Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
This commit is contained in:
286
drivers/mtd/chips/Kconfig
Normal file
286
drivers/mtd/chips/Kconfig
Normal file
@@ -0,0 +1,286 @@
|
||||
# drivers/mtd/chips/Kconfig
|
||||
# $Id: Kconfig,v 1.13 2004/12/01 15:49:10 nico Exp $
|
||||
|
||||
menu "RAM/ROM/Flash chip drivers"
|
||||
depends on MTD!=n
|
||||
|
||||
config MTD_CFI
|
||||
tristate "Detect flash chips by Common Flash Interface (CFI) probe"
|
||||
depends on MTD
|
||||
select MTD_GEN_PROBE
|
||||
help
|
||||
The Common Flash Interface specification was developed by Intel,
|
||||
AMD and other flash manufactures that provides a universal method
|
||||
for probing the capabilities of flash devices. If you wish to
|
||||
support any device that is CFI-compliant, you need to enable this
|
||||
option. Visit <http://www.amd.com/products/nvd/overview/cfi.html>
|
||||
for more information on CFI.
|
||||
|
||||
config MTD_JEDECPROBE
|
||||
tristate "Detect non-CFI AMD/JEDEC-compatible flash chips"
|
||||
depends on MTD
|
||||
select MTD_GEN_PROBE
|
||||
help
|
||||
This option enables JEDEC-style probing of flash chips which are not
|
||||
compatible with the Common Flash Interface, but will use the common
|
||||
CFI-targetted flash drivers for any chips which are identified which
|
||||
are in fact compatible in all but the probe method. This actually
|
||||
covers most AMD/Fujitsu-compatible chips, and will shortly cover also
|
||||
non-CFI Intel chips (that code is in MTD CVS and should shortly be sent
|
||||
for inclusion in Linus' tree)
|
||||
|
||||
config MTD_GEN_PROBE
|
||||
tristate
|
||||
|
||||
config MTD_CFI_ADV_OPTIONS
|
||||
bool "Flash chip driver advanced configuration options"
|
||||
depends on MTD_GEN_PROBE
|
||||
help
|
||||
If you need to specify a specific endianness for access to flash
|
||||
chips, or if you wish to reduce the size of the kernel by including
|
||||
support for only specific arrangements of flash chips, say 'Y'. This
|
||||
option does not directly affect the code, but will enable other
|
||||
configuration options which allow you to do so.
|
||||
|
||||
If unsure, say 'N'.
|
||||
|
||||
choice
|
||||
prompt "Flash cmd/query data swapping"
|
||||
depends on MTD_CFI_ADV_OPTIONS
|
||||
default MTD_CFI_NOSWAP
|
||||
|
||||
config MTD_CFI_NOSWAP
|
||||
bool "NO"
|
||||
---help---
|
||||
This option defines the way in which the CPU attempts to arrange
|
||||
data bits when writing the 'magic' commands to the chips. Saying
|
||||
'NO', which is the default when CONFIG_MTD_CFI_ADV_OPTIONS isn't
|
||||
enabled, means that the CPU will not do any swapping; the chips
|
||||
are expected to be wired to the CPU in 'host-endian' form.
|
||||
Specific arrangements are possible with the BIG_ENDIAN_BYTE and
|
||||
LITTLE_ENDIAN_BYTE, if the bytes are reversed.
|
||||
|
||||
If you have a LART, on which the data (and address) lines were
|
||||
connected in a fashion which ensured that the nets were as short
|
||||
as possible, resulting in a bit-shuffling which seems utterly
|
||||
random to the untrained eye, you need the LART_ENDIAN_BYTE option.
|
||||
|
||||
Yes, there really exists something sicker than PDP-endian :)
|
||||
|
||||
config MTD_CFI_BE_BYTE_SWAP
|
||||
bool "BIG_ENDIAN_BYTE"
|
||||
|
||||
config MTD_CFI_LE_BYTE_SWAP
|
||||
bool "LITTLE_ENDIAN_BYTE"
|
||||
|
||||
endchoice
|
||||
|
||||
config MTD_CFI_GEOMETRY
|
||||
bool "Specific CFI Flash geometry selection"
|
||||
depends on MTD_CFI_ADV_OPTIONS
|
||||
help
|
||||
This option does not affect the code directly, but will enable
|
||||
some other configuration options which would allow you to reduce
|
||||
the size of the kernel by including support for only certain
|
||||
arrangements of CFI chips. If unsure, say 'N' and all options
|
||||
which are supported by the current code will be enabled.
|
||||
|
||||
config MTD_MAP_BANK_WIDTH_1
|
||||
bool "Support 8-bit buswidth" if MTD_CFI_GEOMETRY
|
||||
default y
|
||||
help
|
||||
If you wish to support CFI devices on a physical bus which is
|
||||
8 bits wide, say 'Y'.
|
||||
|
||||
config MTD_MAP_BANK_WIDTH_2
|
||||
bool "Support 16-bit buswidth" if MTD_CFI_GEOMETRY
|
||||
default y
|
||||
help
|
||||
If you wish to support CFI devices on a physical bus which is
|
||||
16 bits wide, say 'Y'.
|
||||
|
||||
config MTD_MAP_BANK_WIDTH_4
|
||||
bool "Support 32-bit buswidth" if MTD_CFI_GEOMETRY
|
||||
default y
|
||||
help
|
||||
If you wish to support CFI devices on a physical bus which is
|
||||
32 bits wide, say 'Y'.
|
||||
|
||||
config MTD_MAP_BANK_WIDTH_8
|
||||
bool "Support 64-bit buswidth" if MTD_CFI_GEOMETRY
|
||||
default n
|
||||
help
|
||||
If you wish to support CFI devices on a physical bus which is
|
||||
64 bits wide, say 'Y'.
|
||||
|
||||
config MTD_MAP_BANK_WIDTH_16
|
||||
bool "Support 128-bit buswidth" if MTD_CFI_GEOMETRY
|
||||
default n
|
||||
help
|
||||
If you wish to support CFI devices on a physical bus which is
|
||||
128 bits wide, say 'Y'.
|
||||
|
||||
config MTD_MAP_BANK_WIDTH_32
|
||||
bool "Support 256-bit buswidth" if MTD_CFI_GEOMETRY
|
||||
default n
|
||||
help
|
||||
If you wish to support CFI devices on a physical bus which is
|
||||
256 bits wide, say 'Y'.
|
||||
|
||||
config MTD_CFI_I1
|
||||
bool "Support 1-chip flash interleave" if MTD_CFI_GEOMETRY
|
||||
default y
|
||||
help
|
||||
If your flash chips are not interleaved - i.e. you only have one
|
||||
flash chip addressed by each bus cycle, then say 'Y'.
|
||||
|
||||
config MTD_CFI_I2
|
||||
bool "Support 2-chip flash interleave" if MTD_CFI_GEOMETRY
|
||||
default y
|
||||
help
|
||||
If your flash chips are interleaved in pairs - i.e. you have two
|
||||
flash chips addressed by each bus cycle, then say 'Y'.
|
||||
|
||||
config MTD_CFI_I4
|
||||
bool "Support 4-chip flash interleave" if MTD_CFI_GEOMETRY
|
||||
default n
|
||||
help
|
||||
If your flash chips are interleaved in fours - i.e. you have four
|
||||
flash chips addressed by each bus cycle, then say 'Y'.
|
||||
|
||||
config MTD_CFI_I8
|
||||
bool "Support 8-chip flash interleave" if MTD_CFI_GEOMETRY
|
||||
default n
|
||||
help
|
||||
If your flash chips are interleaved in eights - i.e. you have eight
|
||||
flash chips addressed by each bus cycle, then say 'Y'.
|
||||
|
||||
config MTD_CFI_INTELEXT
|
||||
tristate "Support for Intel/Sharp flash chips"
|
||||
depends on MTD_GEN_PROBE
|
||||
select MTD_CFI_UTIL
|
||||
help
|
||||
The Common Flash Interface defines a number of different command
|
||||
sets which a CFI-compliant chip may claim to implement. This code
|
||||
provides support for one of those command sets, used on Intel
|
||||
StrataFlash and other parts.
|
||||
|
||||
config MTD_CFI_AMDSTD
|
||||
tristate "Support for AMD/Fujitsu flash chips"
|
||||
depends on MTD_GEN_PROBE
|
||||
select MTD_CFI_UTIL
|
||||
help
|
||||
The Common Flash Interface defines a number of different command
|
||||
sets which a CFI-compliant chip may claim to implement. This code
|
||||
provides support for one of those command sets, used on chips
|
||||
including the AMD Am29LV320.
|
||||
|
||||
config MTD_CFI_AMDSTD_RETRY
|
||||
int "Retry failed commands (erase/program)"
|
||||
depends on MTD_CFI_AMDSTD
|
||||
default "0"
|
||||
help
|
||||
Some chips, when attached to a shared bus, don't properly filter
|
||||
bus traffic that is destined to other devices. This broken
|
||||
behavior causes erase and program sequences to be aborted when
|
||||
the sequences are mixed with traffic for other devices.
|
||||
|
||||
SST49LF040 (and related) chips are know to be broken.
|
||||
|
||||
config MTD_CFI_AMDSTD_RETRY_MAX
|
||||
int "Max retries of failed commands (erase/program)"
|
||||
depends on MTD_CFI_AMDSTD_RETRY
|
||||
default "0"
|
||||
help
|
||||
If you have an SST49LF040 (or related chip) then this value should
|
||||
be set to at least 1. This can also be adjusted at driver load
|
||||
time with the retry_cmd_max module parameter.
|
||||
|
||||
config MTD_CFI_STAA
|
||||
tristate "Support for ST (Advanced Architecture) flash chips"
|
||||
depends on MTD_GEN_PROBE
|
||||
select MTD_CFI_UTIL
|
||||
help
|
||||
The Common Flash Interface defines a number of different command
|
||||
sets which a CFI-compliant chip may claim to implement. This code
|
||||
provides support for one of those command sets.
|
||||
|
||||
config MTD_CFI_UTIL
|
||||
tristate
|
||||
|
||||
config MTD_RAM
|
||||
tristate "Support for RAM chips in bus mapping"
|
||||
depends on MTD
|
||||
help
|
||||
This option enables basic support for RAM chips accessed through
|
||||
a bus mapping driver.
|
||||
|
||||
config MTD_ROM
|
||||
tristate "Support for ROM chips in bus mapping"
|
||||
depends on MTD
|
||||
help
|
||||
This option enables basic support for ROM chips accessed through
|
||||
a bus mapping driver.
|
||||
|
||||
config MTD_ABSENT
|
||||
tristate "Support for absent chips in bus mapping"
|
||||
depends on MTD
|
||||
help
|
||||
This option enables support for a dummy probing driver used to
|
||||
allocated placeholder MTD devices on systems that have socketed
|
||||
or removable media. Use of this driver as a fallback chip probe
|
||||
preserves the expected registration order of MTD device nodes on
|
||||
the system regardless of media presence. Device nodes created
|
||||
with this driver will return -ENODEV upon access.
|
||||
|
||||
config MTD_OBSOLETE_CHIPS
|
||||
depends on MTD && BROKEN
|
||||
bool "Older (theoretically obsoleted now) drivers for non-CFI chips"
|
||||
help
|
||||
This option does not enable any code directly, but will allow you to
|
||||
select some other chip drivers which are now considered obsolete,
|
||||
because the generic CONFIG_JEDECPROBE code above should now detect
|
||||
the chips which are supported by these drivers, and allow the generic
|
||||
CFI-compatible drivers to drive the chips. Say 'N' here unless you have
|
||||
already tried the CONFIG_JEDECPROBE method and reported its failure
|
||||
to the MTD mailing list at <linux-mtd@lists.infradead.org>
|
||||
|
||||
config MTD_AMDSTD
|
||||
tristate "AMD compatible flash chip support (non-CFI)"
|
||||
depends on MTD && MTD_OBSOLETE_CHIPS
|
||||
help
|
||||
This option enables support for flash chips using AMD-compatible
|
||||
commands, including some which are not CFI-compatible and hence
|
||||
cannot be used with the CONFIG_MTD_CFI_AMDSTD option.
|
||||
|
||||
It also works on AMD compatible chips that do conform to CFI.
|
||||
|
||||
config MTD_SHARP
|
||||
tristate "pre-CFI Sharp chip support"
|
||||
depends on MTD && MTD_OBSOLETE_CHIPS
|
||||
help
|
||||
This option enables support for flash chips using Sharp-compatible
|
||||
commands, including some which are not CFI-compatible and hence
|
||||
cannot be used with the CONFIG_MTD_CFI_INTELxxx options.
