Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
This commit is contained in:
695
fs/fs-writeback.c
Normal file
695
fs/fs-writeback.c
Normal file
@@ -0,0 +1,695 @@
|
||||
/*
|
||||
* fs/fs-writeback.c
|
||||
*
|
||||
* Copyright (C) 2002, Linus Torvalds.
|
||||
*
|
||||
* Contains all the functions related to writing back and waiting
|
||||
* upon dirty inodes against superblocks, and writing back dirty
|
||||
* pages against inodes. ie: data writeback. Writeout of the
|
||||
* inode itself is not handled here.
|
||||
*
|
||||
* 10Apr2002 akpm@zip.com.au
|
||||
* Split out of fs/inode.c
|
||||
* Additions for address_space-based writeback
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/writeback.h>
|
||||
#include <linux/blkdev.h>
|
||||
#include <linux/backing-dev.h>
|
||||
#include <linux/buffer_head.h>
|
||||
|
||||
extern struct super_block *blockdev_superblock;
|
||||
|
||||
/**
|
||||
* __mark_inode_dirty - internal function
|
||||
* @inode: inode to mark
|
||||
* @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
|
||||
* Mark an inode as dirty. Callers should use mark_inode_dirty or
|
||||
* mark_inode_dirty_sync.
|
||||
*
|
||||
* Put the inode on the super block's dirty list.
|
||||
*
|
||||
* CAREFUL! We mark it dirty unconditionally, but move it onto the
|
||||
* dirty list only if it is hashed or if it refers to a blockdev.
|
||||
* If it was not hashed, it will never be added to the dirty list
|
||||
* even if it is later hashed, as it will have been marked dirty already.
|
||||
*
|
||||
* In short, make sure you hash any inodes _before_ you start marking
|
||||
* them dirty.
|
||||
*
|
||||
* This function *must* be atomic for the I_DIRTY_PAGES case -
|
||||
* set_page_dirty() is called under spinlock in several places.
|
||||
*
|
||||
* Note that for blockdevs, inode->dirtied_when represents the dirtying time of
|
||||
* the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
|
||||
* the kernel-internal blockdev inode represents the dirtying time of the
|
||||
* blockdev's pages. This is why for I_DIRTY_PAGES we always use
|
||||
* page->mapping->host, so the page-dirtying time is recorded in the internal
|
||||
* blockdev inode.
|
||||
*/
|
||||
void __mark_inode_dirty(struct inode *inode, int flags)
|
||||
{
|
||||
struct super_block *sb = inode->i_sb;
|
||||
|
||||
/*
|
||||
* Don't do this for I_DIRTY_PAGES - that doesn't actually
|
||||
* dirty the inode itself
|
||||
*/
|
||||
if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
|
||||
if (sb->s_op->dirty_inode)
|
||||
sb->s_op->dirty_inode(inode);
|
||||
}
|
||||
|
||||
/*
|
||||
* make sure that changes are seen by all cpus before we test i_state
|
||||
* -- mikulas
|
||||
*/
|
||||
smp_mb();
|
||||
|
||||
/* avoid the locking if we can */
|
||||
if ((inode->i_state & flags) == flags)
|
||||
return;
|
||||
|
||||
if (unlikely(block_dump)) {
|
||||
struct dentry *dentry = NULL;
|
||||
const char *name = "?";
|
||||
|
||||
if (!list_empty(&inode->i_dentry)) {
|
||||
dentry = list_entry(inode->i_dentry.next,
|
||||
struct dentry, d_alias);
|
||||
if (dentry && dentry->d_name.name)
|
||||
name = (const char *) dentry->d_name.name;
|
||||
}
|
||||
|
||||
if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev"))
|
||||
printk(KERN_DEBUG
|
||||
"%s(%d): dirtied inode %lu (%s) on %s\n",
|
||||
current->comm, current->pid, inode->i_ino,
|
||||
name, inode->i_sb->s_id);
|
||||
}
|
||||
|
||||
spin_lock(&inode_lock);
|
||||
if ((inode->i_state & flags) != flags) {
|
||||
const int was_dirty = inode->i_state & I_DIRTY;
|
||||
|
||||
inode->i_state |= flags;
|
||||
|
||||
/*
|
||||
* If the inode is locked, just update its dirty state.
