Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 platform changes from Ingo Molnar.

Removes the Moorestown platform that nobody ever used.

* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/platform: Move APIC ID validity check into platform APIC code
  x86/olpc/xo15/sci: Enable lid close wakeup control
  x86/geode/net5501: Add platform driver for Soekris Engineering net5501
  x86/geode/alix2: Supplement driver to include GPIO button support
  x86/mid/powerbtn: Use MSIC read/write instead of ipc_scu
  x86/mid/thermal: Turn off thermistor
  x86/mid/thermal: Add msic_thermal alias
  x86/mid/thermal: Convert to use Intel MSIC API
  x86/mid/scu_ipc: Remove Moorestown support
  x86/mid: Kill off Moorestown
  x86/mrst: Add msic_thermal platform support
  x86/config: Select MSIC MFD driver on Intel Medfield platform
  x86/mid: Remove Intel Moorestown
  x86/mrst: Set ISA bus type for fake MP IRQs
  x86/ioapic: Use legacy_pic to set correct gsi-irq mapping
This commit is contained in:
Linus Torvalds
2012-03-22 09:42:36 -07:00
34 changed files with 441 additions and 2225 deletions

View File

@@ -696,33 +696,11 @@ config INTEL_MID_POWER_BUTTON
config INTEL_MFLD_THERMAL
tristate "Thermal driver for Intel Medfield platform"
depends on INTEL_SCU_IPC && THERMAL
depends on MFD_INTEL_MSIC && THERMAL
help
Say Y here to enable thermal driver support for the Intel Medfield
platform.
config RAR_REGISTER
bool "Restricted Access Region Register Driver"
depends on PCI && X86_MRST
default n
---help---
This driver allows other kernel drivers access to the
contents of the restricted access region control registers.
The restricted access region control registers
(rar_registers) are used to pass address and
locking information on restricted access regions
to other drivers that use restricted access regions.
The restricted access regions are regions of memory
on the Intel MID Platform that are not accessible to
the x86 processor, but are accessible to dedicated
processors on board peripheral devices.
The purpose of the restricted access regions is to
protect sensitive data from compromise by unauthorized
programs running on the x86 processor.
config INTEL_IPS
tristate "Intel Intelligent Power Sharing"
depends on ACPI

View File

@@ -36,7 +36,6 @@ obj-$(CONFIG_TOSHIBA_BT_RFKILL) += toshiba_bluetooth.o
obj-$(CONFIG_INTEL_SCU_IPC) += intel_scu_ipc.o
obj-$(CONFIG_INTEL_SCU_IPC_UTIL) += intel_scu_ipcutil.o
obj-$(CONFIG_INTEL_MFLD_THERMAL) += intel_mid_thermal.o
obj-$(CONFIG_RAR_REGISTER) += intel_rar_register.o
obj-$(CONFIG_INTEL_IPS) += intel_ips.o
obj-$(CONFIG_GPIO_INTEL_PMIC) += intel_pmic_gpio.o
obj-$(CONFIG_XO1_RFKILL) += xo1-rfkill.o

View File

@@ -23,21 +23,27 @@
#include <linux/slab.h>
#include <linux/platform_device.h>
#include <linux/input.h>
#include <asm/intel_scu_ipc.h>
#include <linux/mfd/intel_msic.h>
#define DRIVER_NAME "msic_power_btn"
#define MSIC_PB_STATUS 0x3f
#define MSIC_PB_LEVEL (1 << 3) /* 1 - release, 0 - press */
/*
* MSIC document ti_datasheet defines the 1st bit reg 0x21 is used to mask
* power button interrupt
*/
#define MSIC_PWRBTNM (1 << 0)
static irqreturn_t mfld_pb_isr(int irq, void *dev_id)
{
struct input_dev *input = dev_id;
int ret;
u8 pbstat;
ret = intel_scu_ipc_ioread8(MSIC_PB_STATUS, &pbstat);
ret = intel_msic_reg_read(INTEL_MSIC_PBSTATUS, &pbstat);
dev_dbg(input->dev.parent, "PB_INT status= %d\n", pbstat);
if (ret < 0) {
dev_err(input->dev.parent, "Read error %d while reading"
" MSIC_PB_STATUS\n", ret);
@@ -88,6 +94,24 @@ static int __devinit mfld_pb_probe(struct platform_device *pdev)
}
platform_set_drvdata(pdev, input);
/*
* SCU firmware might send power button interrupts to IA core before
* kernel boots and doesn't get EOI from IA core. The first bit of
* MSIC reg 0x21 is kept masked, and SCU firmware doesn't send new
* power interrupt to Android kernel. Unmask the bit when probing
* power button in kernel.
* There is a very narrow race between irq handler and power button
* initialization. The race happens rarely. So we needn't worry
* about it.
*/
error = intel_msic_reg_update(INTEL_MSIC_IRQLVL1MSK, 0, MSIC_PWRBTNM);
if (error) {
dev_err(&pdev->dev, "Unable to clear power button interrupt, "
"error: %d\n", error);
goto err_free_irq;
}
return 0;
err_free_irq:

View File

@@ -33,18 +33,15 @@
#include <linux/slab.h>
#include <linux/pm.h>
#include <linux/thermal.h>
#include <asm/intel_scu_ipc.h>
#include <linux/mfd/intel_msic.h>
/* Number of thermal sensors */
#define MSIC_THERMAL_SENSORS 4
/* ADC1 - thermal registers */
#define MSIC_THERM_ADC1CNTL1 0x1C0
#define MSIC_ADC_ENBL 0x10
#define MSIC_ADC_START 0x08
#define MSIC_THERM_ADC1CNTL3 0x1C2
#define MSIC_ADCTHERM_ENBL 0x04
#define MSIC_ADCRRDATA_ENBL 0x05
#define MSIC_CHANL_MASK_VAL 0x0F
@@ -75,8 +72,8 @@
#define ADC_VAL60C 315
/* ADC base addresses */
#define ADC_CHNL_START_ADDR 0x1C5 /* increments by 1 */
#define ADC_DATA_START_ADDR 0x1D4 /* increments by 2 */
#define ADC_CHNL_START_ADDR INTEL_MSIC_ADC1ADDR0 /* increments by 1 */
#define ADC_DATA_START_ADDR INTEL_MSIC_ADC1SNS0H /* increments by 2 */
/* MSIC die attributes */
#define MSIC_DIE_ADC_MIN 488
@@ -189,17 +186,17 @@ static int mid_read_temp(struct thermal_zone_device *tzd, unsigned long *temp)
addr = td_info->chnl_addr;
/* Enable the msic for conversion before reading */
ret = intel_scu_ipc_iowrite8(MSIC_THERM_ADC1CNTL3, MSIC_ADCRRDATA_ENBL);
ret = intel_msic_reg_write(INTEL_MSIC_ADC1CNTL3, MSIC_ADCRRDATA_ENBL);
if (ret)
return ret;
/* Re-toggle the RRDATARD bit (temporary workaround) */
ret = intel_scu_ipc_iowrite8(MSIC_THERM_ADC1CNTL3, MSIC_ADCTHERM_ENBL);
ret = intel_msic_reg_write(INTEL_MSIC_ADC1CNTL3, MSIC_ADCTHERM_ENBL);
if (ret)
return ret;
/* Read the higher bits of data */
ret = intel_scu_ipc_ioread8(addr, &data);
ret = intel_msic_reg_read(addr, &data);
if (ret)
return ret;
@@ -207,7 +204,7 @@ static int mid_read_temp(struct thermal_zone_device *tzd, unsigned long *temp)
adc_val = (data << 2);
addr++;
ret = intel_scu_ipc_ioread8(addr, &data);/* Read lower bits */
ret = intel_msic_reg_read(addr, &data);/* Read lower bits */
if (ret)
return ret;
@@ -235,7 +232,7 @@ static int configure_adc(int val)
int ret;
uint8_t data;
ret = intel_scu_ipc_ioread8(MSIC_THERM_ADC1CNTL1, &data);
ret = intel_msic_reg_read(INTEL_MSIC_ADC1CNTL1, &data);
if (ret)
return ret;
@@ -246,7 +243,7 @@ static int configure_adc(int val)
/* Just stop the ADC */
data &= (~MSIC_ADC_START);
}
return intel_scu_ipc_iowrite8(MSIC_THERM_ADC1CNTL1, data);
return intel_msic_reg_write(INTEL_MSIC_ADC1CNTL1, data);
}
/**
@@ -262,21 +259,21 @@ static int set_up_therm_channel(u16 base_addr)
int ret;
/* Enable all the sensor channels */
ret = intel_scu_ipc_iowrite8(base_addr, SKIN_SENSOR0_CODE);
ret = intel_msic_reg_write(base_addr, SKIN_SENSOR0_CODE);
if (ret)
return ret;
ret = intel_scu_ipc_iowrite8(base_addr + 1, SKIN_SENSOR1_CODE);
ret = intel_msic_reg_write(base_addr + 1, SKIN_SENSOR1_CODE);
if (ret)
return ret;
ret = intel_scu_ipc_iowrite8(base_addr + 2, SYS_SENSOR_CODE);
ret = intel_msic_reg_write(base_addr + 2, SYS_SENSOR_CODE);
if (ret)
return ret;
/* Since this is the last channel, set the stop bit
* to 1 by ORing the DIE_SENSOR_CODE with 0x10 */
ret = intel_scu_ipc_iowrite8(base_addr + 3,
ret = intel_msic_reg_write(base_addr + 3,
(MSIC_DIE_SENSOR_CODE | 0x10));
if (ret)
return ret;
@@ -295,11 +292,11 @@ static int reset_stopbit(uint16_t addr)
{
int ret;
uint8_t data;
ret = intel_scu_ipc_ioread8(addr, &data);
ret = intel_msic_reg_read(addr, &data);
if (ret)
return ret;
/* Set the stop bit to zero */
return intel_scu_ipc_iowrite8(addr, (data & 0xEF));
return intel_msic_reg_write(addr, (data & 0xEF));
}
/**
@@ -322,7 +319,7 @@ static int find_free_channel(void)
uint8_t data;
/* check whether ADC is enabled */
ret = intel_scu_ipc_ioread8(MSIC_THERM_ADC1CNTL1, &data);
ret = intel_msic_reg_read(INTEL_MSIC_ADC1CNTL1, &data);
if (ret)
return ret;
@@ -331,7 +328,7 @@ static int find_free_channel(void)
/* ADC is already enabled; Looking for an empty channel */
for (i = 0; i < ADC_CHANLS_MAX; i++) {
ret = intel_scu_ipc_ioread8(ADC_CHNL_START_ADDR + i, &data);
ret = intel_msic_reg_read(ADC_CHNL_START_ADDR + i, &data);
if (ret)
return ret;
@@ -359,12 +356,14 @@ static int mid_initialize_adc(struct device *dev)
* Ensure that adctherm is disabled before we
* initialize the ADC
*/
ret = intel_scu_ipc_ioread8(MSIC_THERM_ADC1CNTL3, &data);
ret = intel_msic_reg_read(INTEL_MSIC_ADC1CNTL3, &data);
if (ret)
return ret;
if (data & MSIC_ADCTHERM_MASK)
dev_warn(dev, "ADCTHERM already set");
data &= ~MSIC_ADCTHERM_MASK;
ret = intel_msic_reg_write(INTEL_MSIC_ADC1CNTL3, data);
if (ret)
return ret;
/* Index of the first channel in which the stop bit is set */
channel_index = find_free_channel();
@@ -546,7 +545,7 @@ static int mid_thermal_remove(struct platform_device *pdev)
return configure_adc(0);
}
#define DRIVER_NAME "msic_sensor"
#define DRIVER_NAME "msic_thermal"
static const struct platform_device_id therm_id_table[] = {
{ DRIVER_NAME, 1 },