|
||||
|
||||
config MTD_JEDEC
|
||||
tristate "JEDEC device support"
|
||||
depends on MTD && MTD_OBSOLETE_CHIPS
|
||||
help
|
||||
Enable older older JEDEC flash interface devices for self
|
||||
programming flash. It is commonly used in older AMD chips. It is
|
||||
only called JEDEC because the JEDEC association
|
||||
<http://www.jedec.org/> distributes the identification codes for the
|
||||
chips.
|
||||
|
||||
config MTD_XIP
|
||||
bool "XIP aware MTD support"
|
||||
depends on !SMP && MTD_CFI_INTELEXT && EXPERIMENTAL
|
||||
default y if XIP_KERNEL
|
||||
help
|
||||
This allows MTD support to work with flash memory which is also
|
||||
used for XIP purposes. If you're not sure what this is all about
|
||||
then say N.
|
||||
|
||||
endmenu
|
||||
|
26
drivers/mtd/chips/Makefile
Normal file
26
drivers/mtd/chips/Makefile
Normal file
@@ -0,0 +1,26 @@
|
||||
#
|
||||
# linux/drivers/chips/Makefile
|
||||
#
|
||||
# $Id: Makefile.common,v 1.4 2004/07/12 16:07:30 dwmw2 Exp $
|
||||
|
||||
# *** BIG UGLY NOTE ***
|
||||
#
|
||||
# The removal of get_module_symbol() and replacement with
|
||||
# inter_module_register() et al has introduced a link order dependency
|
||||
# here where previously there was none. We now have to ensure that
|
||||
# the CFI command set drivers are linked before gen_probe.o
|
||||
|
||||
obj-$(CONFIG_MTD) += chipreg.o
|
||||
obj-$(CONFIG_MTD_AMDSTD) += amd_flash.o
|
||||
obj-$(CONFIG_MTD_CFI) += cfi_probe.o
|
||||
obj-$(CONFIG_MTD_CFI_UTIL) += cfi_util.o
|
||||
obj-$(CONFIG_MTD_CFI_STAA) += cfi_cmdset_0020.o
|
||||
obj-$(CONFIG_MTD_CFI_AMDSTD) += cfi_cmdset_0002.o
|
||||
obj-$(CONFIG_MTD_CFI_INTELEXT) += cfi_cmdset_0001.o
|
||||
obj-$(CONFIG_MTD_GEN_PROBE) += gen_probe.o
|
||||
obj-$(CONFIG_MTD_JEDEC) += jedec.o
|
||||
obj-$(CONFIG_MTD_JEDECPROBE) += jedec_probe.o
|
||||
obj-$(CONFIG_MTD_RAM) += map_ram.o
|
||||
obj-$(CONFIG_MTD_ROM) += map_rom.o
|
||||
obj-$(CONFIG_MTD_SHARP) += sharp.o
|
||||
obj-$(CONFIG_MTD_ABSENT) += map_absent.o
|
1415
drivers/mtd/chips/amd_flash.c
Normal file
1415
drivers/mtd/chips/amd_flash.c
Normal file
File diff suppressed because it is too large
Load Diff
2160
drivers/mtd/chips/cfi_cmdset_0001.c
Normal file
2160
drivers/mtd/chips/cfi_cmdset_0001.c
Normal file
File diff suppressed because it is too large
Load Diff
1515
drivers/mtd/chips/cfi_cmdset_0002.c
Normal file
1515
drivers/mtd/chips/cfi_cmdset_0002.c
Normal file
File diff suppressed because it is too large
Load Diff
1418
drivers/mtd/chips/cfi_cmdset_0020.c
Normal file
1418
drivers/mtd/chips/cfi_cmdset_0020.c
Normal file
File diff suppressed because it is too large
Load Diff
445
drivers/mtd/chips/cfi_probe.c
Normal file
445
drivers/mtd/chips/cfi_probe.c
Normal file
@@ -0,0 +1,445 @@
|
||||
/*
|
||||
Common Flash Interface probe code.
|
||||
(C) 2000 Red Hat. GPL'd.
|
||||
$Id: cfi_probe.c,v 1.83 2004/11/16 18:19:02 nico Exp $
|
||||
*/
|
||||
|
||||
#include <linux/config.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/init.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/byteorder.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/interrupt.h>
|
||||
|
||||
#include <linux/mtd/xip.h>
|
||||
#include <linux/mtd/map.h>
|
||||
#include <linux/mtd/cfi.h>
|
||||
#include <linux/mtd/gen_probe.h>
|
||||
|
||||
//#define DEBUG_CFI
|
||||
|
||||
#ifdef DEBUG_CFI
|
||||
static void print_cfi_ident(struct cfi_ident *);
|
||||
#endif
|
||||
|
||||
static int cfi_probe_chip(struct map_info *map, __u32 base,
|
||||
unsigned long *chip_map, struct cfi_private *cfi);
|
||||
static int cfi_chip_setup(struct map_info *map, struct cfi_private *cfi);
|
||||
|
||||
struct mtd_info *cfi_probe(struct map_info *map);
|
||||
|
||||
#ifdef CONFIG_MTD_XIP
|
||||
|
||||
/* only needed for short periods, so this is rather simple */
|
||||
#define xip_disable() local_irq_disable()
|
||||
|
||||
#define xip_allowed(base, map) \
|
||||
do { \
|
||||
(void) map_read(map, base); \
|
||||
asm volatile (".rep 8; nop; .endr"); \
|
||||
local_irq_enable(); \
|
||||
} while (0)
|
||||
|
||||
#define xip_enable(base, map, cfi) \
|
||||
do { \
|
||||
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); \
|
||||
cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); \
|
||||
xip_allowed(base, map); \
|
||||
} while (0)
|
||||
|
||||
#define xip_disable_qry(base, map, cfi) \
|
||||
do { \
|
||||
xip_disable(); \
|
||||
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL); \
|
||||
cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL); \
|
||||
cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL); \
|
||||
} while (0)
|
||||
|
||||
#else
|
||||
|
||||
#define xip_disable() do { } while (0)
|
||||
#define xip_allowed(base, map) do { } while (0)
|
||||
#define xip_enable(base, map, cfi) do { } while (0)
|
||||
#define xip_disable_qry(base, map, cfi) do { } while (0)
|
||||
|
||||
#endif
|
||||
|
||||
/* check for QRY.
|
||||
in: interleave,type,mode
|
||||
ret: table index, <0 for error
|
||||
*/
|
||||
static int __xipram qry_present(struct map_info *map, __u32 base,
|
||||
struct cfi_private *cfi)
|
||||
{
|
||||
int osf = cfi->interleave * cfi->device_type; // scale factor
|
||||
map_word val[3];
|
||||
map_word qry[3];
|
||||
|
||||
qry[0] = cfi_build_cmd('Q', map, cfi);
|
||||
qry[1] = cfi_build_cmd('R', map, cfi);
|
||||
qry[2] = cfi_build_cmd('Y', map, cfi);
|
||||
|
||||
val[0] = map_read(map, base + osf*0x10);
|
||||
val[1] = map_read(map, base + osf*0x11);
|
||||
val[2] = map_read(map, base + osf*0x12);
|
||||
|
||||
if (!map_word_equal(map, qry[0], val[0]))
|
||||
return 0;
|
||||
|
||||
if (!map_word_equal(map, qry[1], val[1]))
|
||||
return 0;
|
||||
|
||||
if (!map_word_equal(map, qry[2], val[2]))
|
||||
return 0;
|
||||
|
||||
return 1; // "QRY" found
|
||||
}
|
||||
|
||||
static int __xipram cfi_probe_chip(struct map_info *map, __u32 base,
|
||||
unsigned long *chip_map, struct cfi_private *cfi)
|
||||
{
|
||||
int i;
|
||||
|
||||
if ((base + 0) >= map->size) {
|
||||
printk(KERN_NOTICE
|
||||
"Probe at base[0x00](0x%08lx) past the end of the map(0x%08lx)\n",
|
||||
(unsigned long)base, map->size -1);
|
||||
return 0;
|
||||
}
|
||||
if ((base + 0xff) >= map->size) {
|
||||
printk(KERN_NOTICE
|
||||
"Probe at base[0x55](0x%08lx) past the end of the map(0x%08lx)\n",
|
||||
(unsigned long)base + 0x55, map->size -1);
|
||||
return 0;
|
||||
}
|
||||
|
||||
xip_disable();
|
||||
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
|
||||
cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
|
||||
cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);
|
||||
|
||||
if (!qry_present(map,base,cfi)) {
|
||||
xip_enable(base, map, cfi);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (!cfi->numchips) {
|
||||
/* This is the first time we're called. Set up the CFI
|
||||
stuff accordingly and return */
|
||||
return cfi_chip_setup(map, cfi);
|
||||
}
|
||||
|
||||
/* Check each previous chip to see if it's an alias */
|
||||
for (i=0; i < (base >> cfi->chipshift); i++) {
|
||||
unsigned long start;
|
||||
if(!test_bit(i, chip_map)) {
|
||||
/* Skip location; no valid chip at this address */
|
||||
continue;
|
||||
}
|
||||
start = i << cfi->chipshift;
|
||||
/* This chip should be in read mode if it's one
|
||||
we've already touched. */
|
||||
if (qry_present(map, start, cfi)) {
|
||||
/* Eep. This chip also had the QRY marker.
|
||||
* Is it an alias for the new one? */
|
||||
cfi_send_gen_cmd(0xF0, 0, start, map, cfi, cfi->device_type, NULL);
|
||||
cfi_send_gen_cmd(0xFF, 0, start, map, cfi, cfi->device_type, NULL);
|
||||
|
||||
/* If the QRY marker goes away, it's an alias */
|
||||
if (!qry_present(map, start, cfi)) {
|
||||
xip_allowed(base, map);
|
||||
printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
|
||||
map->name, base, start);
|
||||
return 0;
|
||||
}
|
||||
/* Yes, it's actually got QRY for data. Most
|
||||
* unfortunate. Stick the new chip in read mode
|
||||
* too and if it's the same, assume it's an alias. */
|
||||
/* FIXME: Use other modes to do a proper check */
|
||||
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
|
||||
cfi_send_gen_cmd(0xFF, 0, start, map, cfi, cfi->device_type, NULL);
|
||||
|
||||
if (qry_present(map, base, cfi)) {
|
||||
xip_allowed(base, map);
|
||||
printk(KERN_DEBUG "%s: Found an alias at 0x%x for the chip at 0x%lx\n",
|
||||
map->name, base, start);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* OK, if we got to here, then none of the previous chips appear to
|
||||
be aliases for the current one. */
|
||||
set_bit((base >> cfi->chipshift), chip_map); /* Update chip map */
|
||||
cfi->numchips++;
|
||||
|
||||
/* Put it back into Read Mode */
|
||||
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
|
||||
cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
|
||||
xip_allowed(base, map);
|
||||
|
||||
printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n",
|
||||
map->name, cfi->interleave, cfi->device_type*8, base,
|
||||
map->bankwidth*8);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int __xipram cfi_chip_setup(struct map_info *map,
|
||||
struct cfi_private *cfi)
|
||||
{
|
||||
int ofs_factor = cfi->interleave*cfi->device_type;
|
||||
__u32 base = 0;
|
||||
int num_erase_regions = cfi_read_query(map, base + (0x10 + 28)*ofs_factor);
|
||||
int i;
|
||||
|
||||
xip_enable(base, map, cfi);
|
||||
#ifdef DEBUG_CFI
|
||||
printk("Number of erase regions: %d\n", num_erase_regions);
|
||||
#endif
|
||||
if (!num_erase_regions)
|
||||
return 0;
|
||||
|
||||
cfi->cfiq = kmalloc(sizeof(struct cfi_ident) + num_erase_regions * 4, GFP_KERNEL);
|
||||
if (!cfi->cfiq) {
|
||||
printk(KERN_WARNING "%s: kmalloc failed for CFI ident structure\n", map->name);
|
||||
return 0;
|
||||
}
|
||||
|
||||
memset(cfi->cfiq,0,sizeof(struct cfi_ident));
|
||||
|
||||
cfi->cfi_mode = CFI_MODE_CFI;
|
||||
|
||||
/* Read the CFI info structure */
|
||||
xip_disable_qry(base, map, cfi);
|
||||
for (i=0; i<(sizeof(struct cfi_ident) + num_erase_regions * 4); i++)
|
||||
((unsigned char *)cfi->cfiq)[i] = cfi_read_query(map,base + (0x10 + i)*ofs_factor);
|
||||
|
||||
/* Note we put the device back into Read Mode BEFORE going into Auto
|
||||
* Select Mode, as some devices support nesting of modes, others
|
||||
* don't. This way should always work.
|
||||
* On cmdset 0001 the writes of 0xaa and 0x55 are not needed, and
|
||||
* so should be treated as nops or illegal (and so put the device
|
||||
* back into Read Mode, which is a nop in this case).