|
||||
* The unlocker will place the inode on the appropriate
|
||||
* superblock list, based upon its state.
|
||||
*/
|
||||
if (inode->i_state & I_LOCK)
|
||||
goto out;
|
||||
|
||||
/*
|
||||
* Only add valid (hashed) inodes to the superblock's
|
||||
* dirty list. Add blockdev inodes as well.
|
||||
*/
|
||||
if (!S_ISBLK(inode->i_mode)) {
|
||||
if (hlist_unhashed(&inode->i_hash))
|
||||
goto out;
|
||||
}
|
||||
if (inode->i_state & (I_FREEING|I_CLEAR))
|
||||
goto out;
|
||||
|
||||
/*
|
||||
* If the inode was already on s_dirty or s_io, don't
|
||||
* reposition it (that would break s_dirty time-ordering).
|
||||
*/
|
||||
if (!was_dirty) {
|
||||
inode->dirtied_when = jiffies;
|
||||
list_move(&inode->i_list, &sb->s_dirty);
|
||||
}
|
||||
}
|
||||
out:
|
||||
spin_unlock(&inode_lock);
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL(__mark_inode_dirty);
|
||||
|
||||
static int write_inode(struct inode *inode, int sync)
|
||||
{
|
||||
if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
|
||||
return inode->i_sb->s_op->write_inode(inode, sync);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Write a single inode's dirty pages and inode data out to disk.
|
||||
* If `wait' is set, wait on the writeout.
|
||||
*
|
||||
* The whole writeout design is quite complex and fragile. We want to avoid
|
||||
* starvation of particular inodes when others are being redirtied, prevent
|
||||
* livelocks, etc.
|
||||
*
|
||||
* Called under inode_lock.
|
||||
*/
|
||||
static int
|
||||
__sync_single_inode(struct inode *inode, struct writeback_control *wbc)
|
||||
{
|
||||
unsigned dirty;
|
||||
struct address_space *mapping = inode->i_mapping;
|
||||
struct super_block *sb = inode->i_sb;
|
||||
int wait = wbc->sync_mode == WB_SYNC_ALL;
|
||||
int ret;
|
||||
|
||||
BUG_ON(inode->i_state & I_LOCK);
|
||||
|
||||
/* Set I_LOCK, reset I_DIRTY */
|
||||
dirty = inode->i_state & I_DIRTY;
|
||||
inode->i_state |= I_LOCK;
|
||||
inode->i_state &= ~I_DIRTY;
|
||||
|
||||
spin_unlock(&inode_lock);
|
||||
|
||||
ret = do_writepages(mapping, wbc);
|
||||
|
||||
/* Don't write the inode if only I_DIRTY_PAGES was set */
|
||||
if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
|
||||
int err = write_inode(inode, wait);
|
||||
if (ret == 0)
|
||||
ret = err;
|
||||
}
|
||||
|
||||
if (wait) {
|
||||
int err = filemap_fdatawait(mapping);
|
||||
if (ret == 0)
|
||||
ret = err;
|
||||
}
|
||||
|
||||
spin_lock(&inode_lock);
|
||||
inode->i_state &= ~I_LOCK;
|
||||
if (!(inode->i_state & I_FREEING)) {
|
||||
if (!(inode->i_state & I_DIRTY) &&
|
||||
mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
|
||||
/*
|
||||
* We didn't write back all the pages. nfs_writepages()
|
||||
* sometimes bales out without doing anything. Redirty
|
||||
* the inode. It is still on sb->s_io.
|
||||
*/
|
||||
if (wbc->for_kupdate) {
|
||||
/*
|
||||
* For the kupdate function we leave the inode
|
||||
* at the head of sb_dirty so it will get more
|
||||
* writeout as soon as the queue becomes
|
||||
* uncongested.
