locking/Documentation: Move locking related docs into Documentation/locking/
Specifically: Documentation/locking/lockdep-design.txt Documentation/locking/lockstat.txt Documentation/locking/mutex-design.txt Documentation/locking/rt-mutex-design.txt Documentation/locking/rt-mutex.txt Documentation/locking/spinlocks.txt Documentation/locking/ww-mutex-design.txt Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Acked-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Cc: jason.low2@hp.com Cc: aswin@hp.com Cc: Alexei Starovoitov <ast@plumgrid.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Chris Mason <clm@fb.com> Cc: Dan Streetman <ddstreet@ieee.org> Cc: David Airlie <airlied@linux.ie> Cc: Davidlohr Bueso <davidlohr@hp.com> Cc: David S. Miller <davem@davemloft.net> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Jason Low <jason.low2@hp.com> Cc: Josef Bacik <jbacik@fusionio.com> Cc: Kees Cook <keescook@chromium.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Lubomir Rintel <lkundrak@v3.sk> Cc: Masanari Iida <standby24x7@gmail.com> Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Tim Chen <tim.c.chen@linux.intel.com> Cc: Vineet Gupta <vgupta@synopsys.com> Cc: fengguang.wu@intel.com Link: http://lkml.kernel.org/r/1406752916-3341-6-git-send-email-davidlohr@hp.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
此提交包含在:
@@ -0,0 +1,79 @@
|
||||
RT-mutex subsystem with PI support
|
||||
----------------------------------
|
||||
|
||||
RT-mutexes with priority inheritance are used to support PI-futexes,
|
||||
which enable pthread_mutex_t priority inheritance attributes
|
||||
(PTHREAD_PRIO_INHERIT). [See Documentation/pi-futex.txt for more details
|
||||
about PI-futexes.]
|
||||
|
||||
This technology was developed in the -rt tree and streamlined for
|
||||
pthread_mutex support.
|
||||
|
||||
Basic principles:
|
||||
-----------------
|
||||
|
||||
RT-mutexes extend the semantics of simple mutexes by the priority
|
||||
inheritance protocol.
|
||||
|
||||
A low priority owner of a rt-mutex inherits the priority of a higher
|
||||
priority waiter until the rt-mutex is released. If the temporarily
|
||||
boosted owner blocks on a rt-mutex itself it propagates the priority
|
||||
boosting to the owner of the other rt_mutex it gets blocked on. The
|
||||
priority boosting is immediately removed once the rt_mutex has been
|
||||
unlocked.
|
||||
|
||||
This approach allows us to shorten the block of high-prio tasks on
|
||||
mutexes which protect shared resources. Priority inheritance is not a
|
||||
magic bullet for poorly designed applications, but it allows
|
||||
well-designed applications to use userspace locks in critical parts of
|
||||
an high priority thread, without losing determinism.
|
||||
|
||||
The enqueueing of the waiters into the rtmutex waiter list is done in
|
||||
priority order. For same priorities FIFO order is chosen. For each
|
||||
rtmutex, only the top priority waiter is enqueued into the owner's
|
||||
priority waiters list. This list too queues in priority order. Whenever
|
||||
the top priority waiter of a task changes (for example it timed out or
|
||||
got a signal), the priority of the owner task is readjusted. [The
|
||||
priority enqueueing is handled by "plists", see include/linux/plist.h
|
||||
for more details.]
|
||||
|
||||
RT-mutexes are optimized for fastpath operations and have no internal
|
||||
locking overhead when locking an uncontended mutex or unlocking a mutex
|
||||
without waiters. The optimized fastpath operations require cmpxchg
|
||||
support. [If that is not available then the rt-mutex internal spinlock
|
||||
is used]
|
||||
|
||||
The state of the rt-mutex is tracked via the owner field of the rt-mutex
|
||||
structure:
|
||||
|
||||
rt_mutex->owner holds the task_struct pointer of the owner. Bit 0 and 1
|
||||
are used to keep track of the "owner is pending" and "rtmutex has
|
||||
waiters" state.
|
||||
|
||||
owner bit1 bit0
|
||||
NULL 0 0 mutex is free (fast acquire possible)
|
||||
NULL 0 1 invalid state
|
||||
NULL 1 0 Transitional state*
|
||||
NULL 1 1 invalid state
|
||||
taskpointer 0 0 mutex is held (fast release possible)
|
||||
taskpointer 0 1 task is pending owner
|
||||
taskpointer 1 0 mutex is held and has waiters
|
||||
taskpointer 1 1 task is pending owner and mutex has waiters
|
||||
|
||||
Pending-ownership handling is a performance optimization:
|
||||
pending-ownership is assigned to the first (highest priority) waiter of
|
||||
the mutex, when the mutex is released. The thread is woken up and once
|
||||
it starts executing it can acquire the mutex. Until the mutex is taken
|
||||
by it (bit 0 is cleared) a competing higher priority thread can "steal"
|
||||
the mutex which puts the woken up thread back on the waiters list.
|
||||
|
||||
The pending-ownership optimization is especially important for the
|
||||
uninterrupted workflow of high-prio tasks which repeatedly
|
||||
takes/releases locks that have lower-prio waiters. Without this
|
||||
optimization the higher-prio thread would ping-pong to the lower-prio
|
||||
task [because at unlock time we always assign a new owner].
|
||||
|
||||
(*) The "mutex has waiters" bit gets set to take the lock. If the lock
|
||||
doesn't already have an owner, this bit is quickly cleared if there are
|
||||
no waiters. So this is a transitional state to synchronize with looking
|
||||
at the owner field of the mutex and the mutex owner releasing the lock.
|
新增問題並參考
封鎖使用者