View File

@@ -1,669 +0,0 @@
/*
* rar_register.c - An Intel Restricted Access Region register driver
*
* Copyright(c) 2009 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*
* -------------------------------------------------------------------
* 20091204 Mark Allyn <mark.a.allyn@intel.com>
* Ossama Othman <ossama.othman@intel.com>
* Cleanup per feedback from Alan Cox and Arjan Van De Ven
*
* 20090806 Ossama Othman <ossama.othman@intel.com>
* Return zero high address if upper 22 bits is zero.
* Cleaned up checkpatch errors.
* Clarified that driver is dealing with bus addresses.
*
* 20090702 Ossama Othman <ossama.othman@intel.com>
* Removed unnecessary include directives
* Cleaned up spinlocks.
* Cleaned up logging.
* Improved invalid parameter checks.
* Fixed and simplified RAR address retrieval and RAR locking
* code.
*
* 20090626 Mark Allyn <mark.a.allyn@intel.com>
* Initial publish
*/
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/rar_register.h>
/* === Lincroft Message Bus Interface === */
#define LNC_MCR_OFFSET 0xD0 /* Message Control Register */
#define LNC_MDR_OFFSET 0xD4 /* Message Data Register */
/* Message Opcodes */
#define LNC_MESSAGE_READ_OPCODE 0xD0
#define LNC_MESSAGE_WRITE_OPCODE 0xE0
/* Message Write Byte Enables */
#define LNC_MESSAGE_BYTE_WRITE_ENABLES 0xF
/* B-unit Port */
#define LNC_BUNIT_PORT 0x3
/* === Lincroft B-Unit Registers - Programmed by IA32 firmware === */
#define LNC_BRAR0L 0x10
#define LNC_BRAR0H 0x11
#define LNC_BRAR1L 0x12
#define LNC_BRAR1H 0x13
/* Reserved for SeP */
#define LNC_BRAR2L 0x14
#define LNC_BRAR2H 0x15
/* Moorestown supports three restricted access regions. */
#define MRST_NUM_RAR 3
/* RAR Bus Address Range */
struct rar_addr {
dma_addr_t low;
dma_addr_t high;
};
/*
* We create one of these for each RAR
*/
struct client {
int (*callback)(unsigned long data);
unsigned long driver_priv;
bool busy;
};
static DEFINE_MUTEX(rar_mutex);
static DEFINE_MUTEX(lnc_reg_mutex);
/*
* One per RAR device (currently only one device)
*/
struct rar_device {
struct rar_addr rar_addr[MRST_NUM_RAR];
struct pci_dev *rar_dev;
bool registered;
bool allocated;
struct client client[MRST_NUM_RAR];
};
/* Current platforms have only one rar_device for 3 rar regions */
static struct rar_device my_rar_device;
/*
* Abstract out multiple device support. Current platforms only
* have a single RAR device.
*/
/**
* alloc_rar_device - return a new RAR structure
*
* Return a new (but not yet ready) RAR device object
*/
static struct rar_device *alloc_rar_device(void)
{
if (my_rar_device.allocated)
return NULL;
my_rar_device.allocated = 1;
return &my_rar_device;
}
/**
* free_rar_device - free a RAR object
* @rar: the RAR device being freed
*
* Release a RAR object and any attached resources
*/
static void free_rar_device(struct rar_device *rar)
{
pci_dev_put(rar->rar_dev);
rar->allocated = 0;
}
/**
* _rar_to_device - return the device handling this RAR
* @rar: RAR number
* @off: returned offset
*
* Internal helper for looking up RAR devices. This and alloc are the
* two functions that need touching to go to multiple RAR devices.
*/
static struct rar_device *_rar_to_device(int rar, int *off)
{
if (rar >= 0 && rar < MRST_NUM_RAR) {
*off = rar;
return &my_rar_device;
}
return NULL;
}
/**
* rar_to_device - return the device handling this RAR
* @rar: RAR number
* @off: returned offset
*
* Return the device this RAR maps to if one is present, otherwise
* returns NULL. Reports the offset relative to the base of this
* RAR device in off.
*/
static struct rar_device *rar_to_device(int rar, int *off)
{
struct rar_device *rar_dev = _rar_to_device(rar, off);
if (rar_dev == NULL || !rar_dev->registered)
return NULL;
return rar_dev;
}
/**
* rar_to_client - return the client handling this RAR
* @rar: RAR number
*
* Return the client this RAR maps to if a mapping is known, otherwise
* returns NULL.
*/
static struct client *rar_to_client(int rar)
{
int idx;
struct rar_device *r = _rar_to_device(rar, &idx);
if (r != NULL)
return &r->client[idx];
return NULL;
}
/**
* rar_read_addr - retrieve a RAR mapping
* @pdev: PCI device for the RAR
* @offset: offset for message
* @addr: returned address
*
* Reads the address of a given RAR register. Returns 0 on success
* or an error code on failure.
*/
static int rar_read_addr(struct pci_dev *pdev, int offset, dma_addr_t *addr)
{
/*
* ======== The Lincroft Message Bus Interface ========
* Lincroft registers may be obtained via PCI from
* the host bridge using the Lincroft Message Bus
* Interface. That message bus interface is generally
* comprised of two registers: a control register (MCR, 0xDO)
* and a data register (MDR, 0xD4).
*
* The MCR (message control register) format is the following:
* 1. [31:24]: Opcode
* 2. [23:16]: Port
* 3. [15:8]: Register Offset
* 4. [7:4]: Byte Enables (use 0xF to set all of these bits
* to 1)
* 5. [3:0]: reserved
*
* Read (0xD0) and write (0xE0) opcodes are written to the
* control register when reading and writing to Lincroft
* registers, respectively.
*
* We're interested in registers found in the Lincroft
* B-unit. The B-unit port is 0x3.
*
* The six B-unit RAR register offsets we use are listed