|
||||
*/
|
||||
inode->i_state |= I_DIRTY_PAGES;
|
||||
list_move_tail(&inode->i_list, &sb->s_dirty);
|
||||
} else {
|
||||
/*
|
||||
* Otherwise fully redirty the inode so that
|
||||
* other inodes on this superblock will get some
|
||||
* writeout. Otherwise heavy writing to one
|
||||
* file would indefinitely suspend writeout of
|
||||
* all the other files.
|
||||
*/
|
||||
inode->i_state |= I_DIRTY_PAGES;
|
||||
inode->dirtied_when = jiffies;
|
||||
list_move(&inode->i_list, &sb->s_dirty);
|
||||
}
|
||||
} else if (inode->i_state & I_DIRTY) {
|
||||
/*
|
||||
* Someone redirtied the inode while were writing back
|
||||
* the pages.
|
||||
*/
|
||||
list_move(&inode->i_list, &sb->s_dirty);
|
||||
} else if (atomic_read(&inode->i_count)) {
|
||||
/*
|
||||
* The inode is clean, inuse
|
||||
*/
|
||||
list_move(&inode->i_list, &inode_in_use);
|
||||
} else {
|
||||
/*
|
||||
* The inode is clean, unused
|
||||
*/
|
||||
list_move(&inode->i_list, &inode_unused);
|
||||
inodes_stat.nr_unused++;
|
||||
}
|
||||
}
|
||||
wake_up_inode(inode);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* Write out an inode's dirty pages. Called under inode_lock.
|
||||
*/
|
||||
static int
|
||||
__writeback_single_inode(struct inode *inode,
|
||||
struct writeback_control *wbc)
|
||||
{
|
||||
wait_queue_head_t *wqh;
|
||||
|
||||
if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_LOCK)) {
|
||||
list_move(&inode->i_list, &inode->i_sb->s_dirty);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* It's a data-integrity sync. We must wait.
|
||||
*/
|
||||
if (inode->i_state & I_LOCK) {
|
||||
DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LOCK);
|
||||
|
||||
wqh = bit_waitqueue(&inode->i_state, __I_LOCK);
|
||||
do {
|
||||
__iget(inode);
|
||||
spin_unlock(&inode_lock);
|
||||
__wait_on_bit(wqh, &wq, inode_wait,
|
||||
TASK_UNINTERRUPTIBLE);
|
||||
iput(inode);
|
||||
spin_lock(&inode_lock);
|
||||
} while (inode->i_state & I_LOCK);
|
||||
}
|
||||
return __sync_single_inode(inode, wbc);
|
||||
}
|
||||
|
||||
/*
|
||||
* Write out a superblock's list of dirty inodes. A wait will be performed
|
||||
* upon no inodes, all inodes or the final one, depending upon sync_mode.
|
||||
*
|
||||
* If older_than_this is non-NULL, then only write out inodes which
|
||||
* had their first dirtying at a time earlier than *older_than_this.
|
||||
*
|
||||
* If we're a pdlfush thread, then implement pdflush collision avoidance
|
||||
* against the entire list.
|
||||
*
|
||||
* WB_SYNC_HOLD is a hack for sys_sync(): reattach the inode to sb->s_dirty so
|
||||
* that it can be located for waiting on in __writeback_single_inode().
|
||||
*
|
||||
* Called under inode_lock.
|
||||
*
|
||||
* If `bdi' is non-zero then we're being asked to writeback a specific queue.
|
||||
* This function assumes that the blockdev superblock's inodes are backed by
|
||||
* a variety of queues, so all inodes are searched. For other superblocks,
|
||||
* assume that all inodes are backed by the same queue.
|
||||
*
|
||||
* FIXME: this linear search could get expensive with many fileystems. But
|
||||
* how to fix? We need to go from an address_space to all inodes which share
|
||||
* a queue with that address_space. (Easy: have a global "dirty superblocks"
|
||||
* list).
|
||||
*
|
||||
* The inodes to be written are parked on sb->s_io. They are moved back onto
|
||||
* sb->s_dirty as they are selected for writing. This way, none can be missed
|
||||
* on the writer throttling path, and we get decent balancing between many
|
||||
* throttled threads: we don't want them all piling up on __wait_on_inode.