|
||||
*/
|
||||
cfi_send_gen_cmd(0xf0, 0, base, map, cfi, cfi->device_type, NULL);
|
||||
cfi_send_gen_cmd(0xaa, 0x555, base, map, cfi, cfi->device_type, NULL);
|
||||
cfi_send_gen_cmd(0x55, 0x2aa, base, map, cfi, cfi->device_type, NULL);
|
||||
cfi_send_gen_cmd(0x90, 0x555, base, map, cfi, cfi->device_type, NULL);
|
||||
cfi->mfr = cfi_read_query(map, base);
|
||||
cfi->id = cfi_read_query(map, base + ofs_factor);
|
||||
|
||||
/* Put it back into Read Mode */
|
||||
cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
|
||||
/* ... even if it's an Intel chip */
|
||||
cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
|
||||
xip_allowed(base, map);
|
||||
|
||||
/* Do any necessary byteswapping */
|
||||
cfi->cfiq->P_ID = le16_to_cpu(cfi->cfiq->P_ID);
|
||||
|
||||
cfi->cfiq->P_ADR = le16_to_cpu(cfi->cfiq->P_ADR);
|
||||
cfi->cfiq->A_ID = le16_to_cpu(cfi->cfiq->A_ID);
|
||||
cfi->cfiq->A_ADR = le16_to_cpu(cfi->cfiq->A_ADR);
|
||||
cfi->cfiq->InterfaceDesc = le16_to_cpu(cfi->cfiq->InterfaceDesc);
|
||||
cfi->cfiq->MaxBufWriteSize = le16_to_cpu(cfi->cfiq->MaxBufWriteSize);
|
||||
|
||||
#ifdef DEBUG_CFI
|
||||
/* Dump the information therein */
|
||||
print_cfi_ident(cfi->cfiq);
|
||||
#endif
|
||||
|
||||
for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
|
||||
cfi->cfiq->EraseRegionInfo[i] = le32_to_cpu(cfi->cfiq->EraseRegionInfo[i]);
|
||||
|
||||
#ifdef DEBUG_CFI
|
||||
printk(" Erase Region #%d: BlockSize 0x%4.4X bytes, %d blocks\n",
|
||||
i, (cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff,
|
||||
(cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1);
|
||||
#endif
|
||||
}
|
||||
|
||||
printk(KERN_INFO "%s: Found %d x%d devices at 0x%x in %d-bit bank\n",
|
||||
map->name, cfi->interleave, cfi->device_type*8, base,
|
||||
map->bankwidth*8);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
#ifdef DEBUG_CFI
|
||||
static char *vendorname(__u16 vendor)
|
||||
{
|
||||
switch (vendor) {
|
||||
case P_ID_NONE:
|
||||
return "None";
|
||||
|
||||
case P_ID_INTEL_EXT:
|
||||
return "Intel/Sharp Extended";
|
||||
|
||||
case P_ID_AMD_STD:
|
||||
return "AMD/Fujitsu Standard";
|
||||
|
||||
case P_ID_INTEL_STD:
|
||||
return "Intel/Sharp Standard";
|
||||
|
||||
case P_ID_AMD_EXT:
|
||||
return "AMD/Fujitsu Extended";
|
||||
|
||||
case P_ID_WINBOND:
|
||||
return "Winbond Standard";
|
||||
|
||||
case P_ID_ST_ADV:
|
||||
return "ST Advanced";
|
||||
|
||||
case P_ID_MITSUBISHI_STD:
|
||||
return "Mitsubishi Standard";
|
||||
|
||||
case P_ID_MITSUBISHI_EXT:
|
||||
return "Mitsubishi Extended";
|
||||
|
||||
case P_ID_SST_PAGE:
|
||||
return "SST Page Write";
|
||||
|
||||
case P_ID_INTEL_PERFORMANCE:
|
||||
return "Intel Performance Code";
|
||||
|
||||
case P_ID_INTEL_DATA:
|
||||
return "Intel Data";
|
||||
|
||||
case P_ID_RESERVED:
|
||||
return "Not Allowed / Reserved for Future Use";
|
||||
|
||||
default:
|
||||
return "Unknown";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void print_cfi_ident(struct cfi_ident *cfip)
|
||||
{
|
||||
#if 0
|
||||
if (cfip->qry[0] != 'Q' || cfip->qry[1] != 'R' || cfip->qry[2] != 'Y') {
|
||||
printk("Invalid CFI ident structure.\n");
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
printk("Primary Vendor Command Set: %4.4X (%s)\n", cfip->P_ID, vendorname(cfip->P_ID));
|
||||
if (cfip->P_ADR)
|
||||
printk("Primary Algorithm Table at %4.4X\n", cfip->P_ADR);
|
||||
else
|
||||
printk("No Primary Algorithm Table\n");
|
||||
|
||||
printk("Alternative Vendor Command Set: %4.4X (%s)\n", cfip->A_ID, vendorname(cfip->A_ID));
|
||||
if (cfip->A_ADR)
|
||||
printk("Alternate Algorithm Table at %4.4X\n", cfip->A_ADR);
|
||||
else
|
||||
printk("No Alternate Algorithm Table\n");
|
||||
|
||||
|
||||
printk("Vcc Minimum: %2d.%d V\n", cfip->VccMin >> 4, cfip->VccMin & 0xf);
|
||||
printk("Vcc Maximum: %2d.%d V\n", cfip->VccMax >> 4, cfip->VccMax & 0xf);
|
||||
if (cfip->VppMin) {
|
||||
printk("Vpp Minimum: %2d.%d V\n", cfip->VppMin >> 4, cfip->VppMin & 0xf);
|
||||
printk("Vpp Maximum: %2d.%d V\n", cfip->VppMax >> 4, cfip->VppMax & 0xf);
|
||||
}
|
||||
else
|
||||
printk("No Vpp line\n");
|
||||
|
||||
printk("Typical byte/word write timeout: %d <20>s\n", 1<<cfip->WordWriteTimeoutTyp);
|
||||
printk("Maximum byte/word write timeout: %d <20>s\n", (1<<cfip->WordWriteTimeoutMax) * (1<<cfip->WordWriteTimeoutTyp));
|
||||
|
||||
if (cfip->BufWriteTimeoutTyp || cfip->BufWriteTimeoutMax) {
|
||||
printk("Typical full buffer write timeout: %d <20>s\n", 1<<cfip->BufWriteTimeoutTyp);
|
||||
printk("Maximum full buffer write timeout: %d <20>s\n", (1<<cfip->BufWriteTimeoutMax) * (1<<cfip->BufWriteTimeoutTyp));
|
||||
}
|
||||
else
|
||||
printk("Full buffer write not supported\n");
|
||||
|
||||
printk("Typical block erase timeout: %d ms\n", 1<<cfip->BlockEraseTimeoutTyp);
|
||||
printk("Maximum block erase timeout: %d ms\n", (1<<cfip->BlockEraseTimeoutMax) * (1<<cfip->BlockEraseTimeoutTyp));
|
||||
if (cfip->ChipEraseTimeoutTyp || cfip->ChipEraseTimeoutMax) {
|
||||
printk("Typical chip erase timeout: %d ms\n", 1<<cfip->ChipEraseTimeoutTyp);
|
||||
printk("Maximum chip erase timeout: %d ms\n", (1<<cfip->ChipEraseTimeoutMax) * (1<<cfip->ChipEraseTimeoutTyp));
|
||||
}
|
||||
else
|
||||
printk("Chip erase not supported\n");
|
||||
|
||||
printk("Device size: 0x%X bytes (%d MiB)\n", 1 << cfip->DevSize, 1<< (cfip->DevSize - 20));
|
||||
printk("Flash Device Interface description: 0x%4.4X\n", cfip->InterfaceDesc);
|
||||
switch(cfip->InterfaceDesc) {
|
||||
case 0:
|
||||
printk(" - x8-only asynchronous interface\n");
|
||||
break;
|
||||
|
||||
case 1:
|
||||
printk(" - x16-only asynchronous interface\n");
|
||||
break;
|
||||
|
||||
case 2:
|
||||
printk(" - supports x8 and x16 via BYTE# with asynchronous interface\n");
|
||||
break;
|
||||
|
||||
case 3:
|
||||
printk(" - x32-only asynchronous interface\n");
|
||||
break;
|
||||
|
||||
case 4:
|
||||
printk(" - supports x16 and x32 via Word# with asynchronous interface\n");
|
||||
break;
|
||||
|
||||
case 65535:
|
||||
printk(" - Not Allowed / Reserved\n");
|
||||
break;
|
||||
|
||||
default:
|
||||
printk(" - Unknown\n");
|
||||
break;
|
||||
}
|
||||
|
||||
printk("Max. bytes in buffer write: 0x%x\n", 1<< cfip->MaxBufWriteSize);
|
||||
printk("Number of Erase Block Regions: %d\n", cfip->NumEraseRegions);
|
||||
|
||||
}
|
||||
#endif /* DEBUG_CFI */
|
||||
|
||||
static struct chip_probe cfi_chip_probe = {
|
||||
.name = "CFI",
|
||||
.probe_chip = cfi_probe_chip
|
||||
};
|
||||
|
||||
struct mtd_info *cfi_probe(struct map_info *map)
|
||||
{
|
||||
/*
|
||||
* Just use the generic probe stuff to call our CFI-specific
|
||||
* chip_probe routine in all the possible permutations, etc.
|
||||
*/
|
||||
return mtd_do_chip_probe(map, &cfi_chip_probe);
|
||||
}
|
||||
|
||||
static struct mtd_chip_driver cfi_chipdrv = {
|
||||
.probe = cfi_probe,
|
||||
.name = "cfi_probe",
|
||||
.module = THIS_MODULE
|
||||
};
|
||||
|
||||
int __init cfi_probe_init(void)
|
||||
{
|
||||
register_mtd_chip_driver(&cfi_chipdrv);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit cfi_probe_exit(void)
|
||||
{
|
||||
unregister_mtd_chip_driver(&cfi_chipdrv);
|
||||
}
|
||||
|
||||
module_init(cfi_probe_init);
|
||||
module_exit(cfi_probe_exit);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
|
||||
MODULE_DESCRIPTION("Probe code for CFI-compliant flash chips");
|
196
drivers/mtd/chips/cfi_util.c
Normal file
196
drivers/mtd/chips/cfi_util.c
Normal file
@@ -0,0 +1,196 @@
|
||||
/*
|
||||
* Common Flash Interface support:
|
||||
* Generic utility functions not dependant on command set
|
||||
*
|
||||
* Copyright (C) 2002 Red Hat
|
||||
* Copyright (C) 2003 STMicroelectronics Limited
|
||||
*
|
||||
* This code is covered by the GPL.
|
||||
*
|
||||
* $Id: cfi_util.c,v 1.8 2004/12/14 19:55:56 nico Exp $
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/sched.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/byteorder.h>
|
||||
|
||||
#include <linux/errno.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/mtd/xip.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/map.h>
|
||||
#include <linux/mtd/cfi.h>
|
||||
#include <linux/mtd/compatmac.h>
|
||||
|
||||
struct cfi_extquery *
|
||||
__xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* name)
|
||||
{
|
||||
struct cfi_private *cfi = map->fldrv_priv;
|
||||
__u32 base = 0; // cfi->chips[0].start;
|
||||
int ofs_factor = cfi->interleave * cfi->device_type;
|
||||
int i;
|
||||
struct cfi_extquery *extp = NULL;
|
||||
|
||||
printk(" %s Extended Query Table at 0x%4.4X\n", name, adr);
|
||||
if (!adr)
|
||||
goto out;
|
||||
|
||||
extp = kmalloc(size, GFP_KERNEL);
|
||||
if (!extp) {
|
||||
printk(KERN_ERR "Failed to allocate memory\n");
|
||||
goto out;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_MTD_XIP
|
||||
local_irq_disable();
|
||||
#endif
|
||||
|
||||
/* Switch it into Query Mode */
|
||||
cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);
|
||||
|
||||
/* Read in the Extended Query Table */
|
||||
for (i=0; i<size; i++) {
|
||||
((unsigned char *)extp)[i] =
|
||||
cfi_read_query(map, base+((adr+i)*ofs_factor));
|
||||
}
|
||||
|
||||
/* Make sure it returns to read mode */
|
||||
cfi_send_gen_cmd(0xf0, 0, base, map, cfi, cfi->device_type, NULL);
|
||||
cfi_send_gen_cmd(0xff, 0, base, map, cfi, cfi->device_type, NULL);
|
||||
|
||||
#ifdef CONFIG_MTD_XIP
|
||||
(void) map_read(map, base);
|
||||
asm volatile (".rep 8; nop; .endr");
|
||||
local_irq_enable();
|
||||
#endif
|
||||
|
||||
if (extp->MajorVersion != '1' ||
|
||||
(extp->MinorVersion < '0' || extp->MinorVersion > '3')) {
|
||||
printk(KERN_WARNING " Unknown %s Extended Query "
|
||||
"version %c.%c.\n", name, extp->MajorVersion,
|
||||
extp->MinorVersion);
|
||||
kfree(extp);
|
||||
extp = NULL;
|
||||
}
|
||||
|
||||
out: return extp;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL(cfi_read_pri);
|
||||
|
||||
void cfi_fixup(struct mtd_info *mtd, struct cfi_fixup *fixups)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
struct cfi_private *cfi = map->fldrv_priv;
|
||||
struct cfi_fixup *f;
|
||||
|
||||
for (f=fixups; f->fixup; f++) {
|
||||
if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi->mfr)) &&
|
||||
((f->id == CFI_ID_ANY) || (f->id == cfi->id))) {
|
||||
f->fixup(mtd, f->param);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL(cfi_fixup);
|
||||
|
||||
int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob,
|
||||
loff_t ofs, size_t len, void *thunk)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
struct cfi_private *cfi = map->fldrv_priv;
|
||||
unsigned long adr;
|
||||
int chipnum, ret = 0;
|
||||
int i, first;
|
||||
struct mtd_erase_region_info *regions = mtd->eraseregions;
|
||||
|
||||
if (ofs > mtd->size)
|
||||
return -EINVAL;
|
||||
|
||||
if ((len + ofs) > mtd->size)
|
||||
return -EINVAL;
|
||||
|
||||
/* Check that both start and end of the requested erase are
|
||||
* aligned with the erasesize at the appropriate addresses.
