcupreempt and rcutree implementations of RCU provide debugfs trace
|
||||
output that summarizes counters and state. This information is useful for
|
||||
debugging RCU itself, and can sometimes also help to debug abuses of RCU.
|
||||
Note that the rcuclassic implementation of RCU does not provide debugfs
|
||||
trace output.
|
||||
|
||||
The following sections describe the debugfs files and formats for
|
||||
preemptable RCU (rcupreempt) and hierarchical RCU (rcutree).
|
||||
|
||||
|
||||
Preemptable RCU debugfs Files and Formats
|
||||
|
||||
This implementation of RCU provides three debugfs files under the
|
||||
top-level directory RCU: rcu/rcuctrs (which displays the per-CPU
|
||||
counters used by preemptable RCU) rcu/rcugp (which displays grace-period
|
||||
counters), and rcu/rcustats (which internal counters for debugging RCU).
|
||||
|
||||
The output of "cat rcu/rcuctrs" looks as follows:
|
||||
|
||||
CPU last cur F M
|
||||
0 5 -5 0 0
|
||||
1 -1 0 0 0
|
||||
2 0 1 0 0
|
||||
3 0 1 0 0
|
||||
4 0 1 0 0
|
||||
5 0 1 0 0
|
||||
6 0 2 0 0
|
||||
7 0 -1 0 0
|
||||
8 0 1 0 0
|
||||
ggp = 26226, state = waitzero
|
||||
|
||||
The per-CPU fields are as follows:
|
||||
|
||||
o "CPU" gives the CPU number. Offline CPUs are not displayed.
|
||||
|
||||
o "last" gives the value of the counter that is being decremented
|
||||
for the current grace period phase. In the example above,
|
||||
the counters sum to 4, indicating that there are still four
|
||||
RCU read-side critical sections still running that started
|
||||
before the last counter flip.
|
||||
|
||||
o "cur" gives the value of the counter that is currently being
|
||||
both incremented (by rcu_read_lock()) and decremented (by
|
||||
rcu_read_unlock()). In the example above, the counters sum to
|
||||
1, indicating that there is only one RCU read-side critical section
|
||||
still running that started after the last counter flip.
|
||||
|
||||
o "F" indicates whether RCU is waiting for this CPU to acknowledge
|
||||
a counter flip. In the above example, RCU is not waiting on any,
|
||||
which is consistent with the state being "waitzero" rather than
|
||||
"waitack".
|
||||
|
||||
o "M" indicates whether RCU is waiting for this CPU to execute a
|
||||
memory barrier. In the above example, RCU is not waiting on any,
|
||||
which is consistent with the state being "waitzero" rather than
|
||||
"waitmb".
|
||||
|
||||
o "ggp" is the global grace-period counter.
|
||||
|
||||
o "state" is the RCU state, which can be one of the following:
|
||||
|
||||
o "idle": there is no grace period in progress.
|
||||
|
||||
o "waitack": RCU just incremented the global grace-period
|
||||
counter, which has the effect of reversing the roles of
|
||||
the "last" and "cur" counters above, and is waiting for
|
||||
all the CPUs to acknowledge the flip. Once the flip has
|
||||
been acknowledged, CPUs will no longer be incrementing
|
||||
what are now the "last" counters, so that their sum will
|
||||
decrease monotonically down to zero.
|
||||
|
||||
o "waitzero": RCU is waiting for the sum of the "last" counters
|
||||
to decrease to zero.
|
||||
|
||||
o "waitmb": RCU is waiting for each CPU to execute a memory
|
||||
barrier, which ensures that instructions from a given CPU's
|
||||
last RCU read-side critical section cannot be reordered
|
||||
with instructions following the memory-barrier instruction.
|
||||
|
||||
The output of "cat rcu/rcugp" looks as follows:
|
||||
|
||||
oldggp=48870 newggp=48873
|
||||
|
||||
Note that reading from this file provokes a synchronize_rcu(). The
|
||||
"oldggp" value is that of "ggp" from rcu/rcuctrs above, taken before
|
||||
executing the synchronize_rcu(), and the "newggp" value is also the
|
||||
"ggp" value, but taken after the synchronize_rcu() command returns.
|
||||
|
||||
|
||||
The output of "cat rcu/rcugp" looks as follows:
|
||||
|
||||
na=1337955 nl=40 wa=1337915 wl=44 da=1337871 dl=0 dr=1337871 di=1337871
|
||||
1=50989 e1=6138 i1=49722 ie1=82 g1=49640 a1=315203 ae1=265563 a2=49640
|
||||
z1=1401244 ze1=1351605 z2=49639 m1=5661253 me1=5611614 m2=49639
|
||||
|
||||
These are counters tracking internal preemptable-RCU events, however,
|
||||
some of them may be useful for debugging algorithms using RCU. In
|
||||
particular, the "nl", "wl", and "dl" values track the number of RCU
|
||||
callbacks in various states. The fields are as follows:
|
||||
|
||||
o "na" is the total number of RCU callbacks that have been enqueued
|
||||
since boot.
|
||||
|
||||
o "nl" is the number of RCU callbacks waiting for the previous
|
||||
grace period to end so that they can start waiting on the next
|
||||
grace period.
|
||||
|
||||
o "wa" is the total number of RCU callbacks that have started waiting
|
||||
for a grace period since boot. "na" should be roughly equal to
|
||||
"nl" plus "wa".
|
||||
|
||||
o "wl" is the number of RCU callbacks currently waiting for their
|
||||
grace period to end.
|
||||
|
||||
o "da" is the total number of RCU callbacks whose grace periods
|
||||
have completed since boot. "wa" should be roughly equal to
|
||||
"wl" plus "da".
|
||||
|
||||
o "dr" is the total number of RCU callbacks that have been removed
|
||||
from the list of callbacks ready to invoke. "dr" should be roughly
|
||||
equal to "da".
|
||||
|
||||
o "di" is the total number of RCU callbacks that have been invoked
|
||||
since boot. "di" should be roughly equal to "da", though some
|
||||
early versions of preemptable RCU had a bug so that only the
|
||||
last CPU's count of invocations was displayed, rather than the
|
||||
sum of all CPU's counts.
|
||||
|
||||
o "1" is the number of calls to rcu_try_flip(). This should be
|
||||
roughly equal to the sum of "e1", "i1", "a1", "z1", and "m1"
|
||||
described below. In other words, the number of times that
|
||||
the state machine is visited should be equal to the sum of the
|
||||
number of times that each state is visited plus the number of
|
||||
times that the state-machine lock acquisition failed.
|
||||
|
||||
o "e1" is the number of times that rcu_try_flip() was unable to
|
||||
acquire the fliplock.
|
||||
|
||||
o "i1" is the number of calls to rcu_try_flip_idle().
|
||||
|
||||
o "ie1" is the number of times rcu_try_flip_idle() exited early
|
||||
due to the calling CPU having no work for RCU.
|
||||
|
||||
o "g1" is the number of times that rcu_try_flip_idle() decided
|
||||
to start a new grace period. "i1" should be roughly equal to
|
||||
"ie1" plus "g1".
|
||||
|
||||
o "a1" is the number of calls to rcu_try_flip_waitack().
|
||||
|
||||
o "ae1" is the number of times that rcu_try_flip_waitack() found
|
||||
that at least one CPU had not yet acknowledge the new grace period
|
||||
(AKA "counter flip").
|
||||
|
||||
o "a2" is the number of time rcu_try_flip_waitack() found that
|
||||
all CPUs had acknowledged. "a1" should be roughly equal to
|
||||
"ae1" plus "a2". (This particular output was collected on
|
||||
a 128-CPU machine, hence the smaller-than-usual fraction of
|
||||
calls to rcu_try_flip_waitack() finding all CPUs having already
|
||||
acknowledged.)
|
||||
|
||||
o "z1" is the number of calls to rcu_try_flip_waitzero().
|
||||
|
||||
o "ze1" is the number of times that rcu_try_flip_waitzero() found
|
||||
that not all of the old RCU read-side critical sections had
|
||||
completed.
|
||||
|
||||
o "z2" is the number of times that rcu_try_flip_waitzero() finds
|
||||
the sum of the counters equal to zero, in other words, that
|
||||
all of the old RCU read-side critical sections had completed.
|
||||
The value of "z1" should be roughly equal to "ze1" plus
|
||||
"z2".
|
||||
|
||||
o "m1" is the number of calls to rcu_try_flip_waitmb().
|
||||
|
||||
o "me1" is the number of times that rcu_try_flip_waitmb() finds
|
||||
that at least one CPU has not yet executed a memory barrier.
|
||||
|
||||
o "m2" is the number of times that rcu_try_flip_waitmb() finds that
|
||||
all CPUs have executed a memory barrier.
|
||||
|
||||
|
||||
Hierarchical RCU debugfs Files and Formats
|
||||
|
||||
This implementation of RCU provides three debugfs files under the
|
||||
top-level directory RCU: rcu/rcudata (which displays fields in struct
|
||||
rcu_data), rcu/rcugp (which displays grace-period counters), and
|
||||
rcu/rcuhier (which displays the struct rcu_node hierarchy).
|
||||
|
||||
The output of "cat rcu/rcudata" looks as follows:
|
||||
|
||||
rcu:
|
||||
0 c=4011 g=4012 pq=1 pqc=4011 qp=0 rpfq=1 rp=3c2a dt=23301/73 dn=2 df=1882 of=0 ri=2126 ql=2 b=10
|
||||
1 c=4011 g=4012 pq=1 pqc=4011 qp=0 rpfq=3 rp=39a6 dt=78073/1 dn=2 df=1402 of=0 ri=1875 ql=46 b=10
|
||||
2 c=4010 g=4010 pq=1 pqc=4010 qp=0 rpfq=-5 rp=1d12 dt=16646/0 dn=2 df=3140 of=0 ri=2080 ql=0 b=10
|
||||
3 c=4012 g=4013 pq=1 pqc=4012 qp=1 rpfq=3 rp=2b50 dt=21159/1 dn=2 df=2230 of=0 ri=1923 ql=72 b=10
|
||||
4 c=4012 g=4013 pq=1 pqc=4012 qp=1 rpfq=3 rp=1644 dt=5783/1 dn=2 df=3348 of=0 ri=2805 ql=7 b=10
|
||||
5 c=4012 g=4013 pq=0 pqc=4011 qp=1 rpfq=3 rp=1aac dt=5879/1 dn=2 df=3140 of=0 ri=2066 ql=10 b=10
|
||||
6 c=4012 g=4013 pq=1 pqc=4012 qp=1 rpfq=3 rp=ed8 dt=5847/1 dn=2 df=3797 of=0 ri=1266 ql=10 b=10
|
||||
7 c=4012 g=4013 pq=1 pqc=4012 qp=1 rpfq=3 rp=1fa2 dt=6199/1 dn=2 df=2795 of=0 ri=2162 ql=28 b=10
|
||||
rcu_bh:
|
||||
0 c=-268 g=-268 pq=1 pqc=-268 qp=0 rpfq=-145 rp=21d6 dt=23301/73 dn=2 df=0 of=0 ri=0 ql=0 b=10
|
||||
1 c=-268 g=-268 pq=1 pqc=-268 qp=1 rpfq=-170 rp=20ce dt=78073/1 dn=2 df=26 of=0 ri=5 ql=0 b=10
|
||||
2 c=-268 g=-268 pq=1 pqc=-268 qp=1 rpfq=-83 rp=fbd dt=16646/0 dn=2 df=28 of=0 ri=4 ql=0 b=10
|
||||
3 c=-268 g=-268 pq=1 pqc=-268 qp=0 rpfq=-105 rp=178c dt=21159/1 dn=2 df=28 of=0 ri=2 ql=0 b=10
|
||||
4 c=-268 g=-268 pq=1 pqc=-268 qp=1 rpfq=-30 rp=b54 dt=5783/1 dn=2 df=32 of=0 ri=0 ql=0 b=10
|
||||
5 c=-268 g=-268 pq=1 pqc=-268 qp=1 rpfq=-29 rp=df5 dt=5879/1 dn=2 df=30 of=0 ri=3 ql=0 b=10
|
||||
6 c=-268 g=-268 pq=1 pqc=-268 qp=1 rpfq=-28 rp=788 dt=5847/1 dn=2 df=32 of=0 ri=0 ql=0 b=10
|
||||
7 c=-268 g=-268 pq=1 pqc=-268 qp=1 rpfq=-53 rp=1098 dt=6199/1 dn=2 df=30 of=0 ri=3 ql=0 b=10
|
||||
|
||||
The first section lists the rcu_data structures for rcu, the second for
|
||||
rcu_bh. Each section has one line per CPU, or eight for this 8-CPU system.
|
||||
The fields are as follows:
|
||||
|
||||
o The number at the beginning of each line is the CPU number.
|
||||
CPUs numbers followed by an exclamation mark are offline,
|
||||
but have been online at least once since boot. There will be
|
||||
no output for CPUs that have never been online, which can be
|
||||
a good thing in the surprisingly common case where NR_CPUS is
|
||||
substantially larger than the number of actual CPUs.