* earlier in this file.
*
* Lastly writing to the MCR register requires the "Byte
* enables" bits to be set to 1. This may be achieved by
* writing 0xF at bit 4.
*
* The MDR (message data register) format is the following:
* 1. [31:0]: Read/Write Data
*
* Data being read from this register is only available after
* writing the appropriate control message to the MCR
* register.
*
* Data being written to this register must be written before
* writing the appropriate control message to the MCR
* register.
*/
int result;
u32 addr32;
/* Construct control message */
u32 const message =
(LNC_MESSAGE_READ_OPCODE << 24)
| (LNC_BUNIT_PORT << 16)
| (offset << 8)
| (LNC_MESSAGE_BYTE_WRITE_ENABLES << 4);
dev_dbg(&pdev->dev, "Offset for 'get' LNC MSG is %x\n", offset);
/*
* We synchronize access to the Lincroft MCR and MDR registers
* until BOTH the command is issued through the MCR register
* and the corresponding data is read from the MDR register.
* Otherwise a race condition would exist between accesses to
* both registers.
*/
mutex_lock(&lnc_reg_mutex);
/* Send the control message */
result = pci_write_config_dword(pdev, LNC_MCR_OFFSET, message);
if (!result) {
/* Read back the address as a 32bit value */
result = pci_read_config_dword(pdev, LNC_MDR_OFFSET, &addr32);
*addr = (dma_addr_t)addr32;
}
mutex_unlock(&lnc_reg_mutex);
return result;
}
/**
* rar_set_addr - Set a RAR mapping
* @pdev: PCI device for the RAR
* @offset: offset for message
* @addr: address to set
*
* Sets the address of a given RAR register. Returns 0 on success
* or an error code on failure.
*/
static int rar_set_addr(struct pci_dev *pdev,
int offset,
dma_addr_t addr)
{
/*
* Data being written to this register must be written before
* writing the appropriate control message to the MCR
* register.
* See rar_get_addrs() for a description of the
* message bus interface being used here.
*/
int result;
/* Construct control message */
u32 const message = (LNC_MESSAGE_WRITE_OPCODE << 24)
| (LNC_BUNIT_PORT << 16)
| (offset << 8)
| (LNC_MESSAGE_BYTE_WRITE_ENABLES << 4);
/*
* We synchronize access to the Lincroft MCR and MDR registers
* until BOTH the command is issued through the MCR register
* and the corresponding data is read from the MDR register.
* Otherwise a race condition would exist between accesses to
* both registers.
*/
mutex_lock(&lnc_reg_mutex);
/* Send the control message */
result = pci_write_config_dword(pdev, LNC_MDR_OFFSET, addr);
if (!result)
/* And address */
result = pci_write_config_dword(pdev, LNC_MCR_OFFSET, message);
mutex_unlock(&lnc_reg_mutex);
return result;
}
/*
* rar_init_params - Initialize RAR parameters
* @rar: RAR device to initialise
*
* Initialize RAR parameters, such as bus addresses, etc. Returns 0
* on success, or an error code on failure.
*/
static int init_rar_params(struct rar_device *rar)
{
struct pci_dev *pdev = rar->rar_dev;
unsigned int i;
int result = 0;
int offset = 0x10; /* RAR 0 to 2 in order low/high/low/high/... */
/* Retrieve RAR start and end bus addresses.
* Access the RAR registers through the Lincroft Message Bus
* Interface on PCI device: 00:00.0 Host bridge.
*/
for (i = 0; i < MRST_NUM_RAR; ++i) {
struct rar_addr *addr = &rar->rar_addr[i];
result = rar_read_addr(pdev, offset++, &addr->low);
if (result != 0)
return result;
result = rar_read_addr(pdev, offset++, &addr->high);
if (result != 0)
return result;
/*
* Only the upper 22 bits of the RAR addresses are
* stored in their corresponding RAR registers so we
* must set the lower 10 bits accordingly.
* The low address has its lower 10 bits cleared, and
* the high address has all its lower 10 bits set,
* e.g.:
* low = 0x2ffffc00
*/
addr->low &= (dma_addr_t)0xfffffc00u;
/*
* Set bits 9:0 on uppser address if bits 31:10 are non
* zero; otherwize clear all bits
*/
if ((addr->high & 0xfffffc00u) == 0)
addr->high = 0;
else
addr->high |= 0x3ffu;
}
/* Done accessing the device. */
if (result == 0) {
for (i = 0; i != MRST_NUM_RAR; ++i) {
/*
* "BRAR" refers to the RAR registers in the
* Lincroft B-unit.
*/
dev_info(&pdev->dev, "BRAR[%u] bus address range = "
"[%lx, %lx]\n", i,
(unsigned long)rar->rar_addr[i].low,
(unsigned long)rar->rar_addr[i].high);
}
}
return result;
}
/**
* rar_get_address - get the bus address in a RAR
* @start: return value of start address of block
* @end: return value of end address of block
*
* The rar_get_address function is used by other device drivers
* to obtain RAR address information on a RAR. It takes three
* parameters:
*
* The function returns a 0 upon success or an error if there is no RAR
* facility on this system.
*/
int rar_get_address(int rar_index, dma_addr_t *start, dma_addr_t *end)
{
int idx;
struct rar_device *rar = rar_to_device(rar_index, &idx);
if (rar == NULL) {
WARN_ON(1);
return -ENODEV;
}
*start = rar->rar_addr[idx].low;
*end = rar->rar_addr[idx].high;
return 0;
}
EXPORT_SYMBOL(rar_get_address);
/**
* rar_lock - lock a RAR register
* @rar_index: RAR to lock (0-2)
*
* The rar_lock function is ued by other device drivers to lock an RAR.
* once a RAR is locked, it stays locked until the next system reboot.
*
* The function returns a 0 upon success or an error if there is no RAR