|
||||
*/
|
||||
|
||||
i = 0;
|
||||
|
||||
/* Skip all erase regions which are ended before the start of
|
||||
the requested erase. Actually, to save on the calculations,
|
||||
we skip to the first erase region which starts after the
|
||||
start of the requested erase, and then go back one.
|
||||
*/
|
||||
|
||||
while (i < mtd->numeraseregions && ofs >= regions[i].offset)
|
||||
i++;
|
||||
i--;
|
||||
|
||||
/* OK, now i is pointing at the erase region in which this
|
||||
erase request starts. Check the start of the requested
|
||||
erase range is aligned with the erase size which is in
|
||||
effect here.
|
||||
*/
|
||||
|
||||
if (ofs & (regions[i].erasesize-1))
|
||||
return -EINVAL;
|
||||
|
||||
/* Remember the erase region we start on */
|
||||
first = i;
|
||||
|
||||
/* Next, check that the end of the requested erase is aligned
|
||||
* with the erase region at that address.
|
||||
*/
|
||||
|
||||
while (i<mtd->numeraseregions && (ofs + len) >= regions[i].offset)
|
||||
i++;
|
||||
|
||||
/* As before, drop back one to point at the region in which
|
||||
the address actually falls
|
||||
*/
|
||||
i--;
|
||||
|
||||
if ((ofs + len) & (regions[i].erasesize-1))
|
||||
return -EINVAL;
|
||||
|
||||
chipnum = ofs >> cfi->chipshift;
|
||||
adr = ofs - (chipnum << cfi->chipshift);
|
||||
|
||||
i=first;
|
||||
|
||||
while(len) {
|
||||
int size = regions[i].erasesize;
|
||||
|
||||
ret = (*frob)(map, &cfi->chips[chipnum], adr, size, thunk);
|
||||
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
adr += size;
|
||||
ofs += size;
|
||||
len -= size;
|
||||
|
||||
if (ofs == regions[i].offset + size * regions[i].numblocks)
|
||||
i++;
|
||||
|
||||
if (adr >> cfi->chipshift) {
|
||||
adr = 0;
|
||||
chipnum++;
|
||||
|
||||
if (chipnum >= cfi->numchips)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL(cfi_varsize_frob);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
111
drivers/mtd/chips/chipreg.c
Normal file
111
drivers/mtd/chips/chipreg.c
Normal file
@@ -0,0 +1,111 @@
|
||||
/*
|
||||
* $Id: chipreg.c,v 1.17 2004/11/16 18:29:00 dwmw2 Exp $
|
||||
*
|
||||
* Registration for chip drivers
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/config.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/kmod.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/mtd/map.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/compatmac.h>
|
||||
|
||||
static DEFINE_SPINLOCK(chip_drvs_lock);
|
||||
static LIST_HEAD(chip_drvs_list);
|
||||
|
||||
void register_mtd_chip_driver(struct mtd_chip_driver *drv)
|
||||
{
|
||||
spin_lock(&chip_drvs_lock);
|
||||
list_add(&drv->list, &chip_drvs_list);
|
||||
spin_unlock(&chip_drvs_lock);
|
||||
}
|
||||
|
||||
void unregister_mtd_chip_driver(struct mtd_chip_driver *drv)
|
||||
{
|
||||
spin_lock(&chip_drvs_lock);
|
||||
list_del(&drv->list);
|
||||
spin_unlock(&chip_drvs_lock);
|
||||
}
|
||||
|
||||
static struct mtd_chip_driver *get_mtd_chip_driver (const char *name)
|
||||
{
|
||||
struct list_head *pos;
|
||||
struct mtd_chip_driver *ret = NULL, *this;
|
||||
|
||||
spin_lock(&chip_drvs_lock);
|
||||
|
||||
list_for_each(pos, &chip_drvs_list) {
|
||||
this = list_entry(pos, typeof(*this), list);
|
||||
|
||||
if (!strcmp(this->name, name)) {
|
||||
ret = this;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (ret && !try_module_get(ret->module))
|
||||
ret = NULL;
|
||||
|
||||
spin_unlock(&chip_drvs_lock);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Hide all the horrid details, like some silly person taking
|
||||
get_module_symbol() away from us, from the caller. */
|
||||
|
||||
struct mtd_info *do_map_probe(const char *name, struct map_info *map)
|
||||
{
|
||||
struct mtd_chip_driver *drv;
|
||||
struct mtd_info *ret;
|
||||
|
||||
drv = get_mtd_chip_driver(name);
|
||||
|
||||
if (!drv && !request_module("%s", name))
|
||||
drv = get_mtd_chip_driver(name);
|
||||
|
||||
if (!drv)
|
||||
return NULL;
|
||||
|
||||
ret = drv->probe(map);
|
||||
|
||||
/* We decrease the use count here. It may have been a
|
||||
probe-only module, which is no longer required from this
|
||||
point, having given us a handle on (and increased the use
|
||||
count of) the actual driver code.
|
||||
*/
|
||||
module_put(drv->module);
|
||||
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
return NULL;
|
||||
}
|
||||
/*
|
||||
* Destroy an MTD device which was created for a map device.
|
||||
* Make sure the MTD device is already unregistered before calling this
|
||||
*/
|
||||
void map_destroy(struct mtd_info *mtd)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
|
||||
if (map->fldrv->destroy)
|
||||
map->fldrv->destroy(mtd);
|
||||
|
||||
module_put(map->fldrv->module);
|
||||
|
||||
kfree(mtd);
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL(register_mtd_chip_driver);
|
||||
EXPORT_SYMBOL(unregister_mtd_chip_driver);
|
||||
EXPORT_SYMBOL(do_map_probe);
|
||||
EXPORT_SYMBOL(map_destroy);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
|
||||
MODULE_DESCRIPTION("Core routines for registering and invoking MTD chip drivers");
|
107
drivers/mtd/chips/fwh_lock.h
Normal file
107
drivers/mtd/chips/fwh_lock.h
Normal file
@@ -0,0 +1,107 @@
|
||||
#ifndef FWH_LOCK_H
|
||||
#define FWH_LOCK_H
|
||||
|
||||
|
||||
enum fwh_lock_state {
|
||||
FWH_UNLOCKED = 0,
|
||||
FWH_DENY_WRITE = 1,
|
||||
FWH_IMMUTABLE = 2,
|
||||
FWH_DENY_READ = 4,
|
||||
};
|
||||
|
||||
struct fwh_xxlock_thunk {
|
||||
enum fwh_lock_state val;
|
||||
flstate_t state;
|
||||
};
|
||||
|
||||
|
||||
#define FWH_XXLOCK_ONEBLOCK_LOCK ((struct fwh_xxlock_thunk){ FWH_DENY_WRITE, FL_LOCKING})
|
||||
#define FWH_XXLOCK_ONEBLOCK_UNLOCK ((struct fwh_xxlock_thunk){ FWH_UNLOCKED, FL_UNLOCKING})
|
||||
|
||||
/*
|
||||
* This locking/unlock is specific to firmware hub parts. Only one
|
||||
* is known that supports the Intel command set. Firmware
|
||||
* hub parts cannot be interleaved as they are on the LPC bus
|
||||
* so this code has not been tested with interleaved chips,
|
||||
* and will likely fail in that context.
|
||||
*/
|
||||
static int fwh_xxlock_oneblock(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr, int len, void *thunk)
|
||||
{
|
||||
struct cfi_private *cfi = map->fldrv_priv;
|
||||
struct fwh_xxlock_thunk *xxlt = (struct fwh_xxlock_thunk *)thunk;
|
||||
int ret;
|
||||
|
||||
/* Refuse the operation if the we cannot look behind the chip */
|
||||
if (chip->start < 0x400000) {
|
||||
DEBUG( MTD_DEBUG_LEVEL3,
|
||||
"MTD %s(): chip->start: %lx wanted >= 0x400000\n",
|
||||
__func__, chip->start );
|
||||
return -EIO;
|
||||
}
|
||||
/*
|
||||
* lock block registers:
|
||||
* - on 64k boundariesand
|
||||
* - bit 1 set high
|
||||
* - block lock registers are 4MiB lower - overflow subtract (danger)
|
||||
*
|
||||
* The address manipulation is first done on the logical address
|
||||
* which is 0 at the start of the chip, and then the offset of
|
||||
* the individual chip is addted to it. Any other order a weird
|
||||
* map offset could cause problems.
|
||||
*/
|
||||
adr = (adr & ~0xffffUL) | 0x2;
|
||||
adr += chip->start - 0x400000;
|
||||
|
||||
/*
|
||||
* This is easy because these are writes to registers and not writes
|
||||
* to flash memory - that means that we don't have to check status
|
||||
* and timeout.
|
||||
*/
|
||||
cfi_spin_lock(chip->mutex);
|
||||
ret = get_chip(map, chip, adr, FL_LOCKING);
|
||||
if (ret) {
|
||||
cfi_spin_unlock(chip->mutex);
|
||||
return ret;
|
||||
}
|
||||
|
||||
chip->state = xxlt->state;
|
||||
map_write(map, CMD(xxlt->val), adr);
|
||||
|
||||
/* Done and happy. */
|
||||
chip->state = FL_READY;
|
||||
put_chip(map, chip, adr);
|
||||
cfi_spin_unlock(chip->mutex);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
static int fwh_lock_varsize(struct mtd_info *mtd, loff_t ofs, size_t len)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = cfi_varsize_frob(mtd, fwh_xxlock_oneblock, ofs, len,
|
||||
(void *)&FWH_XXLOCK_ONEBLOCK_LOCK);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
static int fwh_unlock_varsize(struct mtd_info *mtd, loff_t ofs, size_t len)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = cfi_varsize_frob(mtd, fwh_xxlock_oneblock, ofs, len,
|
||||
(void *)&FWH_XXLOCK_ONEBLOCK_UNLOCK);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void fixup_use_fwh_lock(struct mtd_info *mtd, void *param)
|
||||
{
|
||||
printk(KERN_NOTICE "using fwh lock/unlock method\n");
|
||||
/* Setup for the chips with the fwh lock method */
|
||||
mtd->lock = fwh_lock_varsize;
|
||||
mtd->unlock = fwh_unlock_varsize;
|
||||
}
|
||||
#endif /* FWH_LOCK_H */
|
255
drivers/mtd/chips/gen_probe.c
Normal file
255
drivers/mtd/chips/gen_probe.c
Normal file
@@ -0,0 +1,255 @@
|
||||
/*
|
||||
* Routines common to all CFI-type probes.
|
||||
* (C) 2001-2003 Red Hat, Inc.