|
||||
|
||||
o "c" is the count of grace periods that this CPU believes have
|
||||
completed. CPUs in dynticks idle mode may lag quite a ways
|
||||
behind, for example, CPU 4 under "rcu" above, which has slept
|
||||
through the past 25 RCU grace periods. It is not unusual to
|
||||
see CPUs lagging by thousands of grace periods.
|
||||
|
||||
o "g" is the count of grace periods that this CPU believes have
|
||||
started. Again, CPUs in dynticks idle mode may lag behind.
|
||||
If the "c" and "g" values are equal, this CPU has already
|
||||
reported a quiescent state for the last RCU grace period that
|
||||
it is aware of, otherwise, the CPU believes that it owes RCU a
|
||||
quiescent state.
|
||||
|
||||
o "pq" indicates that this CPU has passed through a quiescent state
|
||||
for the current grace period. It is possible for "pq" to be
|
||||
"1" and "c" different than "g", which indicates that although
|
||||
the CPU has passed through a quiescent state, either (1) this
|
||||
CPU has not yet reported that fact, (2) some other CPU has not
|
||||
yet reported for this grace period, or (3) both.
|
||||
|
||||
o "pqc" indicates which grace period the last-observed quiescent
|
||||
state for this CPU corresponds to. This is important for handling
|
||||
the race between CPU 0 reporting an extended dynticks-idle
|
||||
quiescent state for CPU 1 and CPU 1 suddenly waking up and
|
||||
reporting its own quiescent state. If CPU 1 was the last CPU
|
||||
for the current grace period, then the CPU that loses this race
|
||||
will attempt to incorrectly mark CPU 1 as having checked in for
|
||||
the next grace period!
|
||||
|
||||
o "qp" indicates that RCU still expects a quiescent state from
|
||||
this CPU.
|
||||
|
||||
o "rpfq" is the number of rcu_pending() calls on this CPU required
|
||||
to induce this CPU to invoke force_quiescent_state().
|
||||
|
||||
o "rp" is low-order four hex digits of the count of how many times
|
||||
rcu_pending() has been invoked on this CPU.
|
||||
|
||||
o "dt" is the current value of the dyntick counter that is incremented
|
||||
when entering or leaving dynticks idle state, either by the
|
||||
scheduler or by irq. The number after the "/" is the interrupt
|
||||
nesting depth when in dyntick-idle state, or one greater than
|
||||
the interrupt-nesting depth otherwise.
|
||||
|
||||
This field is displayed only for CONFIG_NO_HZ kernels.
|
||||
|
||||
o "dn" is the current value of the dyntick counter that is incremented
|
||||
when entering or leaving dynticks idle state via NMI. If both
|
||||
the "dt" and "dn" values are even, then this CPU is in dynticks
|
||||
idle mode and may be ignored by RCU. If either of these two
|
||||
counters is odd, then RCU must be alert to the possibility of
|
||||
an RCU read-side critical section running on this CPU.
|
||||
|
||||
This field is displayed only for CONFIG_NO_HZ kernels.
|
||||
|
||||
o "df" is the number of times that some other CPU has forced a
|
||||
quiescent state on behalf of this CPU due to this CPU being in
|
||||
dynticks-idle state.
|
||||
|
||||
This field is displayed only for CONFIG_NO_HZ kernels.
|
||||
|
||||
o "of" is the number of times that some other CPU has forced a
|
||||
quiescent state on behalf of this CPU due to this CPU being
|
||||
offline. In a perfect world, this might neve happen, but it
|
||||
turns out that offlining and onlining a CPU can take several grace
|
||||
periods, and so there is likely to be an extended period of time
|
||||
when RCU believes that the CPU is online when it really is not.
|
||||
Please note that erring in the other direction (RCU believing a
|
||||
CPU is offline when it is really alive and kicking) is a fatal
|
||||
error, so it makes sense to err conservatively.
|
||||
|
||||
o "ri" is the number of times that RCU has seen fit to send a
|
||||
reschedule IPI to this CPU in order to get it to report a
|
||||
quiescent state.
|
||||
|
||||
o "ql" is the number of RCU callbacks currently residing on
|
||||
this CPU. This is the total number of callbacks, regardless
|
||||
of what state they are in (new, waiting for grace period to
|
||||
start, waiting for grace period to end, ready to invoke).
|
||||
|
||||
o "b" is the batch limit for this CPU. If more than this number
|
||||
of RCU callbacks is ready to invoke, then the remainder will
|
||||
be deferred.
|
||||
|
||||
|
||||
The output of "cat rcu/rcugp" looks as follows:
|
||||
|
||||
rcu: completed=33062 gpnum=33063
|
||||
rcu_bh: completed=464 gpnum=464
|
||||
|
||||
Again, this output is for both "rcu" and "rcu_bh". The fields are
|
||||
taken from the rcu_state structure, and are as follows:
|
||||
|
||||
o "completed" is the number of grace periods that have completed.
|
||||
It is comparable to the "c" field from rcu/rcudata in that a
|
||||
CPU whose "c" field matches the value of "completed" is aware
|
||||
that the corresponding RCU grace period has completed.
|
||||
|
||||
o "gpnum" is the number of grace periods that have started. It is
|
||||
comparable to the "g" field from rcu/rcudata in that a CPU
|
||||
whose "g" field matches the value of "gpnum" is aware that the
|
||||
corresponding RCU grace period has started.
|
||||
|
||||
If these two fields are equal (as they are for "rcu_bh" above),
|
||||
then there is no grace period in progress, in other words, RCU
|
||||
is idle. On the other hand, if the two fields differ (as they
|
||||
do for "rcu" above), then an RCU grace period is in progress.
|
||||
|
||||
|
||||
The output of "cat rcu/rcuhier" looks as follows, with very long lines:
|
||||
|
||||
c=6902 g=6903 s=2 jfq=3 j=72c7 nfqs=13142/nfqsng=0(13142) fqlh=6
|
||||
1/1 0:127 ^0
|
||||
3/3 0:35 ^0 0/0 36:71 ^1 0/0 72:107 ^2 0/0 108:127 ^3
|
||||
3/3f 0:5 ^0 2/3 6:11 ^1 0/0 12:17 ^2 0/0 18:23 ^3 0/0 24:29 ^4 0/0 30:35 ^5 0/0 36:41 ^0 0/0 42:47 ^1 0/0 48:53 ^2 0/0 54:59 ^3 0/0 60:65 ^4 0/0 66:71 ^5 0/0 72:77 ^0 0/0 78:83 ^1 0/0 84:89 ^2 0/0 90:95 ^3 0/0 96:101 ^4 0/0 102:107 ^5 0/0 108:113 ^0 0/0 114:119 ^1 0/0 120:125 ^2 0/0 126:127 ^3
|
||||
rcu_bh:
|
||||
c=-226 g=-226 s=1 jfq=-5701 j=72c7 nfqs=88/nfqsng=0(88) fqlh=0
|
||||
0/1 0:127 ^0
|
||||
0/3 0:35 ^0 0/0 36:71 ^1 0/0 72:107 ^2 0/0 108:127 ^3
|
||||
0/3f 0:5 ^0 0/3 6:11 ^1 0/0 12:17 ^2 0/0 18:23 ^3 0/0 24:29 ^4 0/0 30:35 ^5 0/0 36:41 ^0 0/0 42:47 ^1 0/0 48:53 ^2 0/0 54:59 ^3 0/0 60:65 ^4 0/0 66:71 ^5 0/0 72:77 ^0 0/0 78:83 ^1 0/0 84:89 ^2 0/0 90:95 ^3 0/0 96:101 ^4 0/0 102:107 ^5 0/0 108:113 ^0 0/0 114:119 ^1 0/0 120:125 ^2 0/0 126:127 ^3
|
||||
|
||||
This is once again split into "rcu" and "rcu_bh" portions. The fields are
|
||||
as follows:
|
||||
|
||||
o "c" is exactly the same as "completed" under rcu/rcugp.
|
||||
|
||||
o "g" is exactly the same as "gpnum" under rcu/rcugp.
|
||||
|
||||
o "s" is the "signaled" state that drives force_quiescent_state()'s
|
||||
state machine.
|
||||
|
||||
o "jfq" is the number of jiffies remaining for this grace period
|
||||
before force_quiescent_state() is invoked to help push things
|
||||
along. Note that CPUs in dyntick-idle mode thoughout the grace
|
||||
period will not report on their own, but rather must be check by
|
||||
some other CPU via force_quiescent_state().
|
||||
|
||||
o "j" is the low-order four hex digits of the jiffies counter.
|
||||
Yes, Paul did run into a number of problems that turned out to
|
||||
be due to the jiffies counter no longer counting. Why do you ask?
|
||||
|
||||
o "nfqs" is the number of calls to force_quiescent_state() since
|
||||
boot.
|
||||
|
||||
o "nfqsng" is the number of useless calls to force_quiescent_state(),
|
||||
where there wasn't actually a grace period active. This can
|
||||
happen due to races. The number in parentheses is the difference
|
||||
between "nfqs" and "nfqsng", or the number of times that
|
||||
force_quiescent_state() actually did some real work.
|
||||
|
||||
o "fqlh" is the number of calls to force_quiescent_state() that
|
||||
exited immediately (without even being counted in nfqs above)
|
||||
due to contention on ->fqslock.
|
||||
|
||||
o Each element of the form "1/1 0:127 ^0" represents one struct
|
||||
rcu_node. Each line represents one level of the hierarchy, from
|
||||
root to leaves. It is best to think of the rcu_data structures
|
||||
as forming yet another level after the leaves. Note that there
|
||||
might be either one, two, or three levels of rcu_node structures,
|
||||
depending on the relationship between CONFIG_RCU_FANOUT and
|
||||
CONFIG_NR_CPUS.
|
||||
|
||||
o The numbers separated by the "/" are the qsmask followed
|
||||
by the qsmaskinit. The qsmask will have one bit
|
||||
set for each entity in the next lower level that
|
||||
has not yet checked in for the current grace period.
|
||||
The qsmaskinit will have one bit for each entity that is
|
||||
currently expected to check in during each grace period.
|
||||
The value of qsmaskinit is assigned to that of qsmask
|
||||
at the beginning of each grace period.
|
||||
|
||||
For example, for "rcu", the qsmask of the first entry
|
||||
of the lowest level is 0x14, meaning that we are still
|
||||
waiting for CPUs 2 and 4 to check in for the current
|
||||
grace period.
|
||||
|
||||
o The numbers separated by the ":" are the range of CPUs
|
||||
served by this struct rcu_node. This can be helpful
|
||||
in working out how the hierarchy is wired together.
|
||||
|
||||
For example, the first entry at the lowest level shows
|
||||
"0:5", indicating that it covers CPUs 0 through 5.
|
||||
|
||||
o The number after the "^" indicates the bit in the
|
||||
next higher level rcu_node structure that this
|
||||
rcu_node structure corresponds to.
|
||||
|
||||
For example, the first entry at the lowest level shows
|
||||
"^0", indicating that it corresponds to bit zero in
|
||||
the first entry at the middle level.
|
286
Documentation/arm/pxa/mfp.txt
Normal file
286
Documentation/arm/pxa/mfp.txt
Normal file
@@ -0,0 +1,286 @@
|
||||
MFP Configuration for PXA2xx/PXA3xx Processors
|
||||
|
||||
Eric Miao <eric.miao@marvell.com>
|
||||
|
||||
MFP stands for Multi-Function Pin, which is the pin-mux logic on PXA3xx and
|
||||
later PXA series processors. This document describes the existing MFP API,
|
||||
and how board/platform driver authors could make use of it.
|
||||
|
||||
Basic Concept
|
||||
===============
|
||||
|
||||
Unlike the GPIO alternate function settings on PXA25x and PXA27x, a new MFP
|
||||
mechanism is introduced from PXA3xx to completely move the pin-mux functions
|
||||
out of the GPIO controller. In addition to pin-mux configurations, the MFP
|
||||
also controls the low power state, driving strength, pull-up/down and event
|
||||
detection of each pin. Below is a diagram of internal connections between
|
||||
the MFP logic and the remaining SoC peripherals:
|
||||
|
||||
+--------+
|
||||
| |--(GPIO19)--+
|
||||
| GPIO | |
|
||||
| |--(GPIO...) |
|
||||
+--------+ |
|
||||
| +---------+
|
||||
+--------+ +------>| |
|
||||
| PWM2 |--(PWM_OUT)-------->| MFP |
|
||||
+--------+ +------>| |-------> to external PAD
|
||||
| +---->| |
|
||||
+--------+ | | +-->| |
|
||||
| SSP2 |---(TXD)----+ | | +---------+
|
||||
+--------+ | |
|
||||
| |
|
||||
+--------+ | |
|
||||
| Keypad |--(MKOUT4)----+ |
|
||||
+--------+ |
|
||||
|
|
||||
+--------+ |
|
||||
| UART2 |---(TXD)--------+
|
||||
+--------+
|
||||
|
||||
NOTE: the external pad is named as MFP_PIN_GPIO19, it doesn't necessarily
|
||||
mean it's dedicated for GPIO19, only as a hint that internally this pin
|
||||
can be routed from GPIO19 of the GPIO controller.