|
||||
*/
|
||||
static void
|
||||
sync_sb_inodes(struct super_block *sb, struct writeback_control *wbc)
|
||||
{
|
||||
const unsigned long start = jiffies; /* livelock avoidance */
|
||||
|
||||
if (!wbc->for_kupdate || list_empty(&sb->s_io))
|
||||
list_splice_init(&sb->s_dirty, &sb->s_io);
|
||||
|
||||
while (!list_empty(&sb->s_io)) {
|
||||
struct inode *inode = list_entry(sb->s_io.prev,
|
||||
struct inode, i_list);
|
||||
struct address_space *mapping = inode->i_mapping;
|
||||
struct backing_dev_info *bdi = mapping->backing_dev_info;
|
||||
long pages_skipped;
|
||||
|
||||
if (!bdi_cap_writeback_dirty(bdi)) {
|
||||
list_move(&inode->i_list, &sb->s_dirty);
|
||||
if (sb == blockdev_superblock) {
|
||||
/*
|
||||
* Dirty memory-backed blockdev: the ramdisk
|
||||
* driver does this. Skip just this inode
|
||||
*/
|
||||
continue;
|
||||
}
|
||||
/*
|
||||
* Dirty memory-backed inode against a filesystem other
|
||||
* than the kernel-internal bdev filesystem. Skip the
|
||||
* entire superblock.
|
||||
*/
|
||||
break;
|
||||
}
|
||||
|
||||
if (wbc->nonblocking && bdi_write_congested(bdi)) {
|
||||
wbc->encountered_congestion = 1;
|
||||
if (sb != blockdev_superblock)
|
||||
break; /* Skip a congested fs */
|
||||
list_move(&inode->i_list, &sb->s_dirty);
|
||||
continue; /* Skip a congested blockdev */
|
||||
}
|
||||
|
||||
if (wbc->bdi && bdi != wbc->bdi) {
|
||||
if (sb != blockdev_superblock)
|
||||
break; /* fs has the wrong queue */
|
||||
list_move(&inode->i_list, &sb->s_dirty);
|
||||
continue; /* blockdev has wrong queue */
|
||||
}
|
||||
|
||||
/* Was this inode dirtied after sync_sb_inodes was called? */
|
||||
if (time_after(inode->dirtied_when, start))
|
||||
break;
|
||||
|
||||
/* Was this inode dirtied too recently? */
|
||||
if (wbc->older_than_this && time_after(inode->dirtied_when,
|
||||
*wbc->older_than_this))
|
||||
break;
|
||||
|
||||
/* Is another pdflush already flushing this queue? */
|
||||
if (current_is_pdflush() && !writeback_acquire(bdi))
|
||||
break;
|
||||
|
||||
BUG_ON(inode->i_state & I_FREEING);
|
||||
__iget(inode);
|
||||
pages_skipped = wbc->pages_skipped;
|
||||
__writeback_single_inode(inode, wbc);
|
||||
if (wbc->sync_mode == WB_SYNC_HOLD) {
|
||||
inode->dirtied_when = jiffies;
|
||||
list_move(&inode->i_list, &sb->s_dirty);
|
||||
}
|
||||
if (current_is_pdflush())
|
||||
writeback_release(bdi);
|
||||
if (wbc->pages_skipped != pages_skipped) {
|
||||
/*
|
||||
* writeback is not making progress due to locked
|
||||
* buffers. Skip this inode for now.
|
||||
*/
|
||||
list_move(&inode->i_list, &sb->s_dirty);
|
||||
}
|
||||
spin_unlock(&inode_lock);
|
||||
cond_resched();
|
||||
iput(inode);
|
||||
spin_lock(&inode_lock);
|
||||
if (wbc->nr_to_write <= 0)
|
||||
break;
|
||||
}
|
||||
return; /* Leave any unwritten inodes on s_io */
|
||||
}
|
||||
|
||||
/*
|
||||
* Start writeback of dirty pagecache data against all unlocked inodes.