|
||||
* GPL'd
|
||||
* $Id: gen_probe.c,v 1.21 2004/08/14 15:14:05 dwmw2 Exp $
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/map.h>
|
||||
#include <linux/mtd/cfi.h>
|
||||
#include <linux/mtd/gen_probe.h>
|
||||
|
||||
static struct mtd_info *check_cmd_set(struct map_info *, int);
|
||||
static struct cfi_private *genprobe_ident_chips(struct map_info *map,
|
||||
struct chip_probe *cp);
|
||||
static int genprobe_new_chip(struct map_info *map, struct chip_probe *cp,
|
||||
struct cfi_private *cfi);
|
||||
|
||||
struct mtd_info *mtd_do_chip_probe(struct map_info *map, struct chip_probe *cp)
|
||||
{
|
||||
struct mtd_info *mtd = NULL;
|
||||
struct cfi_private *cfi;
|
||||
|
||||
/* First probe the map to see if we have CFI stuff there. */
|
||||
cfi = genprobe_ident_chips(map, cp);
|
||||
|
||||
if (!cfi)
|
||||
return NULL;
|
||||
|
||||
map->fldrv_priv = cfi;
|
||||
/* OK we liked it. Now find a driver for the command set it talks */
|
||||
|
||||
mtd = check_cmd_set(map, 1); /* First the primary cmdset */
|
||||
if (!mtd)
|
||||
mtd = check_cmd_set(map, 0); /* Then the secondary */
|
||||
|
||||
if (mtd)
|
||||
return mtd;
|
||||
|
||||
printk(KERN_WARNING"gen_probe: No supported Vendor Command Set found\n");
|
||||
|
||||
kfree(cfi->cfiq);
|
||||
kfree(cfi);
|
||||
map->fldrv_priv = NULL;
|
||||
return NULL;
|
||||
}
|
||||
EXPORT_SYMBOL(mtd_do_chip_probe);
|
||||
|
||||
|
||||
static struct cfi_private *genprobe_ident_chips(struct map_info *map, struct chip_probe *cp)
|
||||
{
|
||||
struct cfi_private cfi;
|
||||
struct cfi_private *retcfi;
|
||||
unsigned long *chip_map;
|
||||
int i, j, mapsize;
|
||||
int max_chips;
|
||||
|
||||
memset(&cfi, 0, sizeof(cfi));
|
||||
|
||||
/* Call the probetype-specific code with all permutations of
|
||||
interleave and device type, etc. */
|
||||
if (!genprobe_new_chip(map, cp, &cfi)) {
|
||||
/* The probe didn't like it */
|
||||
printk(KERN_DEBUG "%s: Found no %s device at location zero\n",
|
||||
cp->name, map->name);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
#if 0 /* Let the CFI probe routine do this sanity check. The Intel and AMD
|
||||
probe routines won't ever return a broken CFI structure anyway,
|
||||
because they make them up themselves.
|
||||
*/
|
||||
if (cfi.cfiq->NumEraseRegions == 0) {
|
||||
printk(KERN_WARNING "Number of erase regions is zero\n");
|
||||
kfree(cfi.cfiq);
|
||||
return NULL;
|
||||
}
|
||||
#endif
|
||||
cfi.chipshift = cfi.cfiq->DevSize;
|
||||
|
||||
if (cfi_interleave_is_1(&cfi)) {
|
||||
;
|
||||
} else if (cfi_interleave_is_2(&cfi)) {
|
||||
cfi.chipshift++;
|
||||
} else if (cfi_interleave_is_4((&cfi))) {
|
||||
cfi.chipshift += 2;
|
||||
} else if (cfi_interleave_is_8(&cfi)) {
|
||||
cfi.chipshift += 3;
|
||||
} else {
|
||||
BUG();
|
||||
}
|
||||
|
||||
cfi.numchips = 1;
|
||||
|
||||
/*
|
||||
* Allocate memory for bitmap of valid chips.
|
||||
* Align bitmap storage size to full byte.
|
||||
*/
|
||||
max_chips = map->size >> cfi.chipshift;
|
||||
mapsize = (max_chips / 8) + ((max_chips % 8) ? 1 : 0);
|
||||
chip_map = kmalloc(mapsize, GFP_KERNEL);
|
||||
if (!chip_map) {
|
||||
printk(KERN_WARNING "%s: kmalloc failed for CFI chip map\n", map->name);
|
||||
kfree(cfi.cfiq);
|
||||
return NULL;
|
||||
}
|
||||
memset (chip_map, 0, mapsize);
|
||||
|
||||
set_bit(0, chip_map); /* Mark first chip valid */
|
||||
|
||||
/*
|
||||
* Now probe for other chips, checking sensibly for aliases while
|
||||
* we're at it. The new_chip probe above should have let the first
|
||||
* chip in read mode.
|
||||
*/
|
||||
|
||||
for (i = 1; i < max_chips; i++) {
|
||||
cp->probe_chip(map, i << cfi.chipshift, chip_map, &cfi);
|
||||
}
|
||||
|
||||
/*
|
||||
* Now allocate the space for the structures we need to return to
|
||||
* our caller, and copy the appropriate data into them.
|
||||
*/
|
||||
|
||||
retcfi = kmalloc(sizeof(struct cfi_private) + cfi.numchips * sizeof(struct flchip), GFP_KERNEL);
|
||||
|
||||
if (!retcfi) {
|
||||
printk(KERN_WARNING "%s: kmalloc failed for CFI private structure\n", map->name);
|
||||
kfree(cfi.cfiq);
|
||||
kfree(chip_map);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
memcpy(retcfi, &cfi, sizeof(cfi));
|
||||
memset(&retcfi->chips[0], 0, sizeof(struct flchip) * cfi.numchips);
|
||||
|
||||
for (i = 0, j = 0; (j < cfi.numchips) && (i < max_chips); i++) {
|
||||
if(test_bit(i, chip_map)) {
|
||||
struct flchip *pchip = &retcfi->chips[j++];
|
||||
|
||||
pchip->start = (i << cfi.chipshift);
|
||||
pchip->state = FL_READY;
|
||||
init_waitqueue_head(&pchip->wq);
|
||||
spin_lock_init(&pchip->_spinlock);
|
||||
pchip->mutex = &pchip->_spinlock;
|
||||
}
|
||||
}
|
||||
|
||||
kfree(chip_map);
|
||||
return retcfi;
|
||||
}
|
||||
|
||||
|
||||
static int genprobe_new_chip(struct map_info *map, struct chip_probe *cp,
|
||||
struct cfi_private *cfi)
|
||||
{
|
||||
int min_chips = (map_bankwidth(map)/4?:1); /* At most 4-bytes wide. */
|
||||
int max_chips = map_bankwidth(map); /* And minimum 1 */
|
||||
int nr_chips, type;
|
||||
|
||||
for (nr_chips = min_chips; nr_chips <= max_chips; nr_chips <<= 1) {
|
||||
|
||||
if (!cfi_interleave_supported(nr_chips))
|
||||
continue;
|
||||
|
||||
cfi->interleave = nr_chips;
|
||||
|
||||
/* Minimum device size. Don't look for one 8-bit device
|
||||
in a 16-bit bus, etc. */
|
||||
type = map_bankwidth(map) / nr_chips;
|
||||
|
||||
for (; type <= CFI_DEVICETYPE_X32; type<<=1) {
|
||||
cfi->device_type = type;
|
||||
|
||||
if (cp->probe_chip(map, 0, NULL, cfi))
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
typedef struct mtd_info *cfi_cmdset_fn_t(struct map_info *, int);
|
||||
|
||||
extern cfi_cmdset_fn_t cfi_cmdset_0001;
|
||||
extern cfi_cmdset_fn_t cfi_cmdset_0002;
|
||||
extern cfi_cmdset_fn_t cfi_cmdset_0020;
|
||||
|
||||
static inline struct mtd_info *cfi_cmdset_unknown(struct map_info *map,
|
||||
int primary)
|
||||
{
|
||||
struct cfi_private *cfi = map->fldrv_priv;
|
||||
__u16 type = primary?cfi->cfiq->P_ID:cfi->cfiq->A_ID;
|
||||
#if defined(CONFIG_MODULES) && defined(HAVE_INTER_MODULE)
|
||||
char probename[32];
|
||||
cfi_cmdset_fn_t *probe_function;
|
||||
|
||||
sprintf(probename, "cfi_cmdset_%4.4X", type);
|
||||
|
||||
probe_function = inter_module_get_request(probename, probename);
|
||||
|
||||
if (probe_function) {
|
||||
struct mtd_info *mtd;
|
||||
|
||||
mtd = (*probe_function)(map, primary);
|
||||
/* If it was happy, it'll have increased its own use count */
|
||||
inter_module_put(probename);
|
||||
return mtd;
|
||||
}
|
||||
#endif
|
||||
printk(KERN_NOTICE "Support for command set %04X not present\n",
|
||||
type);
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static struct mtd_info *check_cmd_set(struct map_info *map, int primary)
|
||||
{
|
||||
struct cfi_private *cfi = map->fldrv_priv;
|
||||
__u16 type = primary?cfi->cfiq->P_ID:cfi->cfiq->A_ID;
|
||||
|
||||
if (type == P_ID_NONE || type == P_ID_RESERVED)
|
||||
return NULL;
|
||||
|
||||
switch(type){
|
||||
/* Urgh. Ifdefs. The version with weak symbols was
|
||||
* _much_ nicer. Shame it didn't seem to work on
|
||||
* anything but x86, really.
|
||||
* But we can't rely in inter_module_get() because
|
||||
* that'd mean we depend on link order.
|
||||
*/
|
||||
#ifdef CONFIG_MTD_CFI_INTELEXT
|
||||
case 0x0001:
|
||||
case 0x0003:
|
||||
return cfi_cmdset_0001(map, primary);
|
||||
#endif
|
||||
#ifdef CONFIG_MTD_CFI_AMDSTD
|
||||
case 0x0002:
|
||||
return cfi_cmdset_0002(map, primary);
|
||||
#endif
|
||||
#ifdef CONFIG_MTD_CFI_STAA
|
||||
case 0x0020:
|
||||
return cfi_cmdset_0020(map, primary);
|
||||
#endif
|
||||
}
|
||||
|
||||
return cfi_cmdset_unknown(map, primary);
|
||||
}
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
|
||||
MODULE_DESCRIPTION("Helper routines for flash chip probe code");
|
934
drivers/mtd/chips/jedec.c
Normal file
934
drivers/mtd/chips/jedec.c
Normal file
@@ -0,0 +1,934 @@
|
||||
|
||||
/* JEDEC Flash Interface.
|
||||
* This is an older type of interface for self programming flash. It is
|
||||
* commonly use in older AMD chips and is obsolete compared with CFI.
|
||||
* It is called JEDEC because the JEDEC association distributes the ID codes
|
||||
* for the chips.
|
||||
*
|
||||
* See the AMD flash databook for information on how to operate the interface.
|
||||
*
|
||||
* This code does not support anything wider than 8 bit flash chips, I am
|
||||
* not going to guess how to send commands to them, plus I expect they will
|
||||
* all speak CFI..
|
||||
*
|
||||
* $Id: jedec.c,v 1.22 2005/01/05 18:05:11 dwmw2 Exp $
|
||||
*/
|
||||
|
||||
#include <linux/init.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/mtd/jedec.h>
|
||||
#include <linux/mtd/map.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/compatmac.h>
|
||||
|
||||
static struct mtd_info *jedec_probe(struct map_info *);
|
||||
static int jedec_probe8(struct map_info *map,unsigned long base,
|
||||
struct jedec_private *priv);
|
||||
static int jedec_probe16(struct map_info *map,unsigned long base,
|
||||
struct jedec_private *priv);
|
||||
static int jedec_probe32(struct map_info *map,unsigned long base,
|
||||
struct jedec_private *priv);
|
||||
static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start,
|
||||
unsigned long len);
|
||||
static int flash_erase(struct mtd_info *mtd, struct erase_info *instr);
|
||||
static int flash_write(struct mtd_info *mtd, loff_t start, size_t len,
|
||||
size_t *retlen, const u_char *buf);
|
||||
|
||||
static unsigned long my_bank_size;
|
||||
|
||||
/* Listing of parts and sizes. We need this table to learn the sector
|
||||
size of the chip and the total length */
|
||||
static const struct JEDECTable JEDEC_table[] = {
|
||||
{
|
||||
.jedec = 0x013D,
|
||||
.name = "AMD Am29F017D",
|
||||
.size = 2*1024*1024,
|
||||
.sectorsize = 64*1024,
|
||||
.capabilities = MTD_CAP_NORFLASH
|
||||
},
|
||||
{
|
||||
.jedec = 0x01AD,
|
||||
.name = "AMD Am29F016",
|
||||
.size = 2*1024*1024,
|
||||
.sectorsize = 64*1024,
|
||||
.capabilities = MTD_CAP_NORFLASH
|
||||
},
|
||||
{
|
||||
.jedec = 0x01D5,
|
||||
.name = "AMD Am29F080",
|
||||
.size = 1*1024*1024,
|
||||
.sectorsize = 64*1024,
|
||||
.capabilities = MTD_CAP_NORFLASH
|
||||
},
|
||||
{
|
||||
.jedec = 0x01A4,
|
||||
.name = "AMD Am29F040",
|
||||
.size = 512*1024,
|
||||
.sectorsize = 64*1024,
|
||||
.capabilities = MTD_CAP_NORFLASH
|
||||
},
|
||||
{
|
||||
.jedec = 0x20E3,
|
||||
.name = "AMD Am29W040B",
|
||||
.size = 512*1024,
|
||||
.sectorsize = 64*1024,
|
||||
.capabilities = MTD_CAP_NORFLASH
|
||||
},
|
||||
{
|
||||
.jedec = 0xC2AD,
|
||||
.name = "Macronix MX29F016",
|
||||
.size = 2*1024*1024,
|
||||
.sectorsize = 64*1024,
|
||||
.capabilities = MTD_CAP_NORFLASH
|
||||
},
|
||||
{ .jedec = 0x0 }
|
||||
};
|
||||
|
||||
static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id);
|
||||
static void jedec_sync(struct mtd_info *mtd) {};
|
||||
static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf);
|
||||
static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf);
|
||||
|
||||
static struct mtd_info *jedec_probe(struct map_info *map);
|
||||
|
||||
|
||||
|
||||
static struct mtd_chip_driver jedec_chipdrv = {
|
||||
.probe = jedec_probe,
|
||||
.name = "jedec",
|
||||
.module = THIS_MODULE
|
||||
};
|
||||
|
||||
/* Probe entry point */
|
||||
|
||||
static struct mtd_info *jedec_probe(struct map_info *map)
|
||||
{
|
||||
struct mtd_info *MTD;
|
||||
struct jedec_private *priv;
|
||||
unsigned long Base;
|
||||
unsigned long SectorSize;
|
||||
unsigned count;
|
||||
unsigned I,Uniq;
|
||||
char Part[200];
|
||||
memset(&priv,0,sizeof(priv));
|
||||
|
||||
MTD = kmalloc(sizeof(struct mtd_info) + sizeof(struct jedec_private), GFP_KERNEL);
|
||||
if (!MTD)
|
||||
return NULL;
|
||||
|
||||
memset(MTD, 0, sizeof(struct mtd_info) + sizeof(struct jedec_private));
|
||||
priv = (struct jedec_private *)&MTD[1];
|
||||
|
||||
my_bank_size = map->size;
|
||||
|
||||
if (map->size/my_bank_size > MAX_JEDEC_CHIPS)
|
||||
{
|
||||
printk("mtd: Increase MAX_JEDEC_CHIPS, too many banks.\n");
|
||||
kfree(MTD);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
for (Base = 0; Base < map->size; Base += my_bank_size)
|
||||
{
|
||||
// Perhaps zero could designate all tests?