|
||||
|
||||
To better understand the change from PXA25x/PXA27x GPIO alternate function
|
||||
to this new MFP mechanism, here are several key points:
|
||||
|
||||
1. GPIO controller on PXA3xx is now a dedicated controller, same as other
|
||||
internal controllers like PWM, SSP and UART, with 128 internal signals
|
||||
which can be routed to external through one or more MFPs (e.g. GPIO<0>
|
||||
can be routed through either MFP_PIN_GPIO0 as well as MFP_PIN_GPIO0_2,
|
||||
see arch/arm/mach-pxa/mach/include/mfp-pxa300.h)
|
||||
|
||||
2. Alternate function configuration is removed from this GPIO controller,
|
||||
the remaining functions are pure GPIO-specific, i.e.
|
||||
|
||||
- GPIO signal level control
|
||||
- GPIO direction control
|
||||
- GPIO level change detection
|
||||
|
||||
3. Low power state for each pin is now controlled by MFP, this means the
|
||||
PGSRx registers on PXA2xx are now useless on PXA3xx
|
||||
|
||||
4. Wakeup detection is now controlled by MFP, PWER does not control the
|
||||
wakeup from GPIO(s) any more, depending on the sleeping state, ADxER
|
||||
(as defined in pxa3xx-regs.h) controls the wakeup from MFP
|
||||
|
||||
NOTE: with such a clear separation of MFP and GPIO, by GPIO<xx> we normally
|
||||
mean it is a GPIO signal, and by MFP<xxx> or pin xxx, we mean a physical
|
||||
pad (or ball).
|
||||
|
||||
MFP API Usage
|
||||
===============
|
||||
|
||||
For board code writers, here are some guidelines:
|
||||
|
||||
1. include ONE of the following header files in your <board>.c:
|
||||
|
||||
- #include <mach/mfp-pxa25x.h>
|
||||
- #include <mach/mfp-pxa27x.h>
|
||||
- #include <mach/mfp-pxa300.h>
|
||||
- #include <mach/mfp-pxa320.h>
|
||||
- #include <mach/mfp-pxa930.h>
|
||||
|
||||
NOTE: only one file in your <board>.c, depending on the processors used,
|
||||
because pin configuration definitions may conflict in these file (i.e.
|
||||
same name, different meaning and settings on different processors). E.g.
|
||||
for zylonite platform, which support both PXA300/PXA310 and PXA320, two
|
||||
separate files are introduced: zylonite_pxa300.c and zylonite_pxa320.c
|
||||
(in addition to handle MFP configuration differences, they also handle
|
||||
the other differences between the two combinations).
|
||||
|
||||
NOTE: PXA300 and PXA310 are almost identical in pin configurations (with
|
||||
PXA310 supporting some additional ones), thus the difference is actually
|
||||
covered in a single mfp-pxa300.h.
|
||||
|
||||
2. prepare an array for the initial pin configurations, e.g.:
|
||||
|
||||
static unsigned long mainstone_pin_config[] __initdata = {
|
||||
/* Chip Select */
|
||||
GPIO15_nCS_1,
|
||||
|
||||
/* LCD - 16bpp Active TFT */
|
||||
GPIOxx_TFT_LCD_16BPP,
|
||||
GPIO16_PWM0_OUT, /* Backlight */
|
||||
|
||||
/* MMC */
|
||||
GPIO32_MMC_CLK,
|
||||
GPIO112_MMC_CMD,
|
||||
GPIO92_MMC_DAT_0,
|
||||
GPIO109_MMC_DAT_1,
|
||||
GPIO110_MMC_DAT_2,
|
||||
GPIO111_MMC_DAT_3,
|
||||
|
||||
...
|
||||
|
||||
/* GPIO */
|
||||
GPIO1_GPIO | WAKEUP_ON_EDGE_BOTH,
|
||||
};
|
||||
|
||||
a) once the pin configurations are passed to pxa{2xx,3xx}_mfp_config(),
|
||||
and written to the actual registers, they are useless and may discard,
|
||||
adding '__initdata' will help save some additional bytes here.
|
||||
|
||||
b) when there is only one possible pin configurations for a component,
|
||||
some simplified definitions can be used, e.g. GPIOxx_TFT_LCD_16BPP on
|
||||
PXA25x and PXA27x processors
|
||||
|
||||
c) if by board design, a pin can be configured to wake up the system
|
||||
from low power state, it can be 'OR'ed with any of:
|
||||
|
||||
WAKEUP_ON_EDGE_BOTH
|
||||
WAKEUP_ON_EDGE_RISE
|
||||
WAKEUP_ON_EDGE_FALL
|
||||
WAKEUP_ON_LEVEL_HIGH - specifically for enabling of keypad GPIOs,
|
||||
|
||||
to indicate that this pin has the capability of wake-up the system,
|
||||
and on which edge(s). This, however, doesn't necessarily mean the
|
||||
pin _will_ wakeup the system, it will only when set_irq_wake() is
|
||||
invoked with the corresponding GPIO IRQ (GPIO_IRQ(xx) or gpio_to_irq())
|
||||
and eventually calls gpio_set_wake() for the actual register setting.
|
||||
|
||||
d) although PXA3xx MFP supports edge detection on each pin, the
|
||||
internal logic will only wakeup the system when those specific bits
|
||||
in ADxER registers are set, which can be well mapped to the
|
||||
corresponding peripheral, thus set_irq_wake() can be called with
|
||||
the peripheral IRQ to enable the wakeup.
|
||||
|
||||
|
||||
MFP on PXA3xx
|
||||
===============
|
||||
|
||||
Every external I/O pad on PXA3xx (excluding those for special purpose) has
|
||||
one MFP logic associated, and is controlled by one MFP register (MFPR).
|
||||
|
||||
The MFPR has the following bit definitions (for PXA300/PXA310/PXA320):
|
||||
|
||||
31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|
||||
+-------------------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||||
| RESERVED |PS|PU|PD| DRIVE |SS|SD|SO|EC|EF|ER|--| AF_SEL |
|
||||
+-------------------------+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|
||||
|
||||
Bit 3: RESERVED
|
||||
Bit 4: EDGE_RISE_EN - enable detection of rising edge on this pin
|
||||
Bit 5: EDGE_FALL_EN - enable detection of falling edge on this pin
|
||||
Bit 6: EDGE_CLEAR - disable edge detection on this pin
|
||||
Bit 7: SLEEP_OE_N - enable outputs during low power modes
|
||||
Bit 8: SLEEP_DATA - output data on the pin during low power modes
|
||||
Bit 9: SLEEP_SEL - selection control for low power modes signals
|
||||
Bit 13: PULLDOWN_EN - enable the internal pull-down resistor on this pin
|
||||
Bit 14: PULLUP_EN - enable the internal pull-up resistor on this pin
|
||||
Bit 15: PULL_SEL - pull state controlled by selected alternate function
|
||||
(0) or by PULL{UP,DOWN}_EN bits (1)
|
||||
|
||||
Bit 0 - 2: AF_SEL - alternate function selection, 8 possibilities, from 0-7
|
||||
Bit 10-12: DRIVE - drive strength and slew rate
|
||||
0b000 - fast 1mA
|
||||
0b001 - fast 2mA
|
||||
0b002 - fast 3mA
|
||||
0b003 - fast 4mA
|
||||
0b004 - slow 6mA
|
||||
0b005 - fast 6mA
|
||||
0b006 - slow 10mA
|
||||
0b007 - fast 10mA
|
||||
|
||||
MFP Design for PXA2xx/PXA3xx
|
||||
==============================
|
||||
|
||||
Due to the difference of pin-mux handling between PXA2xx and PXA3xx, a unified
|
||||
MFP API is introduced to cover both series of processors.
|
||||
|
||||
The basic idea of this design is to introduce definitions for all possible pin
|
||||
configurations, these definitions are processor and platform independent, and
|
||||
the actual API invoked to convert these definitions into register settings and
|
||||
make them effective there-after.
|
||||
|
||||
Files Involved
|
||||
--------------
|
||||
|
||||
- arch/arm/mach-pxa/include/mach/mfp.h
|
||||
|
||||
for
|
||||
1. Unified pin definitions - enum constants for all configurable pins
|
||||
2. processor-neutral bit definitions for a possible MFP configuration
|
||||
|
||||
- arch/arm/mach-pxa/include/mach/mfp-pxa3xx.h
|
||||
|
||||
for PXA3xx specific MFPR register bit definitions and PXA3xx common pin
|
||||
configurations
|
||||
|
||||
- arch/arm/mach-pxa/include/mach/mfp-pxa2xx.h
|
||||
|
||||
for PXA2xx specific definitions and PXA25x/PXA27x common pin configurations
|
||||
|
||||
- arch/arm/mach-pxa/include/mach/mfp-pxa25x.h
|
||||
arch/arm/mach-pxa/include/mach/mfp-pxa27x.h
|
||||
arch/arm/mach-pxa/include/mach/mfp-pxa300.h
|
||||
arch/arm/mach-pxa/include/mach/mfp-pxa320.h
|
||||
arch/arm/mach-pxa/include/mach/mfp-pxa930.h
|
||||
|
||||
for processor specific definitions
|
||||
|
||||
- arch/arm/mach-pxa/mfp-pxa3xx.c
|
||||
- arch/arm/mach-pxa/mfp-pxa2xx.c
|
||||
|
||||
for implementation of the pin configuration to take effect for the actual
|
||||
processor.
|
||||
|
||||
Pin Configuration
|
||||
-----------------
|
||||
|
||||
The following comments are copied from mfp.h (see the actual source code
|
||||
for most updated info)
|
||||
|
||||
/*
|
||||
* a possible MFP configuration is represented by a 32-bit integer
|
||||
*
|
||||
* bit 0.. 9 - MFP Pin Number (1024 Pins Maximum)
|
||||
* bit 10..12 - Alternate Function Selection
|
||||
* bit 13..15 - Drive Strength
|
||||
* bit 16..18 - Low Power Mode State
|
||||
* bit 19..20 - Low Power Mode Edge Detection
|
||||
* bit 21..22 - Run Mode Pull State
|
||||
*
|
||||
* to facilitate the definition, the following macros are provided
|
||||
*
|
||||
* MFP_CFG_DEFAULT - default MFP configuration value, with
|
||||
* alternate function = 0,
|
||||
* drive strength = fast 3mA (MFP_DS03X)
|
||||
* low power mode = default
|
||||
* edge detection = none
|
||||
*
|
||||
* MFP_CFG - default MFPR value with alternate function
|
||||
* MFP_CFG_DRV - default MFPR value with alternate function and
|
||||
* pin drive strength
|
||||
* MFP_CFG_LPM - default MFPR value with alternate function and
|
||||
* low power mode
|
||||
* MFP_CFG_X - default MFPR value with alternate function,
|
||||
* pin drive strength and low power mode
|
||||
*/
|
||||
|
||||
Examples of pin configurations are:
|
||||
|
||||
#define GPIO94_SSP3_RXD MFP_CFG_X(GPIO94, AF1, DS08X, FLOAT)
|
||||
|
||||
which reads GPIO94 can be configured as SSP3_RXD, with alternate function
|
||||
selection of 1, driving strength of 0b101, and a float state in low power
|
||||
modes.
|
||||
|
||||
NOTE: this is the default setting of this pin being configured as SSP3_RXD
|
||||
which can be modified a bit in board code, though it is not recommended to
|
||||
do so, simply because this default setting is usually carefully encoded,
|
||||
and is supposed to work in most cases.
|
||||
|
||||
Register Settings
|
||||
-----------------
|
||||
|
||||
Register settings on PXA3xx for a pin configuration is actually very
|
||||
straight-forward, most bits can be converted directly into MFPR value
|
||||
in a easier way. Two sets of MFPR values are calculated: the run-time
|
||||
ones and the low power mode ones, to allow different settings.
|
||||
|
||||
The conversion from a generic pin configuration to the actual register
|
||||
settings on PXA2xx is a bit complicated: many registers are involved,
|
||||
including GAFRx, GPDRx, PGSRx, PWER, PKWR, PFER and PRER. Please see
|
||||
mfp-pxa2xx.c for how the conversion is made.
|
@@ -914,7 +914,7 @@ I/O scheduler, a.k.a. elevator, is implemented in two layers. Generic dispatch
|
||||
queue and specific I/O schedulers. Unless stated otherwise, elevator is used
|
||||
to refer to both parts and I/O scheduler to specific I/O schedulers.
|
||||
|
||||
Block layer implements generic dispatch queue in ll_rw_blk.c and elevator.c.
|
||||
Block layer implements generic dispatch queue in block/*.c.