* facility on this system, or the locking fails
*/
int rar_lock(int rar_index)
{
struct rar_device *rar;
int result;
int idx;
dma_addr_t low, high;
rar = rar_to_device(rar_index, &idx);
if (rar == NULL) {
WARN_ON(1);
return -EINVAL;
}
low = rar->rar_addr[idx].low & 0xfffffc00u;
high = rar->rar_addr[idx].high & 0xfffffc00u;
/*
* Only allow I/O from the graphics and Langwell;
* not from the x86 processor
*/
if (rar_index == RAR_TYPE_VIDEO) {
low |= 0x00000009;
high |= 0x00000015;
} else if (rar_index == RAR_TYPE_AUDIO) {
/* Only allow I/O from Langwell; nothing from x86 */
low |= 0x00000008;
high |= 0x00000018;
} else
/* Read-only from all agents */
high |= 0x00000018;
/*
* Now program the register using the Lincroft message
* bus interface.
*/
result = rar_set_addr(rar->rar_dev,
2 * idx, low);
if (result == 0)
result = rar_set_addr(rar->rar_dev,
2 * idx + 1, high);
return result;
}
EXPORT_SYMBOL(rar_lock);
/**
* register_rar - register a RAR handler
* @num: RAR we wish to register for
* @callback: function to call when RAR support is available
* @data: data to pass to this function
*
* The register_rar function is to used by other device drivers
* to ensure that this driver is ready. As we cannot be sure of
* the compile/execute order of drivers in the kernel, it is
* best to give this driver a callback function to call when
* it is ready to give out addresses. The callback function
* would have those steps that continue the initialization of
* a driver that do require a valid RAR address. One of those
* steps would be to call rar_get_address()
*
* This function return 0 on success or an error code on failure.
*/
int register_rar(int num, int (*callback)(unsigned long data),
unsigned long data)
{
/* For now we hardcode a single RAR device */
struct rar_device *rar;
struct client *c;
int idx;
int retval = 0;
mutex_lock(&rar_mutex);
/* Do we have a client mapping for this RAR number ? */
c = rar_to_client(num);
if (c == NULL) {
retval = -ERANGE;
goto done;
}
/* Is it claimed ? */
if (c->busy) {
retval = -EBUSY;
goto done;
}
c->busy = 1;
/* See if we have a handler for this RAR yet, if we do then fire it */
rar = rar_to_device(num, &idx);
if (rar) {
/*
* if the driver already registered, then we can simply
* call the callback right now
*/
(*callback)(data);
goto done;
}
/* Arrange to be called back when the hardware is found */
c->callback = callback;
c->driver_priv = data;
done:
mutex_unlock(&rar_mutex);
return retval;
}
EXPORT_SYMBOL(register_rar);
/**
* unregister_rar - release a RAR allocation
* @num: RAR number
*
* Releases a RAR allocation, or pending allocation. If a callback is
* pending then this function will either complete before the unregister
* returns or not at all.
*/
void unregister_rar(int num)
{
struct client *c;
mutex_lock(&rar_mutex);
c = rar_to_client(num);
if (c == NULL || !c->busy)
WARN_ON(1);
else
c->busy = 0;
mutex_unlock(&rar_mutex);
}
EXPORT_SYMBOL(unregister_rar);
/**
* rar_callback - Process callbacks
* @rar: new RAR device
*
* Process the callbacks for a newly found RAR device.
*/
static void rar_callback(struct rar_device *rar)
{
struct client *c = &rar->client[0];
int i;
mutex_lock(&rar_mutex);
rar->registered = 1; /* Ensure no more callbacks queue */
for (i = 0; i < MRST_NUM_RAR; i++) {
if (c->callback && c->busy) {
c->callback(c->driver_priv);
c->callback = NULL;
}
c++;
}
mutex_unlock(&rar_mutex);
}
/**
* rar_probe - PCI probe callback
* @dev: PCI device
* @id: matching entry in the match table
*
* A RAR device has been discovered. Initialise it and if successful
* process any pending callbacks that can now be completed.
*/
static int rar_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
int error;
struct rar_device *rar;
dev_dbg(&dev->dev, "PCI probe starting\n");
rar = alloc_rar_device();
if (rar == NULL)
return -EBUSY;
/* Enable the device */
error = pci_enable_device(dev);
if (error) {
dev_err(&dev->dev,
"Error enabling RAR register PCI device\n");
goto end_function;
}
/* Fill in the rar_device structure */
rar->rar_dev = pci_dev_get(dev);
pci_set_drvdata(dev, rar);
/*
* Initialize the RAR parameters, which have to be retrieved
* via the message bus interface.
*/
error = init_rar_params(rar);
if (error) {
pci_disable_device(dev);
dev_err(&dev->dev, "Error retrieving RAR addresses\n");
goto end_function;
}
/* now call anyone who has registered (using callbacks) */
rar_callback(rar);
return 0;
end_function:
free_rar_device(rar);
return error;
}
static DEFINE_PCI_DEVICE_TABLE(rar_pci_id_tbl) = {
{ PCI_VDEVICE(INTEL, 0x4110) },
{ 0 }
};
MODULE_DEVICE_TABLE(pci, rar_pci_id_tbl);
/* field for registering driver to PCI device */
static struct pci_driver rar_pci_driver = {
.name = "rar_register_driver",
.id_table = rar_pci_id_tbl,
.probe = rar_probe,
/* Cannot be unplugged - no remove */
};
static int __init rar_init_handler(void)
{
return pci_register_driver(&rar_pci_driver);
}
static void __exit rar_exit_handler(void)
{
pci_unregister_driver(&rar_pci_driver);
}
module_init(rar_init_handler);
module_exit(rar_exit_handler);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Intel Restricted Access Region Register Driver");

