Merge branch 'linus' into locking/core, to resolve conflict

Conflicts:
	arch/arm/include/asm/percpu.h

As Stephen Rothwell noted, there's a conflict between this commit
in locking/core:

  a21ee6055c ("lockdep: Change hardirq{s_enabled,_context} to per-cpu variables")

and this fresh upstream commit:

  aa54ea903a ("ARM: percpu.h: fix build error")

a21ee6055c is a simpler solution to the dependency problem and doesn't
further increase header hell - so this conflict resolution effectively
reverts aa54ea903a and uses the a21ee6055c solution.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
This commit is contained in:
Ingo Molnar
2020-07-31 11:58:05 +02:00
350 changed files with 3725 additions and 3279 deletions

View File

@@ -16,7 +16,16 @@ Description: Allow the root user to disable/enable in runtime the clock
gating mechanism in Gaudi. Due to how Gaudi is built, the
clock gating needs to be disabled in order to access the
registers of the TPC and MME engines. This is sometimes needed
during debug by the user and hence the user needs this option
during debug by the user and hence the user needs this option.
The user can supply a bitmask value, each bit represents
a different engine to disable/enable its clock gating feature.
The bitmask is composed of 20 bits:
0 - 7 : DMA channels
8 - 11 : MME engines
12 - 19 : TPC engines
The bit's location of a specific engine can be determined
using (1 << GAUDI_ENGINE_ID_*). GAUDI_ENGINE_ID_* values
are defined in uapi habanalabs.h file in enum gaudi_engine_id
What: /sys/kernel/debug/habanalabs/hl<n>/command_buffers
Date: Jan 2019

View File

@@ -47,6 +47,9 @@ properties:
$ref: /schemas/types.yaml#/definitions/phandle-array
description: Phandle to the device SRAM
iommus:
maxItems: 1
memory-region:
description:
CMA pool to use for buffers allocation instead of the default

View File

@@ -378,6 +378,8 @@ examples:
- |
sound {
compatible = "simple-audio-card";
#address-cells = <1>;
#size-cells = <0>;
simple-audio-card,name = "rsnd-ak4643";
simple-audio-card,format = "left_j";
@@ -391,10 +393,12 @@ examples:
"ak4642 Playback", "DAI1 Playback";
dpcmcpu: simple-audio-card,cpu@0 {
reg = <0>;
sound-dai = <&rcar_sound 0>;
};
simple-audio-card,cpu@1 {
reg = <1>;
sound-dai = <&rcar_sound 1>;
};
@@ -418,6 +422,8 @@ examples:
- |
sound {
compatible = "simple-audio-card";
#address-cells = <1>;
#size-cells = <0>;
simple-audio-card,routing =
"pcm3168a Playback", "DAI1 Playback",
@@ -426,6 +432,7 @@ examples:
"pcm3168a Playback", "DAI4 Playback";
simple-audio-card,dai-link@0 {
reg = <0>;
format = "left_j";
bitclock-master = <&sndcpu0>;
frame-master = <&sndcpu0>;
@@ -439,22 +446,23 @@ examples:
};
simple-audio-card,dai-link@1 {
reg = <1>;
format = "i2s";
bitclock-master = <&sndcpu1>;
frame-master = <&sndcpu1>;
convert-channels = <8>; /* TDM Split */
sndcpu1: cpu@0 {
sndcpu1: cpu0 {
sound-dai = <&rcar_sound 1>;
};
cpu@1 {
cpu1 {
sound-dai = <&rcar_sound 2>;
};
cpu@2 {
cpu2 {
sound-dai = <&rcar_sound 3>;
};
cpu@3 {
cpu3 {
sound-dai = <&rcar_sound 4>;
};
codec {
@@ -466,6 +474,7 @@ examples:
};
simple-audio-card,dai-link@2 {
reg = <2>;
format = "i2s";
bitclock-master = <&sndcpu2>;
frame-master = <&sndcpu2>;

View File

@@ -23,6 +23,7 @@ PTP hardware clock infrastructure for Linux
+ Ancillary clock features
- Time stamp external events
- Period output signals configurable from user space
- Low Pass Filter (LPF) access from user space
- Synchronization of the Linux system time via the PPS subsystem
PTP hardware clock kernel API
@@ -94,3 +95,14 @@ Supported hardware
- Auxiliary Slave/Master Mode Snapshot (optional interrupt)
- Target Time (optional interrupt)
* Renesas (IDT) ClockMatrix™
- Up to 4 independent PHC channels
- Integrated low pass filter (LPF), access via .adjPhase (compliant to ITU-T G.8273.2)
- Programmable output periodic signals
- Programmable inputs can time stamp external triggers
- Driver and/or hardware configuration through firmware (idtcm.bin)
- LPF settings (bandwidth, phase limiting, automatic holdover, physical layer assist (per ITU-T G.8273.2))
- Programmable output PTP clocks, any frequency up to 1GHz (to other PHY/MAC time stampers, refclk to ASSPs/SoCs/FPGAs)
- Lock to GNSS input, automatic switching between GNSS and user-space PHC control (optional)

View File

@@ -26,7 +26,7 @@ Usage
1) Device creation & deletion
a) ip link add dev bareudp0 type bareudp dstport 6635 ethertype 0x8847.
a) ip link add dev bareudp0 type bareudp dstport 6635 ethertype mpls_uc
This creates a bareudp tunnel device which tunnels L3 traffic with ethertype
0x8847 (MPLS traffic). The destination port of the UDP header will be set to
@@ -34,14 +34,21 @@ Usage
b) ip link delete bareudp0
2) Device creation with multiple proto mode enabled
2) Device creation with multiproto mode enabled
There are two ways to create a bareudp device for MPLS & IP with multiproto mode
enabled.
The multiproto mode allows bareudp tunnels to handle several protocols of the
same family. It is currently only available for IP and MPLS. This mode has to
be enabled explicitly with the "multiproto" flag.
a) ip link add dev bareudp0 type bareudp dstport 6635 ethertype 0x8847 multiproto
a) ip link add dev bareudp0 type bareudp dstport 6635 ethertype ipv4 multiproto
b) ip link add dev bareudp0 type bareudp dstport 6635 ethertype mpls
For an IPv4 tunnel the multiproto mode allows the tunnel to also handle
IPv6.
b) ip link add dev bareudp0 type bareudp dstport 6635 ethertype mpls_uc multiproto
For MPLS, the multiproto mode allows the tunnel to handle both unicast
and multicast MPLS packets.
3) Device Usage