|
||||
if (map->buswidth == 0)
|
||||
map->buswidth = 1;
|
||||
|
||||
if (map->buswidth == 1){
|
||||
if (jedec_probe8(map,Base,priv) == 0) {
|
||||
printk("did recognize jedec chip\n");
|
||||
kfree(MTD);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
if (map->buswidth == 2)
|
||||
jedec_probe16(map,Base,priv);
|
||||
if (map->buswidth == 4)
|
||||
jedec_probe32(map,Base,priv);
|
||||
}
|
||||
|
||||
// Get the biggest sector size
|
||||
SectorSize = 0;
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
// printk("priv->chips[%d].jedec is %x\n",I,priv->chips[I].jedec);
|
||||
// printk("priv->chips[%d].sectorsize is %lx\n",I,priv->chips[I].sectorsize);
|
||||
if (priv->chips[I].sectorsize > SectorSize)
|
||||
SectorSize = priv->chips[I].sectorsize;
|
||||
}
|
||||
|
||||
// Quickly ensure that the other sector sizes are factors of the largest
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
if ((SectorSize/priv->chips[I].sectorsize)*priv->chips[I].sectorsize != SectorSize)
|
||||
{
|
||||
printk("mtd: Failed. Device has incompatible mixed sector sizes\n");
|
||||
kfree(MTD);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
|
||||
/* Generate a part name that includes the number of different chips and
|
||||
other configuration information */
|
||||
count = 1;
|
||||
strlcpy(Part,map->name,sizeof(Part)-10);
|
||||
strcat(Part," ");
|
||||
Uniq = 0;
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
const struct JEDECTable *JEDEC;
|
||||
|
||||
if (priv->chips[I+1].jedec == priv->chips[I].jedec)
|
||||
{
|
||||
count++;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Locate the chip in the jedec table
|
||||
JEDEC = jedec_idtoinf(priv->chips[I].jedec >> 8,priv->chips[I].jedec);
|
||||
if (JEDEC == 0)
|
||||
{
|
||||
printk("mtd: Internal Error, JEDEC not set\n");
|
||||
kfree(MTD);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (Uniq != 0)
|
||||
strcat(Part,",");
|
||||
Uniq++;
|
||||
|
||||
if (count != 1)
|
||||
sprintf(Part+strlen(Part),"%x*[%s]",count,JEDEC->name);
|
||||
else
|
||||
sprintf(Part+strlen(Part),"%s",JEDEC->name);
|
||||
if (strlen(Part) > sizeof(Part)*2/3)
|
||||
break;
|
||||
count = 1;
|
||||
}
|
||||
|
||||
/* Determine if the chips are organized in a linear fashion, or if there
|
||||
are empty banks. Note, the last bank does not count here, only the
|
||||
first banks are important. Holes on non-bank boundaries can not exist
|
||||
due to the way the detection algorithm works. */
|
||||
if (priv->size < my_bank_size)
|
||||
my_bank_size = priv->size;
|
||||
priv->is_banked = 0;
|
||||
//printk("priv->size is %x, my_bank_size is %x\n",priv->size,my_bank_size);
|
||||
//printk("priv->bank_fill[0] is %x\n",priv->bank_fill[0]);
|
||||
if (!priv->size) {
|
||||
printk("priv->size is zero\n");
|
||||
kfree(MTD);
|
||||
return NULL;
|
||||
}
|
||||
if (priv->size/my_bank_size) {
|
||||
if (priv->size/my_bank_size == 1) {
|
||||
priv->size = my_bank_size;
|
||||
}
|
||||
else {
|
||||
for (I = 0; I != priv->size/my_bank_size - 1; I++)
|
||||
{
|
||||
if (priv->bank_fill[I] != my_bank_size)
|
||||
priv->is_banked = 1;
|
||||
|
||||
/* This even could be eliminated, but new de-optimized read/write
|
||||
functions have to be written */
|
||||
printk("priv->bank_fill[%d] is %lx, priv->bank_fill[0] is %lx\n",I,priv->bank_fill[I],priv->bank_fill[0]);
|
||||
if (priv->bank_fill[I] != priv->bank_fill[0])
|
||||
{
|
||||
printk("mtd: Failed. Cannot handle unsymmetric banking\n");
|
||||
kfree(MTD);
|
||||
return NULL;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (priv->is_banked == 1)
|
||||
strcat(Part,", banked");
|
||||
|
||||
// printk("Part: '%s'\n",Part);
|
||||
|
||||
memset(MTD,0,sizeof(*MTD));
|
||||
// strlcpy(MTD->name,Part,sizeof(MTD->name));
|
||||
MTD->name = map->name;
|
||||
MTD->type = MTD_NORFLASH;
|
||||
MTD->flags = MTD_CAP_NORFLASH;
|
||||
MTD->erasesize = SectorSize*(map->buswidth);
|
||||
// printk("MTD->erasesize is %x\n",(unsigned int)MTD->erasesize);
|
||||
MTD->size = priv->size;
|
||||
// printk("MTD->size is %x\n",(unsigned int)MTD->size);
|
||||
//MTD->module = THIS_MODULE; // ? Maybe this should be the low level module?
|
||||
MTD->erase = flash_erase;
|
||||
if (priv->is_banked == 1)
|
||||
MTD->read = jedec_read_banked;
|
||||
else
|
||||
MTD->read = jedec_read;
|
||||
MTD->write = flash_write;
|
||||
MTD->sync = jedec_sync;
|
||||
MTD->priv = map;
|
||||
map->fldrv_priv = priv;
|
||||
map->fldrv = &jedec_chipdrv;
|
||||
__module_get(THIS_MODULE);
|
||||
return MTD;
|
||||
}
|
||||
|
||||
/* Helper for the JEDEC function, JEDEC numbers all have odd parity */
|
||||
static int checkparity(u_char C)
|
||||
{
|
||||
u_char parity = 0;
|
||||
while (C != 0)
|
||||
{
|
||||
parity ^= C & 1;
|
||||
C >>= 1;
|
||||
}
|
||||
|
||||
return parity == 1;
|
||||
}
|
||||
|
||||
|
||||
/* Take an array of JEDEC numbers that represent interleved flash chips
|
||||
and process them. Check to make sure they are good JEDEC numbers, look
|
||||
them up and then add them to the chip list */
|
||||
static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count,
|
||||
unsigned long base,struct jedec_private *priv)
|
||||
{
|
||||
unsigned I,J;
|
||||
unsigned long Size;
|
||||
unsigned long SectorSize;
|
||||
const struct JEDECTable *JEDEC;
|
||||
|
||||
// Test #2 JEDEC numbers exhibit odd parity
|
||||
for (I = 0; I != Count; I++)
|
||||
{
|
||||
if (checkparity(Mfg[I]) == 0 || checkparity(Id[I]) == 0)
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Finally, just make sure all the chip sizes are the same
|
||||
JEDEC = jedec_idtoinf(Mfg[0],Id[0]);
|
||||
|
||||
if (JEDEC == 0)
|
||||
{
|
||||
printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]);
|
||||
return 0;
|
||||
}
|
||||
|
||||
Size = JEDEC->size;
|
||||
SectorSize = JEDEC->sectorsize;
|
||||
for (I = 0; I != Count; I++)
|
||||
{
|
||||
JEDEC = jedec_idtoinf(Mfg[0],Id[0]);
|
||||
if (JEDEC == 0)
|
||||
{
|
||||
printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (Size != JEDEC->size || SectorSize != JEDEC->sectorsize)
|
||||
{
|
||||
printk("mtd: Failed. Interleved flash does not have matching characteristics\n");
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
// Load the Chips
|
||||
for (I = 0; I != MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
if (priv->chips[I].jedec == 0)
|
||||
break;
|
||||
}
|
||||
|
||||
if (I + Count > MAX_JEDEC_CHIPS)
|
||||
{
|
||||
printk("mtd: Device has too many chips. Increase MAX_JEDEC_CHIPS\n");
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Add them to the table
|
||||
for (J = 0; J != Count; J++)
|
||||
{
|
||||
unsigned long Bank;
|
||||
|
||||
JEDEC = jedec_idtoinf(Mfg[J],Id[J]);
|
||||
priv->chips[I].jedec = (Mfg[J] << 8) | Id[J];
|
||||
priv->chips[I].size = JEDEC->size;
|
||||
priv->chips[I].sectorsize = JEDEC->sectorsize;
|
||||
priv->chips[I].base = base + J;
|
||||
priv->chips[I].datashift = J*8;
|
||||
priv->chips[I].capabilities = JEDEC->capabilities;
|
||||
priv->chips[I].offset = priv->size + J;
|
||||
|
||||
// log2 n :|
|
||||
priv->chips[I].addrshift = 0;
|
||||
for (Bank = Count; Bank != 1; Bank >>= 1, priv->chips[I].addrshift++);
|
||||
|
||||
// Determine how filled this bank is.
|
||||
Bank = base & (~(my_bank_size-1));
|
||||
if (priv->bank_fill[Bank/my_bank_size] < base +
|
||||
(JEDEC->size << priv->chips[I].addrshift) - Bank)
|
||||
priv->bank_fill[Bank/my_bank_size] = base + (JEDEC->size << priv->chips[I].addrshift) - Bank;
|
||||
I++;
|
||||
}
|
||||
|
||||
priv->size += priv->chips[I-1].size*Count;
|
||||
|
||||
return priv->chips[I-1].size;
|
||||
}
|
||||
|
||||
/* Lookup the chip information from the JEDEC ID table. */
|
||||
static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id)
|
||||
{
|
||||
__u16 Id = (mfr << 8) | id;
|
||||
unsigned long I = 0;
|
||||
for (I = 0; JEDEC_table[I].jedec != 0; I++)
|
||||
if (JEDEC_table[I].jedec == Id)
|
||||
return JEDEC_table + I;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// Look for flash using an 8 bit bus interface
|
||||
static int jedec_probe8(struct map_info *map,unsigned long base,
|
||||
struct jedec_private *priv)
|
||||
{
|
||||
#define flread(x) map_read8(map,base+x)
|
||||
#define flwrite(v,x) map_write8(map,v,base+x)
|
||||
|
||||
const unsigned long AutoSel1 = 0xAA;
|
||||
const unsigned long AutoSel2 = 0x55;
|
||||
const unsigned long AutoSel3 = 0x90;
|
||||
const unsigned long Reset = 0xF0;
|
||||
__u32 OldVal;
|
||||
__u8 Mfg[1];
|
||||
__u8 Id[1];
|
||||
unsigned I;
|
||||
unsigned long Size;
|
||||
|
||||
// Wait for any write/erase operation to settle
|
||||
OldVal = flread(base);
|
||||
for (I = 0; OldVal != flread(base) && I < 10000; I++)
|
||||
OldVal = flread(base);
|
||||
|
||||
// Reset the chip
|
||||
flwrite(Reset,0x555);
|
||||
|
||||
// Send the sequence
|
||||
flwrite(AutoSel1,0x555);
|
||||
flwrite(AutoSel2,0x2AA);
|
||||
flwrite(AutoSel3,0x555);
|
||||
|
||||
// Get the JEDEC numbers
|
||||
Mfg[0] = flread(0);
|
||||
Id[0] = flread(1);
|
||||
// printk("Mfg is %x, Id is %x\n",Mfg[0],Id[0]);
|
||||
|
||||
Size = handle_jedecs(map,Mfg,Id,1,base,priv);
|
||||
// printk("handle_jedecs Size is %x\n",(unsigned int)Size);
|
||||
if (Size == 0)
|
||||
{
|
||||
flwrite(Reset,0x555);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// Reset.