|
||||
*
|
||||
* Note:
|
||||
* We don't need to grab a reference to superblock here. If it has non-empty
|
||||
* ->s_dirty it's hadn't been killed yet and kill_super() won't proceed
|
||||
* past sync_inodes_sb() until both the ->s_dirty and ->s_io lists are
|
||||
* empty. Since __sync_single_inode() regains inode_lock before it finally moves
|
||||
* inode from superblock lists we are OK.
|
||||
*
|
||||
* If `older_than_this' is non-zero then only flush inodes which have a
|
||||
* flushtime older than *older_than_this.
|
||||
*
|
||||
* If `bdi' is non-zero then we will scan the first inode against each
|
||||
* superblock until we find the matching ones. One group will be the dirty
|
||||
* inodes against a filesystem. Then when we hit the dummy blockdev superblock,
|
||||
* sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not
|
||||
* super-efficient but we're about to do a ton of I/O...
|
||||
*/
|
||||
void
|
||||
writeback_inodes(struct writeback_control *wbc)
|
||||
{
|
||||
struct super_block *sb;
|
||||
|
||||
might_sleep();
|
||||
spin_lock(&sb_lock);
|
||||
restart:
|
||||
sb = sb_entry(super_blocks.prev);
|
||||
for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
|
||||
if (!list_empty(&sb->s_dirty) || !list_empty(&sb->s_io)) {
|
||||
/* we're making our own get_super here */
|
||||
sb->s_count++;
|
||||
spin_unlock(&sb_lock);
|
||||
/*
|
||||
* If we can't get the readlock, there's no sense in
|
||||
* waiting around, most of the time the FS is going to
|
||||
* be unmounted by the time it is released.
|
||||
*/
|
||||
if (down_read_trylock(&sb->s_umount)) {
|
||||
if (sb->s_root) {
|
||||
spin_lock(&inode_lock);
|
||||
sync_sb_inodes(sb, wbc);
|
||||
spin_unlock(&inode_lock);
|
||||
}
|
||||
up_read(&sb->s_umount);
|
||||
}
|
||||
spin_lock(&sb_lock);
|
||||
if (__put_super_and_need_restart(sb))
|
||||
goto restart;
|
||||
}
|
||||
if (wbc->nr_to_write <= 0)
|
||||
break;
|
||||
}
|
||||
spin_unlock(&sb_lock);
|
||||
}
|
||||
|
||||
/*
|
||||
* writeback and wait upon the filesystem's dirty inodes. The caller will
|
||||
* do this in two passes - one to write, and one to wait. WB_SYNC_HOLD is
|
||||
* used to park the written inodes on sb->s_dirty for the wait pass.
|
||||
*
|
||||
* A finite limit is set on the number of pages which will be written.
|
||||
* To prevent infinite livelock of sys_sync().
|
||||
*
|
||||
* We add in the number of potentially dirty inodes, because each inode write
|
||||
* can dirty pagecache in the underlying blockdev.
|
||||
*/
|
||||
void sync_inodes_sb(struct super_block *sb, int wait)
|
||||
{
|
||||
struct writeback_control wbc = {
|
||||
.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_HOLD,
|
||||
};
|
||||
unsigned long nr_dirty = read_page_state(nr_dirty);
|
||||
unsigned long nr_unstable = read_page_state(nr_unstable);
|
||||
|
||||
wbc.nr_to_write = nr_dirty + nr_unstable +
|
||||
(inodes_stat.nr_inodes - inodes_stat.nr_unused) +
|
||||
nr_dirty + nr_unstable;
|
||||
wbc.nr_to_write += wbc.nr_to_write / 2; /* Bit more for luck */
|
||||
spin_lock(&inode_lock);
|
||||
sync_sb_inodes(sb, &wbc);
|
||||
spin_unlock(&inode_lock);
|
||||
}
|
||||
|
||||
/*
|
||||
* Rather lame livelock avoidance.