|
||||
The generic dispatch queue is responsible for properly ordering barrier
|
||||
requests, requeueing, handling non-fs requests and all other subtleties.
|
||||
|
||||
@@ -926,8 +926,8 @@ be built inside the kernel. Each queue can choose different one and can also
|
||||
change to another one dynamically.
|
||||
|
||||
A block layer call to the i/o scheduler follows the convention elv_xxx(). This
|
||||
calls elevator_xxx_fn in the elevator switch (drivers/block/elevator.c). Oh,
|
||||
xxx and xxx might not match exactly, but use your imagination. If an elevator
|
||||
calls elevator_xxx_fn in the elevator switch (block/elevator.c). Oh, xxx
|
||||
and xxx might not match exactly, but use your imagination. If an elevator
|
||||
doesn't implement a function, the switch does nothing or some minimal house
|
||||
keeping work.
|
||||
|
||||
|
69
Documentation/dvb/technisat.txt
Normal file
69
Documentation/dvb/technisat.txt
Normal file
@@ -0,0 +1,69 @@
|
||||
How to set up the Technisat devices
|
||||
===================================
|
||||
|
||||
1) Find out what device you have
|
||||
================================
|
||||
|
||||
First start your linux box with a shipped kernel:
|
||||
lspci -vvv for a PCI device (lsusb -vvv for an USB device) will show you for example:
|
||||
02:0b.0 Network controller: Techsan Electronics Co Ltd B2C2 FlexCopII DVB chip / Technisat SkyStar2 DVB card (rev 02)
|
||||
|
||||
dmesg | grep frontend may show you for example:
|
||||
DVB: registering frontend 0 (Conexant CX24123/CX24109)...
|
||||
|
||||
2) Kernel compilation:
|
||||
======================
|
||||
|
||||
If the Technisat is the only TV device in your box get rid of unnecessary modules and check this one:
|
||||
"Multimedia devices" => "Customise analog and hybrid tuner modules to build"
|
||||
In this directory uncheck every driver which is activated there.
|
||||
|
||||
Then please activate:
|
||||
2a) Main module part:
|
||||
|
||||
a.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters"
|
||||
b.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Technisat/B2C2 Air/Sky/Cable2PC PCI" in case of a PCI card OR
|
||||
c.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Technisat/B2C2 Air/Sky/Cable2PC USB" in case of an USB 1.1 adapter
|
||||
d.)"Multimedia devices" => "DVB/ATSC adapters" => "Technisat/B2C2 FlexcopII(b) and FlexCopIII adapters" => "Enable debug for the B2C2 FlexCop drivers"
|
||||
Notice: d.) is helpful for troubleshooting
|
||||
|
||||
2b) Frontend module part:
|
||||
|
||||
1.) Revision 2.3:
|
||||
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
|
||||
b.)"Multimedia devices" => "Customise DVB frontends" => "Zarlink VP310/MT312/ZL10313 based"
|
||||
|
||||
2.) Revision 2.6:
|
||||
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
|
||||
b.)"Multimedia devices" => "Customise DVB frontends" => "ST STV0299 based"
|
||||
|
||||
3.) Revision 2.7:
|
||||
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
|
||||
b.)"Multimedia devices" => "Customise DVB frontends" => "Samsung S5H1420 based"
|
||||
c.)"Multimedia devices" => "Customise DVB frontends" => "Integrant ITD1000 Zero IF tuner for DVB-S/DSS"
|
||||
d.)"Multimedia devices" => "Customise DVB frontends" => "ISL6421 SEC controller"
|
||||
|
||||
4.) Revision 2.8:
|
||||
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
|
||||
b.)"Multimedia devices" => "Customise DVB frontends" => "Conexant CX24113/CX24128 tuner for DVB-S/DSS"
|
||||
c.)"Multimedia devices" => "Customise DVB frontends" => "Conexant CX24123 based"
|
||||
d.)"Multimedia devices" => "Customise DVB frontends" => "ISL6421 SEC controller"
|
||||
|
||||
5.) DVB-T card:
|
||||
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
|
||||
b.)"Multimedia devices" => "Customise DVB frontends" => "Zarlink MT352 based"
|
||||
|
||||
6.) DVB-C card:
|
||||
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
|
||||
b.)"Multimedia devices" => "Customise DVB frontends" => "ST STV0297 based"
|
||||
|
||||
7.) ATSC card 1st generation:
|
||||
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
|
||||
b.)"Multimedia devices" => "Customise DVB frontends" => "Broadcom BCM3510"
|
||||
|
||||
8.) ATSC card 2nd generation:
|
||||
a.)"Multimedia devices" => "Customise DVB frontends" => "Customise the frontend modules to build"
|
||||
b.)"Multimedia devices" => "Customise DVB frontends" => "NxtWave Communications NXT2002/NXT2004 based"
|
||||
c.)"Multimedia devices" => "Customise DVB frontends" => "LG Electronics LGDT3302/LGDT3303 based"
|
||||
|
||||
Author: Uwe Bugla <uwe.bugla@gmx.de> December 2008
|
@@ -5,9 +5,13 @@ The driver supports the following options, either via
|
||||
options=<OPTIONS> when modular or video=pxafb:<OPTIONS> when built in.
|
||||
|
||||
For example:
|
||||
modprobe pxafb options=mode:640x480-8,passive
|
||||
modprobe pxafb options=vmem:2M,mode:640x480-8,passive
|
||||
or on the kernel command line
|
||||
video=pxafb:mode:640x480-8,passive
|
||||
video=pxafb:vmem:2M,mode:640x480-8,passive
|
||||
|
||||
vmem: VIDEO_MEM_SIZE
|
||||
Amount of video memory to allocate (can be suffixed with K or M
|
||||
for kilobytes or megabytes)
|
||||
|
||||
mode:XRESxYRES[-BPP]
|
||||
XRES == LCCR1_PPL + 1
|
||||
@@ -52,3 +56,87 @@ outputen:POLARITY
|
||||
pixclockpol:POLARITY
|
||||
pixel clock polarity
|
||||
0 => falling edge, 1 => rising edge
|
||||
|
||||
|
||||
Overlay Support for PXA27x and later LCD controllers
|
||||
====================================================
|
||||
|
||||
PXA27x and later processors support overlay1 and overlay2 on-top of the
|
||||
base framebuffer (although under-neath the base is also possible). They
|
||||
support palette and no-palette RGB formats, as well as YUV formats (only
|
||||
available on overlay2). These overlays have dedicated DMA channels and
|
||||
behave in a similar way as a framebuffer.
|
||||
|
||||
However, there are some differences between these overlay framebuffers
|
||||
and normal framebuffers, as listed below:
|
||||
|
||||
1. overlay can start at a 32-bit word aligned position within the base
|
||||
framebuffer, which means they have a start (x, y). This information
|
||||
is encoded into var->nonstd (no, var->xoffset and var->yoffset are
|
||||
not for such purpose).
|
||||
|
||||
2. overlay framebuffer is allocated dynamically according to specified
|
||||
'struct fb_var_screeninfo', the amount is decided by:
|
||||
|
||||
var->xres_virtual * var->yres_virtual * bpp
|
||||
|
||||
bpp = 16 -- for RGB565 or RGBT555
|
||||
= 24 -- for YUV444 packed
|
||||
= 24 -- for YUV444 planar
|
||||
= 16 -- for YUV422 planar (1 pixel = 1 Y + 1/2 Cb + 1/2 Cr)
|
||||
= 12 -- for YUV420 planar (1 pixel = 1 Y + 1/4 Cb + 1/4 Cr)
|
||||
|
||||
NOTE:
|
||||
|
||||
a. overlay does not support panning in x-direction, thus
|
||||
var->xres_virtual will always be equal to var->xres
|
||||
|
||||
b. line length of overlay(s) must be on a 32-bit word boundary,
|
||||
for YUV planar modes, it is a requirement for the component
|
||||
with minimum bits per pixel, e.g. for YUV420, Cr component
|
||||
for one pixel is actually 2-bits, it means the line length
|
||||
should be a multiple of 16-pixels
|
||||
|
||||
c. starting horizontal position (XPOS) should start on a 32-bit
|
||||
word boundary, otherwise the fb_check_var() will just fail.
|
||||
|
||||
d. the rectangle of the overlay should be within the base plane,
|
||||
otherwise fail
|
||||
|
||||
Applications should follow the sequence below to operate an overlay
|
||||
framebuffer:
|
||||
|
||||
a. open("/dev/fb[1-2]", ...)
|
||||
b. ioctl(fd, FBIOGET_VSCREENINFO, ...)
|
||||
c. modify 'var' with desired parameters:
|
||||
1) var->xres and var->yres
|
||||
2) larger var->yres_virtual if more memory is required,
|
||||
usually for double-buffering
|
||||
3) var->nonstd for starting (x, y) and color format
|
||||
4) var->{red, green, blue, transp} if RGB mode is to be used
|
||||
d. ioctl(fd, FBIOPUT_VSCREENINFO, ...)
|
||||
e. ioctl(fd, FBIOGET_FSCREENINFO, ...)
|
||||
f. mmap
|
||||
g. ...
|
||||
|
||||
3. for YUV planar formats, these are actually not supported within the
|
||||
framebuffer framework, application has to take care of the offsets
|
||||
and lengths of each component within the framebuffer.
|
||||
|
||||
4. var->nonstd is used to pass starting (x, y) position and color format,
|
||||
the detailed bit fields are shown below:
|
||||
|
||||
31 23 20 10 0
|
||||
+-----------------+---+----------+----------+
|
||||
| ... unused ... |FOR| XPOS | YPOS |
|
||||
+-----------------+---+----------+----------+
|
||||
|
||||
FOR - color format, as defined by OVERLAY_FORMAT_* in pxafb.h
|
||||
0 - RGB
|
||||
1 - YUV444 PACKED
|
||||
2 - YUV444 PLANAR
|
||||
3 - YUV422 PLANAR
|
||||
4 - YUR420 PLANAR
|
||||
|
||||
XPOS - starting horizontal position
|
||||
YPOS - starting vertical position
|
||||
|
@@ -229,10 +229,6 @@ The following sysctls are available for the XFS filesystem:
|
||||
ISGID bit is cleared if the irix_sgid_inherit compatibility sysctl
|
||||
is set.
|
||||
|
||||
fs.xfs.restrict_chown (Min: 0 Default: 1 Max: 1)
|
||||
Controls whether unprivileged users can use chown to "give away"
|
||||
a file to another user.
|
||||
|
||||
fs.xfs.inherit_sync (Min: 0 Default: 1 Max: 1)
|
||||
Setting this to "1" will cause the "sync" flag set
|
||||
by the xfs_io(8) chattr command on a directory to be
|
||||
|
@@ -481,51 +481,6 @@ static unsigned long load_initrd(const char *name, unsigned long mem)
|
||||
/* We return the initrd size. */
|
||||
return len;
|
||||
}
|
||||
|
||||
/* Once we know how much memory we have we can construct simple linear page
|
||||
* tables which set virtual == physical which will get the Guest far enough
|
||||
* into the boot to create its own.