|
||||
flwrite(Reset,0x555);
|
||||
|
||||
return 1;
|
||||
|
||||
#undef flread
|
||||
#undef flwrite
|
||||
}
|
||||
|
||||
// Look for flash using a 16 bit bus interface (ie 2 8-bit chips)
|
||||
static int jedec_probe16(struct map_info *map,unsigned long base,
|
||||
struct jedec_private *priv)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Look for flash using a 32 bit bus interface (ie 4 8-bit chips)
|
||||
static int jedec_probe32(struct map_info *map,unsigned long base,
|
||||
struct jedec_private *priv)
|
||||
{
|
||||
#define flread(x) map_read32(map,base+((x)<<2))
|
||||
#define flwrite(v,x) map_write32(map,v,base+((x)<<2))
|
||||
|
||||
const unsigned long AutoSel1 = 0xAAAAAAAA;
|
||||
const unsigned long AutoSel2 = 0x55555555;
|
||||
const unsigned long AutoSel3 = 0x90909090;
|
||||
const unsigned long Reset = 0xF0F0F0F0;
|
||||
__u32 OldVal;
|
||||
__u8 Mfg[4];
|
||||
__u8 Id[4];
|
||||
unsigned I;
|
||||
unsigned long Size;
|
||||
|
||||
// Wait for any write/erase operation to settle
|
||||
OldVal = flread(base);
|
||||
for (I = 0; OldVal != flread(base) && I < 10000; I++)
|
||||
OldVal = flread(base);
|
||||
|
||||
// Reset the chip
|
||||
flwrite(Reset,0x555);
|
||||
|
||||
// Send the sequence
|
||||
flwrite(AutoSel1,0x555);
|
||||
flwrite(AutoSel2,0x2AA);
|
||||
flwrite(AutoSel3,0x555);
|
||||
|
||||
// Test #1, JEDEC numbers are readable from 0x??00/0x??01
|
||||
if (flread(0) != flread(0x100) ||
|
||||
flread(1) != flread(0x101))
|
||||
{
|
||||
flwrite(Reset,0x555);
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Split up the JEDEC numbers
|
||||
OldVal = flread(0);
|
||||
for (I = 0; I != 4; I++)
|
||||
Mfg[I] = (OldVal >> (I*8));
|
||||
OldVal = flread(1);
|
||||
for (I = 0; I != 4; I++)
|
||||
Id[I] = (OldVal >> (I*8));
|
||||
|
||||
Size = handle_jedecs(map,Mfg,Id,4,base,priv);
|
||||
if (Size == 0)
|
||||
{
|
||||
flwrite(Reset,0x555);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Check if there is address wrap around within a single bank, if this
|
||||
returns JEDEC numbers then we assume that it is wrap around. Notice
|
||||
we call this routine with the JEDEC return still enabled, if two or
|
||||
more flashes have a truncated address space the probe test will still
|
||||
work */
|
||||
if (base + (Size<<2)+0x555 < map->size &&
|
||||
base + (Size<<2)+0x555 < (base & (~(my_bank_size-1))) + my_bank_size)
|
||||
{
|
||||
if (flread(base+Size) != flread(base+Size + 0x100) ||
|
||||
flread(base+Size + 1) != flread(base+Size + 0x101))
|
||||
{
|
||||
jedec_probe32(map,base+Size,priv);
|
||||
}
|
||||
}
|
||||
|
||||
// Reset.
|
||||
flwrite(0xF0F0F0F0,0x555);
|
||||
|
||||
return 1;
|
||||
|
||||
#undef flread
|
||||
#undef flwrite
|
||||
}
|
||||
|
||||
/* Linear read. */
|
||||
static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
|
||||
map_copy_from(map, buf, from, len);
|
||||
*retlen = len;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Banked read. Take special care to jump past the holes in the bank
|
||||
mapping. This version assumes symetry in the holes.. */
|
||||
static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
struct jedec_private *priv = map->fldrv_priv;
|
||||
|
||||
*retlen = 0;
|
||||
while (len > 0)
|
||||
{
|
||||
// Determine what bank and offset into that bank the first byte is
|
||||
unsigned long bank = from & (~(priv->bank_fill[0]-1));
|
||||
unsigned long offset = from & (priv->bank_fill[0]-1);
|
||||
unsigned long get = len;
|
||||
if (priv->bank_fill[0] - offset < len)
|
||||
get = priv->bank_fill[0] - offset;
|
||||
|
||||
bank /= priv->bank_fill[0];
|
||||
map_copy_from(map,buf + *retlen,bank*my_bank_size + offset,get);
|
||||
|
||||
len -= get;
|
||||
*retlen += get;
|
||||
from += get;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Pass the flags value that the flash return before it re-entered read
|
||||
mode. */
|
||||
static void jedec_flash_failed(unsigned char code)
|
||||
{
|
||||
/* Bit 5 being high indicates that there was an internal device
|
||||
failure, erasure time limits exceeded or something */
|
||||
if ((code & (1 << 5)) != 0)
|
||||
{
|
||||
printk("mtd: Internal Flash failure\n");
|
||||
return;
|
||||
}
|
||||
printk("mtd: Programming didn't take\n");
|
||||
}
|
||||
|
||||
/* This uses the erasure function described in the AMD Flash Handbook,
|
||||
it will work for flashes with a fixed sector size only. Flashes with
|
||||
a selection of sector sizes (ie the AMD Am29F800B) will need a different
|
||||
routine. This routine tries to parallize erasing multiple chips/sectors
|
||||
where possible */
|
||||
static int flash_erase(struct mtd_info *mtd, struct erase_info *instr)
|
||||
{
|
||||
// Does IO to the currently selected chip
|
||||
#define flread(x) map_read8(map,chip->base+((x)<<chip->addrshift))
|
||||
#define flwrite(v,x) map_write8(map,v,chip->base+((x)<<chip->addrshift))
|
||||
|
||||
unsigned long Time = 0;
|
||||
unsigned long NoTime = 0;
|
||||
unsigned long start = instr->addr, len = instr->len;
|
||||
unsigned int I;
|
||||
struct map_info *map = mtd->priv;
|
||||
struct jedec_private *priv = map->fldrv_priv;
|
||||
|
||||
// Verify the arguments..
|
||||
if (start + len > mtd->size ||
|
||||
(start % mtd->erasesize) != 0 ||
|
||||
(len % mtd->erasesize) != 0 ||
|
||||
(len/mtd->erasesize) == 0)
|
||||
return -EINVAL;
|
||||
|
||||
jedec_flash_chip_scan(priv,start,len);
|
||||
|
||||
// Start the erase sequence on each chip
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
unsigned long off;
|
||||
struct jedec_flash_chip *chip = priv->chips + I;
|
||||
|
||||
if (chip->length == 0)
|
||||
continue;
|
||||
|
||||
if (chip->start + chip->length > chip->size)
|
||||
{
|
||||
printk("DIE\n");
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
flwrite(0xF0,chip->start + 0x555);
|
||||
flwrite(0xAA,chip->start + 0x555);
|
||||
flwrite(0x55,chip->start + 0x2AA);
|
||||
flwrite(0x80,chip->start + 0x555);
|
||||
flwrite(0xAA,chip->start + 0x555);
|
||||
flwrite(0x55,chip->start + 0x2AA);
|
||||
|
||||
/* Once we start selecting the erase sectors the delay between each
|
||||
command must not exceed 50us or it will immediately start erasing
|
||||
and ignore the other sectors */
|
||||
for (off = 0; off < len; off += chip->sectorsize)
|
||||
{
|
||||
// Check to make sure we didn't timeout
|
||||
flwrite(0x30,chip->start + off);
|
||||
if (off == 0)
|
||||
continue;
|
||||
if ((flread(chip->start + off) & (1 << 3)) != 0)
|
||||
{
|
||||
printk("mtd: Ack! We timed out the erase timer!\n");
|
||||
return -EIO;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* We could split this into a timer routine and return early, performing
|
||||
background erasure.. Maybe later if the need warrents */
|
||||
|
||||
/* Poll the flash for erasure completion, specs say this can take as long
|
||||
as 480 seconds to do all the sectors (for a 2 meg flash).
|
||||
Erasure time is dependent on chip age, temp and wear.. */
|
||||
|
||||
/* This being a generic routine assumes a 32 bit bus. It does read32s
|
||||
and bundles interleved chips into the same grouping. This will work
|
||||
for all bus widths */
|
||||
Time = 0;
|
||||
NoTime = 0;
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
struct jedec_flash_chip *chip = priv->chips + I;
|
||||
unsigned long off = 0;
|
||||
unsigned todo[4] = {0,0,0,0};
|
||||
unsigned todo_left = 0;
|
||||
unsigned J;
|
||||
|
||||
if (chip->length == 0)
|
||||
continue;
|
||||
|
||||
/* Find all chips in this data line, realistically this is all
|
||||
or nothing up to the interleve count */
|
||||
for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++)
|
||||
{
|
||||
if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) ==
|
||||
(chip->base & (~((1<<chip->addrshift)-1))))
|
||||
{
|
||||
todo_left++;
|
||||
todo[priv->chips[J].base & ((1<<chip->addrshift)-1)] = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* printk("todo: %x %x %x %x\n",(short)todo[0],(short)todo[1],
|
||||
(short)todo[2],(short)todo[3]);
|
||||
*/
|
||||
while (1)
|
||||
{
|
||||
__u32 Last[4];
|
||||
unsigned long Count = 0;
|
||||
|
||||
/* During erase bit 7 is held low and bit 6 toggles, we watch this,
|
||||
should it stop toggling or go high then the erase is completed,
|
||||
or this is not really flash ;> */
|
||||
switch (map->buswidth) {
|
||||
case 1:
|
||||
Last[0] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
Last[1] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
Last[2] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
break;
|
||||
case 2:
|
||||
Last[0] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
Last[1] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
Last[2] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
break;
|
||||
case 3:
|
||||
Last[0] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
Last[1] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
Last[2] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
break;
|
||||
}
|
||||
Count = 3;
|
||||
while (todo_left != 0)
|
||||
{
|
||||
for (J = 0; J != 4; J++)
|
||||
{
|
||||
__u8 Byte1 = (Last[(Count-1)%4] >> (J*8)) & 0xFF;
|
||||
__u8 Byte2 = (Last[(Count-2)%4] >> (J*8)) & 0xFF;
|
||||
__u8 Byte3 = (Last[(Count-3)%4] >> (J*8)) & 0xFF;
|
||||
if (todo[J] == 0)
|
||||
continue;
|
||||
|
||||
if ((Byte1 & (1 << 7)) == 0 && Byte1 != Byte2)
|
||||
{
|
||||
// printk("Check %x %x %x\n",(short)J,(short)Byte1,(short)Byte2);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (Byte1 == Byte2)
|
||||
{
|
||||
jedec_flash_failed(Byte3);
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
todo[J] = 0;
|
||||
todo_left--;
|
||||
}
|
||||
|
||||
/* if (NoTime == 0)
|
||||
Time += HZ/10 - schedule_timeout(HZ/10);*/
|
||||
NoTime = 0;
|
||||
|
||||
switch (map->buswidth) {
|
||||
case 1:
|
||||
Last[Count % 4] = map_read8(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
break;
|
||||
case 2:
|
||||
Last[Count % 4] = map_read16(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
break;
|
||||
case 4:
|
||||
Last[Count % 4] = map_read32(map,(chip->base >> chip->addrshift) + chip->start + off);
|
||||
break;
|
||||
}
|
||||
Count++;
|
||||
|
||||
/* // Count time, max of 15s per sector (according to AMD)
|
||||
if (Time > 15*len/mtd->erasesize*HZ)
|
||||
{
|
||||
printk("mtd: Flash Erase Timed out\n");
|
||||
return -EIO;
|
||||
} */
|
||||
}
|
||||
|
||||
// Skip to the next chip if we used chip erase
|
||||
if (chip->length == chip->size)
|
||||
off = chip->size;
|
||||
else
|
||||
off += chip->sectorsize;
|
||||
|
||||
if (off >= chip->length)
|
||||
break;
|
||||
NoTime = 1;
|
||||
}
|
||||
|
||||
for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++)
|
||||
{
|
||||
if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) ==
|
||||
(chip->base & (~((1<<chip->addrshift)-1))))
|
||||
priv->chips[J].length = 0;
|
||||
}
|
||||
}
|
||||
|
||||
//printk("done\n");
|
||||
instr->state = MTD_ERASE_DONE;
|
||||
mtd_erase_callback(instr);
|
||||
return 0;
|
||||
|
||||
#undef flread
|
||||
#undef flwrite
|
||||
}
|
||||
|
||||
/* This is the simple flash writing function. It writes to every byte, in
|
||||
sequence. It takes care of how to properly address the flash if
|
||||
the flash is interleved. It can only be used if all the chips in the
|
||||
array are identical!*/
|
||||
static int flash_write(struct mtd_info *mtd, loff_t start, size_t len,
|
||||
size_t *retlen, const u_char *buf)
|
||||
{
|
||||
/* Does IO to the currently selected chip. It takes the bank addressing
|
||||
base (which is divisible by the chip size) adds the necessary lower bits
|
||||
of addrshift (interleave index) and then adds the control register index. */
|
||||
#define flread(x) map_read8(map,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift))
|
||||
#define flwrite(v,x) map_write8(map,v,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift))
|
||||
|
||||
struct map_info *map = mtd->priv;
|
||||
struct jedec_private *priv = map->fldrv_priv;
|
||||
unsigned long base;
|
||||
unsigned long off;
|
||||
size_t save_len = len;
|
||||
|
||||
if (start + len > mtd->size)
|
||||
return -EIO;
|
||||
|
||||
//printk("Here");
|
||||
|
||||
//printk("flash_write: start is %x, len is %x\n",start,(unsigned long)len);
|
||||
while (len != 0)
|
||||
{
|
||||
struct jedec_flash_chip *chip = priv->chips;
|
||||
unsigned long bank;
|
||||
unsigned long boffset;
|
||||
|
||||
// Compute the base of the flash.