View File

@@ -159,7 +159,7 @@ static inline int busy_loop(void) /* Wait till scu status is busy */
/* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
{
int i, nc, bytes, d;
int nc;
u32 offset = 0;
int err;
u8 cbuf[IPC_WWBUF_SIZE] = { };
@@ -174,55 +174,34 @@ static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
return -ENODEV;
}
if (platform != MRST_CPU_CHIP_PENWELL) {
bytes = 0;
d = 0;
for (i = 0; i < count; i++) {
cbuf[bytes++] = addr[i];
cbuf[bytes++] = addr[i] >> 8;
if (id != IPC_CMD_PCNTRL_R)
cbuf[bytes++] = data[d++];
if (id == IPC_CMD_PCNTRL_M)
cbuf[bytes++] = data[d++];
}
for (i = 0; i < bytes; i += 4)
ipc_data_writel(wbuf[i/4], i);
ipc_command(bytes << 16 | id << 12 | 0 << 8 | op);
} else {
for (nc = 0; nc < count; nc++, offset += 2) {
cbuf[offset] = addr[nc];
cbuf[offset + 1] = addr[nc] >> 8;
}
for (nc = 0; nc < count; nc++, offset += 2) {
cbuf[offset] = addr[nc];
cbuf[offset + 1] = addr[nc] >> 8;
}
if (id == IPC_CMD_PCNTRL_R) {
for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
ipc_data_writel(wbuf[nc], offset);
ipc_command((count*2) << 16 | id << 12 | 0 << 8 | op);
} else if (id == IPC_CMD_PCNTRL_W) {
for (nc = 0; nc < count; nc++, offset += 1)
cbuf[offset] = data[nc];
for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
ipc_data_writel(wbuf[nc], offset);
ipc_command((count*3) << 16 | id << 12 | 0 << 8 | op);
} else if (id == IPC_CMD_PCNTRL_M) {
cbuf[offset] = data[0];
cbuf[offset + 1] = data[1];
ipc_data_writel(wbuf[0], 0); /* Write wbuff */
ipc_command(4 << 16 | id << 12 | 0 << 8 | op);
}
if (id == IPC_CMD_PCNTRL_R) {
for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
ipc_data_writel(wbuf[nc], offset);
ipc_command((count*2) << 16 | id << 12 | 0 << 8 | op);
} else if (id == IPC_CMD_PCNTRL_W) {
for (nc = 0; nc < count; nc++, offset += 1)
cbuf[offset] = data[nc];
for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
ipc_data_writel(wbuf[nc], offset);
ipc_command((count*3) << 16 | id << 12 | 0 << 8 | op);
} else if (id == IPC_CMD_PCNTRL_M) {
cbuf[offset] = data[0];
cbuf[offset + 1] = data[1];
ipc_data_writel(wbuf[0], 0); /* Write wbuff */
ipc_command(4 << 16 | id << 12 | 0 << 8 | op);
}
err = busy_loop();
if (id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
/* Workaround: values are read as 0 without memcpy_fromio */
memcpy_fromio(cbuf, ipcdev.ipc_base + 0x90, 16);
if (platform != MRST_CPU_CHIP_PENWELL) {
for (nc = 0, offset = 2; nc < count; nc++, offset += 3)
data[nc] = ipc_data_readb(offset);
} else {
for (nc = 0; nc < count; nc++)
data[nc] = ipc_data_readb(nc);
}
for (nc = 0; nc < count; nc++)
data[nc] = ipc_data_readb(nc);
}
mutex_unlock(&ipclock);
return err;
@@ -503,148 +482,6 @@ int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
}
EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
#define IPC_FW_LOAD_ADDR 0xFFFC0000 /* Storage location for FW image */
#define IPC_FW_UPDATE_MBOX_ADDR 0xFFFFDFF4 /* Mailbox between ipc and scu */
#define IPC_MAX_FW_SIZE 262144 /* 256K storage size for loading the FW image */
#define IPC_FW_MIP_HEADER_SIZE 2048 /* Firmware MIP header size */
/* IPC inform SCU to get ready for update process */
#define IPC_CMD_FW_UPDATE_READY 0x10FE
/* IPC inform SCU to go for update process */
#define IPC_CMD_FW_UPDATE_GO 0x20FE
/* Status code for fw update */
#define IPC_FW_UPDATE_SUCCESS 0x444f4e45 /* Status code 'DONE' */