|
||||
*
|
||||
* We lay them out of the way, just below the initrd (which is why we need to
|
||||
* know its size here). */
|
||||
static unsigned long setup_pagetables(unsigned long mem,
|
||||
unsigned long initrd_size)
|
||||
{
|
||||
unsigned long *pgdir, *linear;
|
||||
unsigned int mapped_pages, i, linear_pages;
|
||||
unsigned int ptes_per_page = getpagesize()/sizeof(void *);
|
||||
|
||||
mapped_pages = mem/getpagesize();
|
||||
|
||||
/* Each PTE page can map ptes_per_page pages: how many do we need? */
|
||||
linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
|
||||
|
||||
/* We put the toplevel page directory page at the top of memory. */
|
||||
pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
|
||||
|
||||
/* Now we use the next linear_pages pages as pte pages */
|
||||
linear = (void *)pgdir - linear_pages*getpagesize();
|
||||
|
||||
/* Linear mapping is easy: put every page's address into the mapping in
|
||||
* order. PAGE_PRESENT contains the flags Present, Writable and
|
||||
* Executable. */
|
||||
for (i = 0; i < mapped_pages; i++)
|
||||
linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
|
||||
|
||||
/* The top level points to the linear page table pages above. */
|
||||
for (i = 0; i < mapped_pages; i += ptes_per_page) {
|
||||
pgdir[i/ptes_per_page]
|
||||
= ((to_guest_phys(linear) + i*sizeof(void *))
|
||||
| PAGE_PRESENT);
|
||||
}
|
||||
|
||||
verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
|
||||
mapped_pages, linear_pages, to_guest_phys(linear));
|
||||
|
||||
/* We return the top level (guest-physical) address: the kernel needs
|
||||
* to know where it is. */
|
||||
return to_guest_phys(pgdir);
|
||||
}
|
||||
/*:*/
|
||||
|
||||
/* Simple routine to roll all the commandline arguments together with spaces
|
||||
@@ -548,13 +503,13 @@ static void concat(char *dst, char *args[])
|
||||
|
||||
/*L:185 This is where we actually tell the kernel to initialize the Guest. We
|
||||
* saw the arguments it expects when we looked at initialize() in lguest_user.c:
|
||||
* the base of Guest "physical" memory, the top physical page to allow, the
|
||||
* top level pagetable and the entry point for the Guest. */
|
||||
static int tell_kernel(unsigned long pgdir, unsigned long start)
|
||||
* the base of Guest "physical" memory, the top physical page to allow and the
|
||||
* entry point for the Guest. */
|
||||
static int tell_kernel(unsigned long start)
|
||||
{
|
||||
unsigned long args[] = { LHREQ_INITIALIZE,
|
||||
(unsigned long)guest_base,
|
||||
guest_limit / getpagesize(), pgdir, start };
|
||||
guest_limit / getpagesize(), start };
|
||||
int fd;
|
||||
|
||||
verbose("Guest: %p - %p (%#lx)\n",
|
||||
@@ -1030,7 +985,7 @@ static void update_device_status(struct device *dev)
|
||||
/* Zero out the virtqueues. */
|
||||
for (vq = dev->vq; vq; vq = vq->next) {
|
||||
memset(vq->vring.desc, 0,
|
||||
vring_size(vq->config.num, getpagesize()));
|
||||
vring_size(vq->config.num, LGUEST_VRING_ALIGN));
|
||||
lg_last_avail(vq) = 0;
|
||||
}
|
||||
} else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
|
||||
@@ -1211,7 +1166,7 @@ static void add_virtqueue(struct device *dev, unsigned int num_descs,
|
||||
void *p;
|
||||
|
||||
/* First we need some memory for this virtqueue. */
|
||||
pages = (vring_size(num_descs, getpagesize()) + getpagesize() - 1)
|
||||
pages = (vring_size(num_descs, LGUEST_VRING_ALIGN) + getpagesize() - 1)
|
||||
/ getpagesize();
|
||||
p = get_pages(pages);
|
||||
|
||||
@@ -1228,7 +1183,7 @@ static void add_virtqueue(struct device *dev, unsigned int num_descs,
|
||||
vq->config.pfn = to_guest_phys(p) / getpagesize();
|
||||
|
||||
/* Initialize the vring. */
|
||||
vring_init(&vq->vring, num_descs, p, getpagesize());
|
||||
vring_init(&vq->vring, num_descs, p, LGUEST_VRING_ALIGN);
|
||||
|
||||
/* Append virtqueue to this device's descriptor. We use
|
||||
* device_config() to get the end of the device's current virtqueues;
|
||||
@@ -1941,7 +1896,7 @@ int main(int argc, char *argv[])
|
||||
{
|
||||
/* Memory, top-level pagetable, code startpoint and size of the
|
||||
* (optional) initrd. */
|
||||
unsigned long mem = 0, pgdir, start, initrd_size = 0;
|
||||
unsigned long mem = 0, start, initrd_size = 0;
|
||||
/* Two temporaries and the /dev/lguest file descriptor. */
|
||||
int i, c, lguest_fd;
|
||||
/* The boot information for the Guest. */
|
||||
@@ -2040,9 +1995,6 @@ int main(int argc, char *argv[])
|
||||
boot->hdr.type_of_loader = 0xFF;
|
||||
}
|
||||
|
||||
/* Set up the initial linear pagetables, starting below the initrd. */
|
||||
pgdir = setup_pagetables(mem, initrd_size);
|
||||
|
||||
/* The Linux boot header contains an "E820" memory map: ours is a
|
||||
* simple, single region. */
|
||||
boot->e820_entries = 1;
|
||||
@@ -2064,7 +2016,7 @@ int main(int argc, char *argv[])
|
||||
|
||||
/* We tell the kernel to initialize the Guest: this returns the open
|
||||
* /dev/lguest file descriptor. */
|
||||
lguest_fd = tell_kernel(pgdir, start);
|
||||
lguest_fd = tell_kernel(start);
|
||||
|
||||
/* We clone off a thread, which wakes the Launcher whenever one of the
|
||||
* input file descriptors needs attention. We call this the Waker, and
|
||||
|
@@ -71,35 +71,50 @@ Look at the current lock statistics:
|
||||
|
||||
# less /proc/lock_stat
|
||||
|
||||
01 lock_stat version 0.2
|
||||
01 lock_stat version 0.3
|
||||
02 -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
||||
03 class name con-bounces contentions waittime-min waittime-max waittime-total acq-bounces acquisitions holdtime-min holdtime-max holdtime-total
|
||||
04 -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
||||
05
|
||||
06 &inode->i_data.tree_lock-W: 15 21657 0.18 1093295.30 11547131054.85 58 10415 0.16 87.51 6387.60
|
||||
07 &inode->i_data.tree_lock-R: 0 0 0.00 0.00 0.00 23302 231198 0.25 8.45 98023.38
|
||||
08 --------------------------
|
||||
09 &inode->i_data.tree_lock 0 [<ffffffff8027c08f>] add_to_page_cache+0x5f/0x190
|
||||
10
|
||||
11 ...............................................................................................................................................................................................
|
||||
12
|
||||
13 dcache_lock: 1037 1161 0.38 45.32 774.51 6611 243371 0.15 306.48 77387.24
|
||||
14 -----------
|
||||
15 dcache_lock 180 [<ffffffff802c0d7e>] sys_getcwd+0x11e/0x230
|
||||
16 dcache_lock 165 [<ffffffff802c002a>] d_alloc+0x15a/0x210
|
||||
17 dcache_lock 33 [<ffffffff8035818d>] _atomic_dec_and_lock+0x4d/0x70
|
||||
18 dcache_lock 1 [<ffffffff802beef8>] shrink_dcache_parent+0x18/0x130
|
||||
06 &mm->mmap_sem-W: 233 538 18446744073708 22924.27 607243.51 1342 45806 1.71 8595.89 1180582.34
|
||||
07 &mm->mmap_sem-R: 205 587 18446744073708 28403.36 731975.00 1940 412426 0.58 187825.45 6307502.88
|
||||
08 ---------------
|
||||
09 &mm->mmap_sem 487 [<ffffffff8053491f>] do_page_fault+0x466/0x928
|
||||
10 &mm->mmap_sem 179 [<ffffffff802a6200>] sys_mprotect+0xcd/0x21d
|
||||
11 &mm->mmap_sem 279 [<ffffffff80210a57>] sys_mmap+0x75/0xce
|
||||
12 &mm->mmap_sem 76 [<ffffffff802a490b>] sys_munmap+0x32/0x59
|
||||
13 ---------------
|
||||
14 &mm->mmap_sem 270 [<ffffffff80210a57>] sys_mmap+0x75/0xce
|
||||
15 &mm->mmap_sem 431 [<ffffffff8053491f>] do_page_fault+0x466/0x928
|
||||
16 &mm->mmap_sem 138 [<ffffffff802a490b>] sys_munmap+0x32/0x59
|
||||
17 &mm->mmap_sem 145 [<ffffffff802a6200>] sys_mprotect+0xcd/0x21d
|
||||
18
|
||||
19 ...............................................................................................................................................................................................
|
||||
20
|
||||
21 dcache_lock: 621 623 0.52 118.26 1053.02 6745 91930 0.29 316.29 118423.41
|
||||
22 -----------
|
||||
23 dcache_lock 179 [<ffffffff80378274>] _atomic_dec_and_lock+0x34/0x54
|
||||
24 dcache_lock 113 [<ffffffff802cc17b>] d_alloc+0x19a/0x1eb
|
||||
25 dcache_lock 99 [<ffffffff802ca0dc>] d_rehash+0x1b/0x44
|
||||
26 dcache_lock 104 [<ffffffff802cbca0>] d_instantiate+0x36/0x8a
|
||||
27 -----------
|
||||
28 dcache_lock 192 [<ffffffff80378274>] _atomic_dec_and_lock+0x34/0x54
|
||||
29 dcache_lock 98 [<ffffffff802ca0dc>] d_rehash+0x1b/0x44
|
||||
30 dcache_lock 72 [<ffffffff802cc17b>] d_alloc+0x19a/0x1eb
|
||||
31 dcache_lock 112 [<ffffffff802cbca0>] d_instantiate+0x36/0x8a
|
||||
|
||||
This excerpt shows the first two lock class statistics. Line 01 shows the
|
||||
output version - each time the format changes this will be updated. Line 02-04
|
||||
show the header with column descriptions. Lines 05-10 and 13-18 show the actual
|
||||
show the header with column descriptions. Lines 05-18 and 20-31 show the actual
|
||||
statistics. These statistics come in two parts; the actual stats separated by a
|
||||
short separator (line 08, 14) from the contention points.
|
||||
short separator (line 08, 13) from the contention points.
|
||||
|
||||
The first lock (05-10) is a read/write lock, and shows two lines above the
|
||||
The first lock (05-18) is a read/write lock, and shows two lines above the
|
||||
short separator. The contention points don't match the column descriptors,
|
||||
they have two: contentions and [<IP>] symbol.
|
||||
they have two: contentions and [<IP>] symbol. The second set of contention
|
||||
points are the points we're contending with.
|
||||
|
||||
The integer part of the time values is in us.
|
||||
|
||||
View the top contending locks:
|
||||
|
||||
|
85
Documentation/scsi/cxgb3i.txt
Normal file
85
Documentation/scsi/cxgb3i.txt
Normal file
@@ -0,0 +1,85 @@
|
||||
Chelsio S3 iSCSI Driver for Linux
|
||||
|
||||
Introduction
|
||||
============
|
||||
|
||||
The Chelsio T3 ASIC based Adapters (S310, S320, S302, S304, Mezz cards, etc.
|
||||
series of products) supports iSCSI acceleration and iSCSI Direct Data Placement
|
||||
(DDP) where the hardware handles the expensive byte touching operations, such
|
||||
as CRC computation and verification, and direct DMA to the final host memory
|
||||
destination:
|
||||
|
||||
- iSCSI PDU digest generation and verification
|
||||
|
||||
On transmitting, Chelsio S3 h/w computes and inserts the Header and
|
||||
Data digest into the PDUs.
|
||||
On receiving, Chelsio S3 h/w computes and verifies the Header and
|
||||
Data digest of the PDUs.
|
||||
|
||||
- Direct Data Placement (DDP)
|
||||
|
||||
S3 h/w can directly place the iSCSI Data-In or Data-Out PDU's
|
||||
payload into pre-posted final destination host-memory buffers based
|
||||
on the Initiator Task Tag (ITT) in Data-In or Target Task Tag (TTT)
|
||||
in Data-Out PDUs.
|
||||
|
||||
- PDU Transmit and Recovery
|
||||
|
||||
On transmitting, S3 h/w accepts the complete PDU (header + data)
|
||||
from the host driver, computes and inserts the digests, decomposes
|
||||
the PDU into multiple TCP segments if necessary, and transmit all
|
||||
the TCP segments onto the wire. It handles TCP retransmission if
|
||||
needed.
|
||||
|
||||
On receving, S3 h/w recovers the iSCSI PDU by reassembling TCP
|
||||
segments, separating the header and data, calculating and verifying
|
||||
the digests, then forwards the header to the host. The payload data,
|
||||
if possible, will be directly placed into the pre-posted host DDP
|
||||
buffer. Otherwise, the payload data will be sent to the host too.
|
||||
|
||||
The cxgb3i driver interfaces with open-iscsi initiator and provides the iSCSI
|
||||
acceleration through Chelsio hardware wherever applicable.
|
||||
|
||||
Using the cxgb3i Driver
|
||||
=======================
|
||||
|
||||
The following steps need to be taken to accelerates the open-iscsi initiator:
|
||||
|
||||
1. Load the cxgb3i driver: "modprobe cxgb3i"
|
||||
|
||||
The cxgb3i module registers a new transport class "cxgb3i" with open-iscsi.
|
||||
|
||||
* in the case of recompiling the kernel, the cxgb3i selection is located at
|
||||
Device Drivers
|
||||
SCSI device support --->
|
||||
[*] SCSI low-level drivers --->
|
||||
<M> Chelsio S3xx iSCSI support
|
||||
|
||||
2. Create an interface file located under /etc/iscsi/ifaces/ for the new
|
||||
transport class "cxgb3i".
|
||||
|
||||
The content of the file should be in the following format:
|
||||
iface.transport_name = cxgb3i
|
||||
iface.net_ifacename = <ethX>
|
||||
iface.ipaddress = <iscsi ip address>
|
||||
|
||||
* if iface.ipaddress is specified, <iscsi ip address> needs to be either the
|
||||
same as the ethX's ip address or an address on the same subnet. Make
|
||||
sure the ip address is unique in the network.
