btrfs: rename BTRFS_INODE_ORDERED_DATA_CLOSE flag

Commit 8d875f95da ("btrfs: disable strict file flushes for
renames and truncates") eliminated the notion of ordered operations and
instead BTRFS_INODE_ORDERED_DATA_CLOSE only remained as a flag
indicating that a file's content should be synced to disk in case a
file is truncated and any writes happen to it concurrently. In fact
this intendend behavior was broken until it was fixed in
f6dc45c7a9 ("Btrfs: fix filemap_flush call in btrfs_file_release").

All things considered let's give the flag a more descriptive name. Also
slightly reword comments.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This commit is contained in:
Nikolay Borisov
2020-10-01 09:40:39 +03:00
committed by David Sterba
parent 8d1a7aae89
commit 1fd4033dd0
3 changed files with 9 additions and 9 deletions

View File

@@ -2091,12 +2091,12 @@ int btrfs_release_file(struct inode *inode, struct file *filp)
filp->private_data = NULL;
/*
* ordered_data_close is set by setattr when we are about to truncate
* a file from a non-zero size to a zero size. This tries to
* flush down new bytes that may have been written if the
* application were using truncate to replace a file in place.
* Set by setattr when we are about to truncate a file from a non-zero
* size to a zero size. This tries to flush down new bytes that may
* have been written if the application were using truncate to replace
* a file in place.
*/
if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
&BTRFS_I(inode)->runtime_flags))
filemap_flush(inode->i_mapping);
return 0;