|
||||
*/
|
||||
static void set_sb_syncing(int val)
|
||||
{
|
||||
struct super_block *sb;
|
||||
spin_lock(&sb_lock);
|
||||
sb = sb_entry(super_blocks.prev);
|
||||
for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
|
||||
sb->s_syncing = val;
|
||||
}
|
||||
spin_unlock(&sb_lock);
|
||||
}
|
||||
|
||||
/*
|
||||
* Find a superblock with inodes that need to be synced
|
||||
*/
|
||||
static struct super_block *get_super_to_sync(void)
|
||||
{
|
||||
struct super_block *sb;
|
||||
restart:
|
||||
spin_lock(&sb_lock);
|
||||
sb = sb_entry(super_blocks.prev);
|
||||
for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
|
||||
if (sb->s_syncing)
|
||||
continue;
|
||||
sb->s_syncing = 1;
|
||||
sb->s_count++;
|
||||
spin_unlock(&sb_lock);
|
||||
down_read(&sb->s_umount);
|
||||
if (!sb->s_root) {
|
||||
drop_super(sb);
|
||||
goto restart;
|
||||
}
|
||||
return sb;
|
||||
}
|
||||
spin_unlock(&sb_lock);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
* sync_inodes
|
||||
*
|
||||
* sync_inodes() goes through each super block's dirty inode list, writes the
|
||||
* inodes out, waits on the writeout and puts the inodes back on the normal
|
||||
* list.
|
||||
*
|
||||
* This is for sys_sync(). fsync_dev() uses the same algorithm. The subtle
|
||||
* part of the sync functions is that the blockdev "superblock" is processed
|
||||
* last. This is because the write_inode() function of a typical fs will
|
||||
* perform no I/O, but will mark buffers in the blockdev mapping as dirty.
|
||||
* What we want to do is to perform all that dirtying first, and then write
|
||||
* back all those inode blocks via the blockdev mapping in one sweep. So the
|
||||
* additional (somewhat redundant) sync_blockdev() calls here are to make
|
||||
* sure that really happens. Because if we call sync_inodes_sb(wait=1) with
|
||||
* outstanding dirty inodes, the writeback goes block-at-a-time within the
|
||||
* filesystem's write_inode(). This is extremely slow.
|
||||
*/
|
||||
void sync_inodes(int wait)
|
||||
{
|
||||
struct super_block *sb;
|
||||
|
||||
set_sb_syncing(0);
|
||||
while ((sb = get_super_to_sync()) != NULL) {
|
||||
sync_inodes_sb(sb, 0);
|
||||
sync_blockdev(sb->s_bdev);
|
||||
drop_super(sb);
|
||||
}
|
||||
if (wait) {
|
||||
set_sb_syncing(0);
|
||||
while ((sb = get_super_to_sync()) != NULL) {
|
||||
sync_inodes_sb(sb, 1);
|
||||
sync_blockdev(sb->s_bdev);
|
||||
drop_super(sb);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* write_inode_now - write an inode to disk
|
||||
* @inode: inode to write to disk
|
||||
* @sync: whether the write should be synchronous or not
|
||||
*
|
||||
* This function commits an inode to disk immediately if it is
|
||||
* dirty. This is primarily needed by knfsd.
|
||||
*/
|
||||
|
||||
int write_inode_now(struct inode *inode, int sync)
|
||||
{
|
||||
int ret;
|
||||
struct writeback_control wbc = {
|
||||
.nr_to_write = LONG_MAX,
|
||||
.sync_mode = WB_SYNC_ALL,
|
||||
};
|
||||
|
||||
if (!mapping_cap_writeback_dirty(inode->i_mapping))
|
||||
return 0;
|
||||
|
||||
might_sleep();
|
||||
spin_lock(&inode_lock);
|
||||
ret = __writeback_single_inode(inode, &wbc);
|
||||
spin_unlock(&inode_lock);
|
||||
if (sync)
|
||||
wait_on_inode(inode);
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL(write_inode_now);
|
||||
|
||||
/**
|
||||
* sync_inode - write an inode and its pages to disk.
|
||||
* @inode: the inode to sync
|
||||
* @wbc: controls the writeback mode
|
||||
*
|
||||
* sync_inode() will write an inode and its pages to disk. It will also
|
||||
* correctly update the inode on its superblock's dirty inode lists and will
|
||||
* update inode->i_state.
|
||||
*
|
||||
* The caller must have a ref on the inode.