|
||||
|
||||
3. edit /etc/iscsi/iscsid.conf
|
||||
The default setting for MaxRecvDataSegmentLength (131072) is too big,
|
||||
replace "node.conn[0].iscsi.MaxRecvDataSegmentLength" to be a value no
|
||||
bigger than 15360 (for example 8192):
|
||||
|
||||
node.conn[0].iscsi.MaxRecvDataSegmentLength = 8192
|
||||
|
||||
* The login would fail for a normal session if MaxRecvDataSegmentLength is
|
||||
too big. A error message in the format of
|
||||
"cxgb3i: ERR! MaxRecvSegmentLength <X> too big. Need to be <= <Y>."
|
||||
would be logged to dmesg.
|
||||
|
||||
4. To direct open-iscsi traffic to go through cxgb3i's accelerated path,
|
||||
"-I <iface file name>" option needs to be specified with most of the
|
||||
iscsiadm command. <iface file name> is the transport interface file created
|
||||
in step 2.
|
@@ -1,16 +1,27 @@
|
||||
<TITLE>V4L API</TITLE>
|
||||
<H1>Video For Linux APIs</H1>
|
||||
<table border=0>
|
||||
<tr>
|
||||
<td>
|
||||
<A HREF=http://www.linuxtv.org/downloads/video4linux/API/V4L1_API.html>
|
||||
V4L original API</a>
|
||||
</td><td>
|
||||
Obsoleted by V4L2 API
|
||||
</td></tr><tr><td>
|
||||
<A HREF=http://www.linuxtv.org/downloads/video4linux/API/V4L2_API>
|
||||
V4L2 API</a>
|
||||
</td><td>
|
||||
Should be used for new projects
|
||||
</td></tr>
|
||||
</table>
|
||||
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
|
||||
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
|
||||
<head>
|
||||
<meta content="text/html;charset=ISO-8859-2" http-equiv="Content-Type" />
|
||||
<title>V4L API</title>
|
||||
</head>
|
||||
<body>
|
||||
<h1>Video For Linux APIs</h1>
|
||||
<table border="0">
|
||||
<tr>
|
||||
<td>
|
||||
<a href="http://www.linuxtv.org/downloads/video4linux/API/V4L1_API.html">V4L original API</a>
|
||||
</td>
|
||||
<td>
|
||||
Obsoleted by V4L2 API
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>
|
||||
<a href="http://www.linuxtv.org/downloads/video4linux/API/V4L2_API">V4L2 API</a>
|
||||
</td>
|
||||
<td>Should be used for new projects
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
</body>
|
||||
</html>
|
||||
|
@@ -104,8 +104,8 @@
|
||||
103 -> Grand X-Guard / Trust 814PCI [0304:0102]
|
||||
104 -> Nebula Electronics DigiTV [0071:0101]
|
||||
105 -> ProVideo PV143 [aa00:1430,aa00:1431,aa00:1432,aa00:1433,aa03:1433]
|
||||
106 -> PHYTEC VD-009-X1 MiniDIN (bt878)
|
||||
107 -> PHYTEC VD-009-X1 Combi (bt878)
|
||||
106 -> PHYTEC VD-009-X1 VD-011 MiniDIN (bt878)
|
||||
107 -> PHYTEC VD-009-X1 VD-011 Combi (bt878)
|
||||
108 -> PHYTEC VD-009 MiniDIN (bt878)
|
||||
109 -> PHYTEC VD-009 Combi (bt878)
|
||||
110 -> IVC-100 [ff00:a132]
|
||||
@@ -151,3 +151,6 @@
|
||||
150 -> Geovision GV-600 [008a:763c]
|
||||
151 -> Kozumi KTV-01C
|
||||
152 -> Encore ENL TV-FM-2 [1000:1801]
|
||||
153 -> PHYTEC VD-012 (bt878)
|
||||
154 -> PHYTEC VD-012-X1 (bt878)
|
||||
155 -> PHYTEC VD-012-X2 (bt878)
|
||||
|
@@ -11,3 +11,4 @@
|
||||
10 -> DViCO FusionHDTV7 Dual Express [18ac:d618]
|
||||
11 -> DViCO FusionHDTV DVB-T Dual Express [18ac:db78]
|
||||
12 -> Leadtek Winfast PxDVR3200 H [107d:6681]
|
||||
13 -> Compro VideoMate E650F [185b:e800]
|
||||
|
@@ -2,7 +2,7 @@
|
||||
1 -> Hauppauge WinTV 34xxx models [0070:3400,0070:3401]
|
||||
2 -> GDI Black Gold [14c7:0106,14c7:0107]
|
||||
3 -> PixelView [1554:4811]
|
||||
4 -> ATI TV Wonder Pro [1002:00f8]
|
||||
4 -> ATI TV Wonder Pro [1002:00f8,1002:00f9]
|
||||
5 -> Leadtek Winfast 2000XP Expert [107d:6611,107d:6613]
|
||||
6 -> AverTV Studio 303 (M126) [1461:000b]
|
||||
7 -> MSI TV-@nywhere Master [1462:8606]
|
||||
@@ -74,3 +74,6 @@
|
||||
73 -> TeVii S420 DVB-S [d420:9022]
|
||||
74 -> Prolink Pixelview Global Extreme [1554:4976]
|
||||
75 -> PROF 7300 DVB-S/S2 [B033:3033]
|
||||
76 -> SATTRADE ST4200 DVB-S/S2 [b200:4200]
|
||||
77 -> TBS 8910 DVB-S [8910:8888]
|
||||
78 -> Prof 6200 DVB-S [b022:3022]
|
||||
|
@@ -1,5 +1,5 @@
|
||||
0 -> Unknown EM2800 video grabber (em2800) [eb1a:2800]
|
||||
1 -> Unknown EM2750/28xx video grabber (em2820/em2840) [eb1a:2820,eb1a:2860,eb1a:2861,eb1a:2870,eb1a:2881,eb1a:2883]
|
||||
1 -> Unknown EM2750/28xx video grabber (em2820/em2840) [eb1a:2820,eb1a:2821,eb1a:2860,eb1a:2861,eb1a:2870,eb1a:2881,eb1a:2883]
|
||||
2 -> Terratec Cinergy 250 USB (em2820/em2840) [0ccd:0036]
|
||||
3 -> Pinnacle PCTV USB 2 (em2820/em2840) [2304:0208]
|
||||
4 -> Hauppauge WinTV USB 2 (em2820/em2840) [2040:4200,2040:4201]
|
||||
@@ -12,9 +12,9 @@
|
||||
11 -> Terratec Hybrid XS (em2880) [0ccd:0042]
|
||||
12 -> Kworld PVR TV 2800 RF (em2820/em2840)
|
||||
13 -> Terratec Prodigy XS (em2880) [0ccd:0047]
|
||||
14 -> Pixelview Prolink PlayTV USB 2.0 (em2820/em2840) [eb1a:2821]
|
||||
14 -> Pixelview Prolink PlayTV USB 2.0 (em2820/em2840)
|
||||
15 -> V-Gear PocketTV (em2800)
|
||||
16 -> Hauppauge WinTV HVR 950 (em2883) [2040:6513,2040:6517,2040:651b,2040:651f]
|
||||
16 -> Hauppauge WinTV HVR 950 (em2883) [2040:6513,2040:6517,2040:651b]
|
||||
17 -> Pinnacle PCTV HD Pro Stick (em2880) [2304:0227]
|
||||
18 -> Hauppauge WinTV HVR 900 (R2) (em2880) [2040:6502]
|
||||
19 -> PointNix Intra-Oral Camera (em2860)
|
||||
@@ -27,7 +27,6 @@
|
||||
26 -> Hercules Smart TV USB 2.0 (em2820/em2840)
|
||||
27 -> Pinnacle PCTV USB 2 (Philips FM1216ME) (em2820/em2840)
|
||||
28 -> Leadtek Winfast USB II Deluxe (em2820/em2840)
|
||||
29 -> Pinnacle Dazzle DVC 100 (em2820/em2840)
|
||||
30 -> Videology 20K14XUSB USB2.0 (em2820/em2840)
|
||||
31 -> Usbgear VD204v9 (em2821)
|
||||
32 -> Supercomp USB 2.0 TV (em2821)
|
||||
@@ -57,3 +56,5 @@
|
||||
56 -> Pinnacle Hybrid Pro (2) (em2882) [2304:0226]
|
||||
57 -> Kworld PlusTV HD Hybrid 330 (em2883) [eb1a:a316]
|
||||
58 -> Compro VideoMate ForYou/Stereo (em2820/em2840) [185b:2041]
|
||||
60 -> Hauppauge WinTV HVR 850 (em2883) [2040:651f]
|
||||
61 -> Pixelview PlayTV Box 4 USB 2.0 (em2820/em2840)
|
||||
|
@@ -10,7 +10,7 @@
|
||||
9 -> Medion 5044
|
||||
10 -> Kworld/KuroutoShikou SAA7130-TVPCI
|
||||
11 -> Terratec Cinergy 600 TV [153b:1143]
|
||||
12 -> Medion 7134 [16be:0003]
|
||||
12 -> Medion 7134 [16be:0003,16be:5000]
|
||||
13 -> Typhoon TV+Radio 90031
|
||||
14 -> ELSA EX-VISION 300TV [1048:226b]
|
||||
15 -> ELSA EX-VISION 500TV [1048:226a]
|
||||
@@ -151,3 +151,4 @@
|
||||
150 -> Zogis Real Angel 220
|
||||
151 -> ADS Tech Instant HDTV [1421:0380]
|
||||
152 -> Asus Tiger Rev:1.00 [1043:4857]
|
||||
153 -> Kworld Plus TV Analog Lite PCI [17de:7128]
|
||||
|
@@ -1,4 +1,3 @@
|
||||
|
||||
cx8800 release notes
|
||||
====================
|
||||
|
||||
@@ -10,21 +9,20 @@ current status
|
||||
|
||||
video
|
||||
- Basically works.
|
||||
- Some minor image quality glitches.
|
||||
- For now only capture, overlay support isn't completed yet.
|
||||
- For now, only capture and read(). Overlay isn't supported.
|
||||
|
||||
audio
|
||||
- The chip specs for the on-chip TV sound decoder are next
|
||||
to useless :-/
|
||||
- Neverless the builtin TV sound decoder starts working now,
|
||||
at least for PAL-BG. Other TV norms need other code ...
|
||||
at least for some standards.
|
||||
FOR ANY REPORTS ON THIS PLEASE MENTION THE TV NORM YOU ARE
|
||||
USING.
|
||||
- Most tuner chips do provide mono sound, which may or may not
|
||||
be useable depending on the board design. With the Hauppauge
|
||||
cards it works, so there is mono sound available as fallback.
|
||||
- audio data dma (i.e. recording without loopback cable to the
|
||||
sound card) should be possible, but there is no code yet ...
|
||||
sound card) is supported via cx88-alsa.