#define IPC_FW_UPDATE_BADN 0x4241444E /* Status code 'BADN' */
#define IPC_FW_TXHIGH 0x54784849 /* Status code 'IPC_FW_TXHIGH' */
#define IPC_FW_TXLOW 0x54784c4f /* Status code 'IPC_FW_TXLOW' */
struct fw_update_mailbox {
u32 status;
u32 scu_flag;
u32 driver_flag;
};
/**
* intel_scu_ipc_fw_update - Firmware update utility
* @buffer: firmware buffer
* @length: size of firmware buffer
*
* This function provides an interface to load the firmware into
* the SCU. Returns 0 on success or -1 on failure
*/
int intel_scu_ipc_fw_update(u8 *buffer, u32 length)
{
void __iomem *fw_update_base;
struct fw_update_mailbox __iomem *mailbox = NULL;
int retry_cnt = 0;
u32 status;
mutex_lock(&ipclock);
fw_update_base = ioremap_nocache(IPC_FW_LOAD_ADDR, (128*1024));
if (fw_update_base == NULL) {
mutex_unlock(&ipclock);
return -ENOMEM;
}
mailbox = ioremap_nocache(IPC_FW_UPDATE_MBOX_ADDR,
sizeof(struct fw_update_mailbox));
if (mailbox == NULL) {
iounmap(fw_update_base);
mutex_unlock(&ipclock);
return -ENOMEM;
}
ipc_command(IPC_CMD_FW_UPDATE_READY);
/* Intitialize mailbox */
writel(0, &mailbox->status);
writel(0, &mailbox->scu_flag);
writel(0, &mailbox->driver_flag);
/* Driver copies the 2KB MIP header to SRAM at 0xFFFC0000*/
memcpy_toio(fw_update_base, buffer, 0x800);
/* Driver sends "FW Update" IPC command (CMD_ID 0xFE; MSG_ID 0x02).
* Upon receiving this command, SCU will write the 2K MIP header
* from 0xFFFC0000 into NAND.
* SCU will write a status code into the Mailbox, and then set scu_flag.
*/
ipc_command(IPC_CMD_FW_UPDATE_GO);
/*Driver stalls until scu_flag is set */
while (readl(&mailbox->scu_flag) != 1) {
rmb();
mdelay(1);
}
/* Driver checks Mailbox status.
* If the status is 'BADN', then abort (bad NAND).
* If the status is 'IPC_FW_TXLOW', then continue.
*/
while (readl(&mailbox->status) != IPC_FW_TXLOW) {
rmb();
mdelay(10);
}
mdelay(10);
update_retry:
if (retry_cnt > 5)
goto update_end;
if (readl(&mailbox->status) != IPC_FW_TXLOW)
goto update_end;
buffer = buffer + 0x800;
memcpy_toio(fw_update_base, buffer, 0x20000);
writel(1, &mailbox->driver_flag);
while (readl(&mailbox->scu_flag) == 1) {
rmb();
mdelay(1);
}
/* check for 'BADN' */
if (readl(&mailbox->status) == IPC_FW_UPDATE_BADN)
goto update_end;
while (readl(&mailbox->status) != IPC_FW_TXHIGH) {
rmb();
mdelay(10);
}
mdelay(10);
if (readl(&mailbox->status) != IPC_FW_TXHIGH)
goto update_end;
buffer = buffer + 0x20000;
memcpy_toio(fw_update_base, buffer, 0x20000);
writel(0, &mailbox->driver_flag);
while (mailbox->scu_flag == 0) {
rmb();
mdelay(1);
}
/* check for 'BADN' */
if (readl(&mailbox->status) == IPC_FW_UPDATE_BADN)
goto update_end;
if (readl(&mailbox->status) == IPC_FW_TXLOW) {
++retry_cnt;
goto update_retry;
}
update_end:
status = readl(&mailbox->status);
iounmap(fw_update_base);
iounmap(mailbox);
mutex_unlock(&ipclock);
if (status == IPC_FW_UPDATE_SUCCESS)
return 0;
return -EIO;
}
EXPORT_SYMBOL(intel_scu_ipc_fw_update);
/*
* Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
* When ioc bit is set to 1, caller api must wait for interrupt handler called
@@ -727,7 +564,6 @@ static void ipc_remove(struct pci_dev *pdev)
}
static DEFINE_PCI_DEVICE_TABLE(pci_ids) = {
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x080e)},
{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x082a)},
{ 0,}
};