|
||||
*/
|
||||
int sync_inode(struct inode *inode, struct writeback_control *wbc)
|
||||
{
|
||||
int ret;
|
||||
|
||||
spin_lock(&inode_lock);
|
||||
ret = __writeback_single_inode(inode, wbc);
|
||||
spin_unlock(&inode_lock);
|
||||
return ret;
|
||||
}
|
||||
EXPORT_SYMBOL(sync_inode);
|
||||
|
||||
/**
|
||||
* generic_osync_inode - flush all dirty data for a given inode to disk
|
||||
* @inode: inode to write
|
||||
* @what: what to write and wait upon
|
||||
*
|
||||
* This can be called by file_write functions for files which have the
|
||||
* O_SYNC flag set, to flush dirty writes to disk.
|
||||
*
|
||||
* @what is a bitmask, specifying which part of the inode's data should be
|
||||
* written and waited upon:
|
||||
*
|
||||
* OSYNC_DATA: i_mapping's dirty data
|
||||
* OSYNC_METADATA: the buffers at i_mapping->private_list
|
||||
* OSYNC_INODE: the inode itself
|
||||
*/
|
||||
|
||||
int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what)
|
||||
{
|
||||
int err = 0;
|
||||
int need_write_inode_now = 0;
|
||||
int err2;
|
||||
|
||||
current->flags |= PF_SYNCWRITE;
|
||||
if (what & OSYNC_DATA)
|
||||
err = filemap_fdatawrite(mapping);
|
||||
if (what & (OSYNC_METADATA|OSYNC_DATA)) {
|
||||
err2 = sync_mapping_buffers(mapping);
|
||||
if (!err)
|
||||
err = err2;
|
||||
}
|
||||
if (what & OSYNC_DATA) {
|
||||
err2 = filemap_fdatawait(mapping);
|
||||
if (!err)
|
||||
err = err2;
|
||||
}
|
||||
current->flags &= ~PF_SYNCWRITE;
|
||||
|
||||
spin_lock(&inode_lock);
|
||||
if ((inode->i_state & I_DIRTY) &&
|
||||
((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC)))
|
||||
need_write_inode_now = 1;
|
||||
spin_unlock(&inode_lock);
|
||||
|
||||
if (need_write_inode_now) {
|
||||
err2 = write_inode_now(inode, 1);
|
||||
if (!err)
|
||||
err = err2;
|
||||
}
|
||||
else
|
||||
wait_on_inode(inode);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL(generic_osync_inode);
|
||||
|
||||
/**
|
||||
* writeback_acquire: attempt to get exclusive writeback access to a device
|
||||
* @bdi: the device's backing_dev_info structure
|
||||
*
|
||||
* It is a waste of resources to have more than one pdflush thread blocked on
|
||||
* a single request queue. Exclusion at the request_queue level is obtained
|
||||
* via a flag in the request_queue's backing_dev_info.state.
|
||||
*
|
||||
* Non-request_queue-backed address_spaces will share default_backing_dev_info,
|
||||
* unless they implement their own. Which is somewhat inefficient, as this
|
||||
* may prevent concurrent writeback against multiple devices.
|
||||
*/
|
||||
int writeback_acquire(struct backing_dev_info *bdi)
|
||||
{
|
||||
return !test_and_set_bit(BDI_pdflush, &bdi->state);
|
||||
}
|
||||
|
||||
/**
|
||||
* writeback_in_progress: determine whether there is writeback in progress
|
||||
* against a backing device.
|
||||
* @bdi: the device's backing_dev_info structure.
|
||||
*/
|
||||
int writeback_in_progress(struct backing_dev_info *bdi)
|
||||
{
|
||||
return test_bit(BDI_pdflush, &bdi->state);
|
||||
}
|
||||
|
||||
/**
|
||||
* writeback_release: relinquish exclusive writeback access against a device.
|
||||
* @bdi: the device's backing_dev_info structure
|
||||
*/
|
||||
void writeback_release(struct backing_dev_info *bdi)
|
||||
{
|
||||
BUG_ON(!writeback_in_progress(bdi));
|
||||
clear_bit(BDI_pdflush, &bdi->state);
|
||||
}
|
Reference in New Issue
Block a user