|
||||
|
||||
vbi
|
||||
- Code present. Works for NTSC closed caption. PAL and other
|
||||
|
@@ -50,9 +50,14 @@ ov519 045e:028c Micro$oft xbox cam
|
||||
spca508 0461:0815 Micro Innovation IC200
|
||||
sunplus 0461:0821 Fujifilm MV-1
|
||||
zc3xx 0461:0a00 MicroInnovation WebCam320
|
||||
stv06xx 046d:0840 QuickCam Express
|
||||
stv06xx 046d:0850 LEGO cam / QuickCam Web
|
||||
stv06xx 046d:0870 Dexxa WebCam USB
|
||||
spca500 046d:0890 Logitech QuickCam traveler
|
||||
vc032x 046d:0892 Logitech Orbicam
|
||||
vc032x 046d:0896 Logitech Orbicam
|
||||
vc032x 046d:0897 Logitech QuickCam for Dell notebooks
|
||||
zc3xx 046d:089d Logitech QuickCam E2500
|
||||
zc3xx 046d:08a0 Logitech QC IM
|
||||
zc3xx 046d:08a1 Logitech QC IM 0x08A1 +sound
|
||||
zc3xx 046d:08a2 Labtec Webcam Pro
|
||||
@@ -169,6 +174,9 @@ spca500 06bd:0404 Agfa CL20
|
||||
spca500 06be:0800 Optimedia
|
||||
sunplus 06d6:0031 Trust 610 LCD PowerC@m Zoom
|
||||
spca506 06e1:a190 ADS Instant VCD
|
||||
ov534 06f8:3002 Hercules Blog Webcam
|
||||
ov534 06f8:3003 Hercules Dualpix HD Weblog
|
||||
sonixj 06f8:3004 Hercules Classic Silver
|
||||
spca508 0733:0110 ViewQuest VQ110
|
||||
spca508 0130:0130 Clone Digital Webcam 11043
|
||||
spca501 0733:0401 Intel Create and Share
|
||||
@@ -199,7 +207,8 @@ sunplus 08ca:2050 Medion MD 41437
|
||||
sunplus 08ca:2060 Aiptek PocketDV5300
|
||||
tv8532 0923:010f ICM532 cams
|
||||
mars 093a:050f Mars-Semi Pc-Camera
|
||||
pac207 093a:2460 PAC207 Qtec Webcam 100
|
||||
pac207 093a:2460 Qtec Webcam 100
|
||||
pac207 093a:2461 HP Webcam
|
||||
pac207 093a:2463 Philips SPC 220 NC
|
||||
pac207 093a:2464 Labtec Webcam 1200
|
||||
pac207 093a:2468 PAC207
|
||||
@@ -213,10 +222,13 @@ pac7311 093a:2603 PAC7312
|
||||
pac7311 093a:2608 Trust WB-3300p
|
||||
pac7311 093a:260e Gigaware VGA PC Camera, Trust WB-3350p, SIGMA cam 2350
|
||||
pac7311 093a:260f SnakeCam
|
||||
pac7311 093a:2620 Apollo AC-905
|
||||
pac7311 093a:2621 PAC731x
|
||||
pac7311 093a:2622 Genius Eye 312
|
||||
pac7311 093a:2624 PAC7302
|
||||
pac7311 093a:2626 Labtec 2200
|
||||
pac7311 093a:262a Webcam 300k
|
||||
pac7311 093a:262c Philips SPC 230 NC
|
||||
zc3xx 0ac8:0302 Z-star Vimicro zc0302
|
||||
vc032x 0ac8:0321 Vimicro generic vc0321
|
||||
vc032x 0ac8:0323 Vimicro Vc0323
|
||||
@@ -249,11 +261,13 @@ sonixj 0c45:60c0 Sangha Sn535
|
||||
sonixj 0c45:60ec SN9C105+MO4000
|
||||
sonixj 0c45:60fb Surfer NoName
|
||||
sonixj 0c45:60fc LG-LIC300
|
||||
sonixj 0c45:60fe Microdia Audio
|
||||
sonixj 0c45:6128 Microdia/Sonix SNP325
|
||||
sonixj 0c45:612a Avant Camera
|
||||
sonixj 0c45:612c Typhoon Rasy Cam 1.3MPix
|
||||
sonixj 0c45:6130 Sonix Pccam
|
||||
sonixj 0c45:6138 Sn9c120 Mo4000
|
||||
sonixj 0c45:613a Microdia Sonix PC Camera
|
||||
sonixj 0c45:613b Surfer SN-206
|
||||
sonixj 0c45:613c Sonix Pccam168
|
||||
sonixj 0c45:6143 Sonix Pccam168
|
||||
@@ -263,6 +277,9 @@ etoms 102c:6251 Qcam xxxxxx VGA
|
||||
zc3xx 10fd:0128 Typhoon Webshot II USB 300k 0x0128
|
||||
spca561 10fd:7e50 FlyCam Usb 100
|
||||
zc3xx 10fd:8050 Typhoon Webshot II USB 300k
|
||||
ov534 1415:2000 Sony HD Eye for PS3 (SLEH 00201)
|
||||
pac207 145f:013a Trust WB-1300N
|
||||
vc032x 15b8:6002 HP 2.0 Megapixel rz406aa
|
||||
spca501 1776:501c Arowana 300K CMOS Camera
|
||||
t613 17a1:0128 TASCORP JPEG Webcam, NGS Cyclops
|
||||
vc032x 17ef:4802 Lenovo Vc0323+MI1310_SOC
|
||||
|
520
Documentation/video4linux/v4l2-framework.txt
Normal file
520
Documentation/video4linux/v4l2-framework.txt
Normal file
@@ -0,0 +1,520 @@
|
||||
Overview of the V4L2 driver framework
|
||||
=====================================
|
||||
|
||||
This text documents the various structures provided by the V4L2 framework and
|
||||
their relationships.
|
||||
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
The V4L2 drivers tend to be very complex due to the complexity of the
|
||||
hardware: most devices have multiple ICs, export multiple device nodes in
|
||||
/dev, and create also non-V4L2 devices such as DVB, ALSA, FB, I2C and input
|
||||
(IR) devices.
|
||||
|
||||
Especially the fact that V4L2 drivers have to setup supporting ICs to
|
||||
do audio/video muxing/encoding/decoding makes it more complex than most.
|
||||
Usually these ICs are connected to the main bridge driver through one or
|
||||
more I2C busses, but other busses can also be used. Such devices are
|
||||
called 'sub-devices'.
|
||||
|
||||
For a long time the framework was limited to the video_device struct for
|
||||
creating V4L device nodes and video_buf for handling the video buffers
|
||||
(note that this document does not discuss the video_buf framework).
|
||||
|
||||
This meant that all drivers had to do the setup of device instances and
|
||||
connecting to sub-devices themselves. Some of this is quite complicated
|
||||
to do right and many drivers never did do it correctly.
|
||||
|
||||
There is also a lot of common code that could never be refactored due to
|
||||
the lack of a framework.
|
||||
|
||||
So this framework sets up the basic building blocks that all drivers
|
||||
need and this same framework should make it much easier to refactor
|
||||
common code into utility functions shared by all drivers.
|
||||
|
||||
|
||||
Structure of a driver
|
||||
---------------------
|
||||
|
||||
All drivers have the following structure:
|
||||
|
||||
1) A struct for each device instance containing the device state.
|
||||
|
||||
2) A way of initializing and commanding sub-devices (if any).
|
||||
|
||||
3) Creating V4L2 device nodes (/dev/videoX, /dev/vbiX, /dev/radioX and
|
||||
/dev/vtxX) and keeping track of device-node specific data.
|
||||
|
||||
4) Filehandle-specific structs containing per-filehandle data.
|
||||
|
||||
This is a rough schematic of how it all relates:
|
||||
|
||||
device instances
|
||||
|
|
||||
+-sub-device instances
|
||||
|
|
||||
\-V4L2 device nodes
|
||||
|
|
||||
\-filehandle instances
|
||||
|
||||
|
||||
Structure of the framework
|
||||
--------------------------
|
||||
|
||||
The framework closely resembles the driver structure: it has a v4l2_device
|
||||
struct for the device instance data, a v4l2_subdev struct to refer to
|
||||
sub-device instances, the video_device struct stores V4L2 device node data
|
||||
and in the future a v4l2_fh struct will keep track of filehandle instances
|
||||
(this is not yet implemented).
|
||||
|
||||
|
||||
struct v4l2_device
|
||||
------------------
|
||||
|
||||
Each device instance is represented by a struct v4l2_device (v4l2-device.h).
|
||||
Very simple devices can just allocate this struct, but most of the time you
|
||||
would embed this struct inside a larger struct.
|
||||
|
||||
You must register the device instance:
|
||||
|
||||
v4l2_device_register(struct device *dev, struct v4l2_device *v4l2_dev);
|
||||
|
||||
Registration will initialize the v4l2_device struct and link dev->driver_data
|
||||
to v4l2_dev. Registration will also set v4l2_dev->name to a value derived from
|
||||
dev (driver name followed by the bus_id, to be precise). You may change the
|
||||
name after registration if you want.
|
||||
|
||||
The first 'dev' argument is normally the struct device pointer of a pci_dev,
|
||||
usb_device or platform_device.
|
||||
|
||||
You unregister with:
|
||||
|
||||
v4l2_device_unregister(struct v4l2_device *v4l2_dev);
|
||||
|
||||
Unregistering will also automatically unregister all subdevs from the device.
|
||||
|
||||
Sometimes you need to iterate over all devices registered by a specific
|
||||
driver. This is usually the case if multiple device drivers use the same
|
||||
hardware. E.g. the ivtvfb driver is a framebuffer driver that uses the ivtv
|
||||
hardware. The same is true for alsa drivers for example.
|
||||
|
||||
You can iterate over all registered devices as follows:
|
||||
|
||||
static int callback(struct device *dev, void *p)
|
||||
{
|
||||
struct v4l2_device *v4l2_dev = dev_get_drvdata(dev);
|
||||
|
||||
/* test if this device was inited */
|
||||
if (v4l2_dev == NULL)
|
||||
return 0;
|
||||
...
|
||||
return 0;
|
||||
}
|
||||
|
||||
int iterate(void *p)
|
||||
{
|
||||
struct device_driver *drv;
|
||||
int err;
|
||||
|
||||
/* Find driver 'ivtv' on the PCI bus.
|
||||
pci_bus_type is a global. For USB busses use usb_bus_type. */
|
||||
drv = driver_find("ivtv", &pci_bus_type);
|
||||
/* iterate over all ivtv device instances */
|
||||
err = driver_for_each_device(drv, NULL, p, callback);
|
||||
put_driver(drv);
|
||||
return err;
|
||||
}
|
||||
|
||||
Sometimes you need to keep a running counter of the device instance. This is
|
||||
commonly used to map a device instance to an index of a module option array.
|
||||
|
||||
The recommended approach is as follows:
|
||||
|
||||
static atomic_t drv_instance = ATOMIC_INIT(0);
|
||||
|
||||
static int __devinit drv_probe(struct pci_dev *dev,
|
||||
const struct pci_device_id *pci_id)
|
||||
{
|
||||
...
|
||||
state->instance = atomic_inc_return(&drv_instance) - 1;
|
||||
}
|
||||
|
||||
|
||||
struct v4l2_subdev
|
||||
------------------
|
||||
|
||||
Many drivers need to communicate with sub-devices. These devices can do all
|
||||
sort of tasks, but most commonly they handle audio and/or video muxing,
|
||||
encoding or decoding. For webcams common sub-devices are sensors and camera
|
||||
controllers.
|
||||
|
||||
Usually these are I2C devices, but not necessarily. In order to provide the
|
||||
driver with a consistent interface to these sub-devices the v4l2_subdev struct
|
||||
(v4l2-subdev.h) was created.
|
||||
|
||||
Each sub-device driver must have a v4l2_subdev struct. This struct can be
|
||||
stand-alone for simple sub-devices or it might be embedded in a larger struct
|
||||
if more state information needs to be stored. Usually there is a low-level
|
||||
device struct (e.g. i2c_client) that contains the device data as setup
|
||||
by the kernel. It is recommended to store that pointer in the private
|
||||
data of v4l2_subdev using v4l2_set_subdevdata(). That makes it easy to go
|
||||
from a v4l2_subdev to the actual low-level bus-specific device data.
|
||||
|
||||
You also need a way to go from the low-level struct to v4l2_subdev. For the
|
||||
common i2c_client struct the i2c_set_clientdata() call is used to store a
|
||||
v4l2_subdev pointer, for other busses you may have to use other methods.
|
||||
|
||||
From the bridge driver perspective you load the sub-device module and somehow
|
||||
obtain the v4l2_subdev pointer. For i2c devices this is easy: you call
|
||||
i2c_get_clientdata(). For other busses something similar needs to be done.
|
||||
Helper functions exists for sub-devices on an I2C bus that do most of this
|
||||
tricky work for you.
|
||||
|
||||
Each v4l2_subdev contains function pointers that sub-device drivers can
|
||||
implement (or leave NULL if it is not applicable). Since sub-devices can do
|
||||
so many different things and you do not want to end up with a huge ops struct
|
||||
of which only a handful of ops are commonly implemented, the function pointers
|
||||
are sorted according to category and each category has its own ops struct.
|
||||
|
||||
The top-level ops struct contains pointers to the category ops structs, which
|
||||
may be NULL if the subdev driver does not support anything from that category.
|
||||
|
||||
It looks like this:
|
||||
|
||||
struct v4l2_subdev_core_ops {
|
||||
int (*g_chip_ident)(struct v4l2_subdev *sd, struct v4l2_chip_ident *chip);
|
||||
int (*log_status)(struct v4l2_subdev *sd);
|
||||
int (*init)(struct v4l2_subdev *sd, u32 val);
|
||||
...
|
||||
};
|
||||
|
||||
struct v4l2_subdev_tuner_ops {
|
||||
...
|
||||
};
|
||||
|
||||
struct v4l2_subdev_audio_ops {
|
||||
...
|
||||
};
|
||||
|
||||
struct v4l2_subdev_video_ops {
|
||||
...
|
||||
};
|
||||
|
||||
struct v4l2_subdev_ops {
|
||||
const struct v4l2_subdev_core_ops *core;
|
||||
const struct v4l2_subdev_tuner_ops *tuner;
|
||||
const struct v4l2_subdev_audio_ops *audio;
|
||||
const struct v4l2_subdev_video_ops *video;
|
||||
};
|
||||
|
||||
The core ops are common to all subdevs, the other categories are implemented
|
||||
depending on the sub-device. E.g. a video device is unlikely to support the
|
||||
audio ops and vice versa.
|
||||
|
||||
This setup limits the number of function pointers while still making it easy
|
||||
to add new ops and categories.
|
||||
|
||||
A sub-device driver initializes the v4l2_subdev struct using:
|
||||
|
||||
v4l2_subdev_init(subdev, &ops);
|
||||
|
||||
Afterwards you need to initialize subdev->name with a unique name and set the
|
||||
module owner. This is done for you if you use the i2c helper functions.
|
||||
|
||||
A device (bridge) driver needs to register the v4l2_subdev with the
|
||||
v4l2_device:
|
||||
|
||||
int err = v4l2_device_register_subdev(device, subdev);
|
||||
|
||||
This can fail if the subdev module disappeared before it could be registered.