View File

@@ -26,13 +26,10 @@
static int major;
#define MAX_FW_SIZE 264192
/* ioctl commnds */
#define INTE_SCU_IPC_REGISTER_READ 0
#define INTE_SCU_IPC_REGISTER_WRITE 1
#define INTE_SCU_IPC_REGISTER_UPDATE 2
#define INTE_SCU_IPC_FW_UPDATE 0xA2
struct scu_ipc_data {
u32 count; /* No. of registers */
@@ -88,27 +85,14 @@ static long scu_ipc_ioctl(struct file *fp, unsigned int cmd,
if (!capable(CAP_SYS_RAWIO))
return -EPERM;
if (cmd == INTE_SCU_IPC_FW_UPDATE) {
u8 *fwbuf = kmalloc(MAX_FW_SIZE, GFP_KERNEL);
if (fwbuf == NULL)
return -ENOMEM;
if (copy_from_user(fwbuf, (u8 *)arg, MAX_FW_SIZE)) {
kfree(fwbuf);
return -EFAULT;
}
ret = intel_scu_ipc_fw_update(fwbuf, MAX_FW_SIZE);
kfree(fwbuf);
return ret;
} else {
if (copy_from_user(&data, argp, sizeof(struct scu_ipc_data)))
return -EFAULT;
ret = scu_reg_access(cmd, &data);
if (ret < 0)
return ret;
if (copy_to_user(argp, &data, sizeof(struct scu_ipc_data)))
return -EFAULT;
return 0;
}
if (copy_from_user(&data, argp, sizeof(struct scu_ipc_data)))
return -EFAULT;
ret = scu_reg_access(cmd, &data);
if (ret < 0)
return ret;
if (copy_to_user(argp, &data, sizeof(struct scu_ipc_data)))
return -EFAULT;
return 0;
}
static const struct file_operations scu_ipc_fops = {