|
||||
After this function was called successfully the subdev->dev field points to
|
||||
the v4l2_device.
|
||||
|
||||
You can unregister a sub-device using:
|
||||
|
||||
v4l2_device_unregister_subdev(subdev);
|
||||
|
||||
Afterwards the subdev module can be unloaded and subdev->dev == NULL.
|
||||
|
||||
You can call an ops function either directly:
|
||||
|
||||
err = subdev->ops->core->g_chip_ident(subdev, &chip);
|
||||
|
||||
but it is better and easier to use this macro:
|
||||
|
||||
err = v4l2_subdev_call(subdev, core, g_chip_ident, &chip);
|
||||
|
||||
The macro will to the right NULL pointer checks and returns -ENODEV if subdev
|
||||
is NULL, -ENOIOCTLCMD if either subdev->core or subdev->core->g_chip_ident is
|
||||
NULL, or the actual result of the subdev->ops->core->g_chip_ident ops.
|
||||
|
||||
It is also possible to call all or a subset of the sub-devices:
|
||||
|
||||
v4l2_device_call_all(dev, 0, core, g_chip_ident, &chip);
|
||||
|
||||
Any subdev that does not support this ops is skipped and error results are
|
||||
ignored. If you want to check for errors use this:
|
||||
|
||||
err = v4l2_device_call_until_err(dev, 0, core, g_chip_ident, &chip);
|
||||
|
||||
Any error except -ENOIOCTLCMD will exit the loop with that error. If no
|
||||
errors (except -ENOIOCTLCMD) occured, then 0 is returned.
|
||||
|
||||
The second argument to both calls is a group ID. If 0, then all subdevs are
|
||||
called. If non-zero, then only those whose group ID match that value will
|
||||
be called. Before a bridge driver registers a subdev it can set subdev->grp_id
|
||||
to whatever value it wants (it's 0 by default). This value is owned by the
|
||||
bridge driver and the sub-device driver will never modify or use it.
|
||||
|
||||
The group ID gives the bridge driver more control how callbacks are called.
|
||||
For example, there may be multiple audio chips on a board, each capable of
|
||||
changing the volume. But usually only one will actually be used when the
|
||||
user want to change the volume. You can set the group ID for that subdev to
|
||||
e.g. AUDIO_CONTROLLER and specify that as the group ID value when calling
|
||||
v4l2_device_call_all(). That ensures that it will only go to the subdev
|
||||
that needs it.
|
||||
|
||||
The advantage of using v4l2_subdev is that it is a generic struct and does
|
||||
not contain any knowledge about the underlying hardware. So a driver might
|
||||
contain several subdevs that use an I2C bus, but also a subdev that is
|
||||
controlled through GPIO pins. This distinction is only relevant when setting
|
||||
up the device, but once the subdev is registered it is completely transparent.
|
||||
|
||||
|
||||
I2C sub-device drivers
|
||||
----------------------
|
||||
|
||||
Since these drivers are so common, special helper functions are available to
|
||||
ease the use of these drivers (v4l2-common.h).
|
||||
|
||||
The recommended method of adding v4l2_subdev support to an I2C driver is to
|
||||
embed the v4l2_subdev struct into the state struct that is created for each
|
||||
I2C device instance. Very simple devices have no state struct and in that case
|
||||
you can just create a v4l2_subdev directly.
|
||||
|
||||
A typical state struct would look like this (where 'chipname' is replaced by
|
||||
the name of the chip):
|
||||
|
||||
struct chipname_state {
|
||||
struct v4l2_subdev sd;
|
||||
... /* additional state fields */
|
||||
};
|
||||
|
||||
Initialize the v4l2_subdev struct as follows:
|
||||
|
||||
v4l2_i2c_subdev_init(&state->sd, client, subdev_ops);
|
||||
|
||||
This function will fill in all the fields of v4l2_subdev and ensure that the
|
||||
v4l2_subdev and i2c_client both point to one another.
|
||||
|
||||
You should also add a helper inline function to go from a v4l2_subdev pointer
|
||||
to a chipname_state struct:
|
||||
|
||||
static inline struct chipname_state *to_state(struct v4l2_subdev *sd)
|
||||
{
|
||||
return container_of(sd, struct chipname_state, sd);
|
||||
}
|
||||
|
||||
Use this to go from the v4l2_subdev struct to the i2c_client struct:
|
||||
|
||||
struct i2c_client *client = v4l2_get_subdevdata(sd);
|
||||
|
||||
And this to go from an i2c_client to a v4l2_subdev struct:
|
||||
|
||||
struct v4l2_subdev *sd = i2c_get_clientdata(client);
|
||||
|
||||
Finally you need to make a command function to make driver->command()
|
||||
call the right subdev_ops functions:
|
||||
|
||||
static int subdev_command(struct i2c_client *client, unsigned cmd, void *arg)
|
||||
{
|
||||
return v4l2_subdev_command(i2c_get_clientdata(client), cmd, arg);
|
||||
}
|
||||
|
||||
If driver->command is never used then you can leave this out. Eventually the
|
||||
driver->command usage should be removed from v4l.
|
||||
|
||||
Make sure to call v4l2_device_unregister_subdev(sd) when the remove() callback
|
||||
is called. This will unregister the sub-device from the bridge driver. It is
|
||||
safe to call this even if the sub-device was never registered.
|
||||
|
||||
|
||||
The bridge driver also has some helper functions it can use:
|
||||
|
||||
struct v4l2_subdev *sd = v4l2_i2c_new_subdev(adapter, "module_foo", "chipid", 0x36);
|
||||
|
||||
This loads the given module (can be NULL if no module needs to be loaded) and
|
||||
calls i2c_new_device() with the given i2c_adapter and chip/address arguments.
|
||||
If all goes well, then it registers the subdev with the v4l2_device. It gets
|
||||
the v4l2_device by calling i2c_get_adapdata(adapter), so you should make sure
|
||||
that adapdata is set to v4l2_device when you setup the i2c_adapter in your
|
||||
driver.
|
||||
|
||||
You can also use v4l2_i2c_new_probed_subdev() which is very similar to
|
||||
v4l2_i2c_new_subdev(), except that it has an array of possible I2C addresses
|
||||
that it should probe. Internally it calls i2c_new_probed_device().
|
||||
|
||||
Both functions return NULL if something went wrong.
|
||||
|
||||
|
||||
struct video_device
|
||||
-------------------
|
||||
|
||||
The actual device nodes in the /dev directory are created using the
|
||||
video_device struct (v4l2-dev.h). This struct can either be allocated
|
||||
dynamically or embedded in a larger struct.
|
||||
|
||||
To allocate it dynamically use:
|
||||
|
||||
struct video_device *vdev = video_device_alloc();
|
||||
|
||||
if (vdev == NULL)
|
||||
return -ENOMEM;
|
||||
|
||||
vdev->release = video_device_release;
|
||||
|
||||
If you embed it in a larger struct, then you must set the release()
|
||||
callback to your own function:
|
||||
|
||||
struct video_device *vdev = &my_vdev->vdev;
|
||||
|
||||
vdev->release = my_vdev_release;
|
||||
|
||||
The release callback must be set and it is called when the last user
|
||||
of the video device exits.
|
||||
|
||||
The default video_device_release() callback just calls kfree to free the
|
||||
allocated memory.
|
||||
|
||||
You should also set these fields:
|
||||
|
||||
- parent: set to the parent device (same device as was used to register
|
||||
v4l2_device).
|
||||
- name: set to something descriptive and unique.
|
||||
- fops: set to the file_operations struct.
|
||||
- ioctl_ops: if you use the v4l2_ioctl_ops to simplify ioctl maintenance
|
||||
(highly recommended to use this and it might become compulsory in the
|
||||
future!), then set this to your v4l2_ioctl_ops struct.
|
||||
|
||||
If you use v4l2_ioctl_ops, then you should set .unlocked_ioctl to
|
||||
__video_ioctl2 or .ioctl to video_ioctl2 in your file_operations struct.
|
||||
|
||||
|
||||
video_device registration
|
||||
-------------------------
|
||||
|
||||
Next you register the video device: this will create the character device
|
||||
for you.
|
||||
|
||||
err = video_register_device(vdev, VFL_TYPE_GRABBER, -1);
|
||||
if (err) {
|
||||
video_device_release(vdev); // or kfree(my_vdev);
|
||||
return err;
|
||||
}
|
||||
|
||||
Which device is registered depends on the type argument. The following
|
||||
types exist:
|
||||
|
||||
VFL_TYPE_GRABBER: videoX for video input/output devices
|
||||
VFL_TYPE_VBI: vbiX for vertical blank data (i.e. closed captions, teletext)
|
||||
VFL_TYPE_RADIO: radioX for radio tuners
|
||||
VFL_TYPE_VTX: vtxX for teletext devices (deprecated, don't use)
|
||||
|
||||
The last argument gives you a certain amount of control over the device
|
||||
kernel number used (i.e. the X in videoX). Normally you will pass -1 to
|
||||
let the v4l2 framework pick the first free number. But if a driver creates
|
||||
many devices, then it can be useful to have different video devices in
|
||||
separate ranges. For example, video capture devices start at 0, video
|
||||
output devices start at 16.
|
||||
|
||||
So you can use the last argument to specify a minimum kernel number and
|
||||
the v4l2 framework will try to pick the first free number that is equal
|
||||
or higher to what you passed. If that fails, then it will just pick the
|
||||
first free number.
|
||||
|
||||
Whenever a device node is created some attributes are also created for you.
|
||||
If you look in /sys/class/video4linux you see the devices. Go into e.g.
|
||||
video0 and you will see 'name' and 'index' attributes. The 'name' attribute
|
||||
is the 'name' field of the video_device struct. The 'index' attribute is
|
||||
a device node index that can be assigned by the driver, or that is calculated
|
||||
for you.
|
||||
|
||||
If you call video_register_device(), then the index is just increased by
|
||||
1 for each device node you register. The first video device node you register
|
||||
always starts off with 0.
|
||||
|
||||
Alternatively you can call video_register_device_index() which is identical
|
||||
to video_register_device(), but with an extra index argument. Here you can
|
||||
pass a specific index value (between 0 and 31) that should be used.
|
||||
|
||||
Users can setup udev rules that utilize the index attribute to make fancy
|
||||
device names (e.g. 'mpegX' for MPEG video capture device nodes).
|
||||
|
||||
After the device was successfully registered, then you can use these fields:
|
||||
|
||||
- vfl_type: the device type passed to video_register_device.
|
||||
- minor: the assigned device minor number.
|
||||
- num: the device kernel number (i.e. the X in videoX).
|
||||
- index: the device index number (calculated or set explicitly using
|
||||
video_register_device_index).
|
||||
|
||||
If the registration failed, then you need to call video_device_release()
|
||||
to free the allocated video_device struct, or free your own struct if the
|
||||
video_device was embedded in it. The vdev->release() callback will never
|
||||
be called if the registration failed, nor should you ever attempt to
|
||||
unregister the device if the registration failed.
|
||||
|
||||
|
||||
video_device cleanup
|
||||
--------------------
|
||||
|
||||
When the video device nodes have to be removed, either during the unload
|
||||
of the driver or because the USB device was disconnected, then you should
|
||||
unregister them:
|
||||
|
||||
video_unregister_device(vdev);
|
||||
|
||||
This will remove the device nodes from sysfs (causing udev to remove them
|
||||
from /dev).
|
||||
|
||||
After video_unregister_device() returns no new opens can be done.
|
||||
|
||||
However, in the case of USB devices some application might still have one
|
||||
of these device nodes open. You should block all new accesses to read,
|
||||
write, poll, etc. except possibly for certain ioctl operations like
|
||||
queueing buffers.
|
||||
|
||||
When the last user of the video device node exits, then the vdev->release()
|
||||
callback is called and you can do the final cleanup there.
|
||||
|
||||
|
||||
video_device helper functions
|
||||
-----------------------------
|
||||
|
||||
There are a few useful helper functions:
|
||||
|
||||
You can set/get driver private data in the video_device struct using:
|
||||
|
||||
void *video_get_drvdata(struct video_device *dev);
|
||||
void video_set_drvdata(struct video_device *dev, void *data);
|
||||
|
||||
Note that you can safely call video_set_drvdata() before calling
|
||||
video_register_device().
|
||||
|
||||
And this function:
|
||||
|
||||
struct video_device *video_devdata(struct file *file);
|
||||
|
||||
returns the video_device belonging to the file struct.
|
||||
|
||||
The final helper function combines video_get_drvdata with
|
||||
video_devdata:
|
||||
|
||||
void *video_drvdata(struct file *file);
|
||||
|
||||
You can go from a video_device struct to the v4l2_device struct using:
|
||||
|
||||
struct v4l2_device *v4l2_dev = dev_get_drvdata(vdev->parent);
|
||||
|
Reference in New Issue
Block a user