|
||||
off = ((unsigned long)start) % (chip->size << chip->addrshift);
|
||||
base = start - off;
|
||||
|
||||
// Perform banked addressing translation.
|
||||
bank = base & (~(priv->bank_fill[0]-1));
|
||||
boffset = base & (priv->bank_fill[0]-1);
|
||||
bank = (bank/priv->bank_fill[0])*my_bank_size;
|
||||
base = bank + boffset;
|
||||
|
||||
// printk("Flasing %X %X %X\n",base,chip->size,len);
|
||||
// printk("off is %x, compare with %x\n",off,chip->size << chip->addrshift);
|
||||
|
||||
// Loop over this page
|
||||
for (; off != (chip->size << chip->addrshift) && len != 0; start++, len--, off++,buf++)
|
||||
{
|
||||
unsigned char oldbyte = map_read8(map,base+off);
|
||||
unsigned char Last[4];
|
||||
unsigned long Count = 0;
|
||||
|
||||
if (oldbyte == *buf) {
|
||||
// printk("oldbyte and *buf is %x,len is %x\n",oldbyte,len);
|
||||
continue;
|
||||
}
|
||||
if (((~oldbyte) & *buf) != 0)
|
||||
printk("mtd: warn: Trying to set a 0 to a 1\n");
|
||||
|
||||
// Write
|
||||
flwrite(0xAA,0x555);
|
||||
flwrite(0x55,0x2AA);
|
||||
flwrite(0xA0,0x555);
|
||||
map_write8(map,*buf,base + off);
|
||||
Last[0] = map_read8(map,base + off);
|
||||
Last[1] = map_read8(map,base + off);
|
||||
Last[2] = map_read8(map,base + off);
|
||||
|
||||
/* Wait for the flash to finish the operation. We store the last 4
|
||||
status bytes that have been retrieved so we can determine why
|
||||
it failed. The toggle bits keep toggling when there is a
|
||||
failure */
|
||||
for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] &&
|
||||
Count < 10000; Count++)
|
||||
Last[Count % 4] = map_read8(map,base + off);
|
||||
if (Last[(Count - 1) % 4] != *buf)
|
||||
{
|
||||
jedec_flash_failed(Last[(Count - 3) % 4]);
|
||||
return -EIO;
|
||||
}
|
||||
}
|
||||
}
|
||||
*retlen = save_len;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* This is used to enhance the speed of the erase routine,
|
||||
when things are being done to multiple chips it is possible to
|
||||
parallize the operations, particularly full memory erases of multi
|
||||
chip memories benifit */
|
||||
static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start,
|
||||
unsigned long len)
|
||||
{
|
||||
unsigned int I;
|
||||
|
||||
// Zero the records
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
priv->chips[I].start = priv->chips[I].length = 0;
|
||||
|
||||
// Intersect the region with each chip
|
||||
for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++)
|
||||
{
|
||||
struct jedec_flash_chip *chip = priv->chips + I;
|
||||
unsigned long ByteStart;
|
||||
unsigned long ChipEndByte = chip->offset + (chip->size << chip->addrshift);
|
||||
|
||||
// End is before this chip or the start is after it
|
||||
if (start+len < chip->offset ||
|
||||
ChipEndByte - (1 << chip->addrshift) < start)
|
||||
continue;
|
||||
|
||||
if (start < chip->offset)
|
||||
{
|
||||
ByteStart = chip->offset;
|
||||
chip->start = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
chip->start = (start - chip->offset + (1 << chip->addrshift)-1) >> chip->addrshift;
|
||||
ByteStart = start;
|
||||
}
|
||||
|
||||
if (start + len >= ChipEndByte)
|
||||
chip->length = (ChipEndByte - ByteStart) >> chip->addrshift;
|
||||
else
|
||||
chip->length = (start + len - ByteStart + (1 << chip->addrshift)-1) >> chip->addrshift;
|
||||
}
|
||||
}
|
||||
|
||||
int __init jedec_init(void)
|
||||
{
|
||||
register_mtd_chip_driver(&jedec_chipdrv);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit jedec_exit(void)
|
||||
{
|
||||
unregister_mtd_chip_driver(&jedec_chipdrv);
|
||||
}
|
||||
|
||||
module_init(jedec_init);
|
||||
module_exit(jedec_exit);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("Jason Gunthorpe <jgg@deltatee.com> et al.");
|
||||
MODULE_DESCRIPTION("Old MTD chip driver for JEDEC-compliant flash chips");
|
2127
drivers/mtd/chips/jedec_probe.c
Normal file
2127
drivers/mtd/chips/jedec_probe.c
Normal file
File diff suppressed because it is too large
Load Diff
117
drivers/mtd/chips/map_absent.c
Normal file
117
drivers/mtd/chips/map_absent.c
Normal file
@@ -0,0 +1,117 @@
|
||||
/*
|
||||
* Common code to handle absent "placeholder" devices
|
||||
* Copyright 2001 Resilience Corporation <ebrower@resilience.com>
|
||||
* $Id: map_absent.c,v 1.5 2004/11/16 18:29:00 dwmw2 Exp $
|
||||
*
|
||||
* This map driver is used to allocate "placeholder" MTD
|
||||
* devices on systems that have socketed/removable media.
|
||||
* Use of this driver as a fallback preserves the expected
|
||||
* registration of MTD device nodes regardless of probe outcome.
|
||||
* A usage example is as follows:
|
||||
*
|
||||
* my_dev[i] = do_map_probe("cfi", &my_map[i]);
|
||||
* if(NULL == my_dev[i]) {
|
||||
* my_dev[i] = do_map_probe("map_absent", &my_map[i]);
|
||||
* }
|
||||
*
|
||||
* Any device 'probed' with this driver will return -ENODEV
|
||||
* upon open.
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/map.h>
|
||||
#include <linux/mtd/compatmac.h>
|
||||
|
||||
static int map_absent_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
|
||||
static int map_absent_write (struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
|
||||
static int map_absent_erase (struct mtd_info *, struct erase_info *);
|
||||
static void map_absent_sync (struct mtd_info *);
|
||||
static struct mtd_info *map_absent_probe(struct map_info *map);
|
||||
static void map_absent_destroy (struct mtd_info *);
|
||||
|
||||
|
||||
static struct mtd_chip_driver map_absent_chipdrv = {
|
||||
.probe = map_absent_probe,
|
||||
.destroy = map_absent_destroy,
|
||||
.name = "map_absent",
|
||||
.module = THIS_MODULE
|
||||
};
|
||||
|
||||
static struct mtd_info *map_absent_probe(struct map_info *map)
|
||||
{
|
||||
struct mtd_info *mtd;
|
||||
|
||||
mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
|
||||
if (!mtd) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
memset(mtd, 0, sizeof(*mtd));
|
||||
|
||||
map->fldrv = &map_absent_chipdrv;
|
||||
mtd->priv = map;
|
||||
mtd->name = map->name;
|
||||
mtd->type = MTD_ABSENT;
|
||||
mtd->size = map->size;
|
||||
mtd->erase = map_absent_erase;
|
||||
mtd->read = map_absent_read;
|
||||
mtd->write = map_absent_write;
|
||||
mtd->sync = map_absent_sync;
|
||||
mtd->flags = 0;
|
||||
mtd->erasesize = PAGE_SIZE;
|
||||
|
||||
__module_get(THIS_MODULE);
|
||||
return mtd;
|
||||
}
|
||||
|
||||
|
||||
static int map_absent_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
|
||||
{
|
||||
*retlen = 0;
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
static int map_absent_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf)
|
||||
{
|
||||
*retlen = 0;
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
static int map_absent_erase(struct mtd_info *mtd, struct erase_info *instr)
|
||||
{
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
static void map_absent_sync(struct mtd_info *mtd)
|
||||
{
|
||||
/* nop */
|
||||
}
|
||||
|
||||
static void map_absent_destroy(struct mtd_info *mtd)
|
||||
{
|
||||
/* nop */
|
||||
}
|
||||
|
||||
static int __init map_absent_init(void)
|
||||
{
|
||||
register_mtd_chip_driver(&map_absent_chipdrv);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit map_absent_exit(void)
|
||||
{
|
||||
unregister_mtd_chip_driver(&map_absent_chipdrv);
|
||||
}
|
||||
|
||||
module_init(map_absent_init);
|
||||
module_exit(map_absent_exit);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("Resilience Corporation - Eric Brower <ebrower@resilience.com>");
|
||||
MODULE_DESCRIPTION("Placeholder MTD chip driver for 'absent' chips");
|
143
drivers/mtd/chips/map_ram.c
Normal file
143
drivers/mtd/chips/map_ram.c
Normal file
@@ -0,0 +1,143 @@
|
||||
/*
|
||||
* Common code to handle map devices which are simple RAM
|
||||
* (C) 2000 Red Hat. GPL'd.
|
||||
* $Id: map_ram.c,v 1.22 2005/01/05 18:05:12 dwmw2 Exp $
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/byteorder.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/map.h>
|
||||
#include <linux/mtd/compatmac.h>
|
||||
|
||||
|
||||
static int mapram_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
|
||||
static int mapram_write (struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
|
||||
static int mapram_erase (struct mtd_info *, struct erase_info *);
|
||||
static void mapram_nop (struct mtd_info *);
|
||||
static struct mtd_info *map_ram_probe(struct map_info *map);
|
||||
|
||||
|
||||
static struct mtd_chip_driver mapram_chipdrv = {
|
||||
.probe = map_ram_probe,
|
||||
.name = "map_ram",
|
||||
.module = THIS_MODULE
|
||||
};
|
||||
|
||||
static struct mtd_info *map_ram_probe(struct map_info *map)
|
||||
{
|
||||
struct mtd_info *mtd;
|
||||
|
||||
/* Check the first byte is RAM */
|
||||
#if 0
|
||||
map_write8(map, 0x55, 0);
|
||||
if (map_read8(map, 0) != 0x55)
|
||||
return NULL;
|
||||
|
||||
map_write8(map, 0xAA, 0);
|
||||
if (map_read8(map, 0) != 0xAA)
|
||||
return NULL;
|
||||
|
||||
/* Check the last byte is RAM */
|
||||
map_write8(map, 0x55, map->size-1);
|
||||
if (map_read8(map, map->size-1) != 0x55)
|
||||
return NULL;
|
||||
|
||||
map_write8(map, 0xAA, map->size-1);
|
||||
if (map_read8(map, map->size-1) != 0xAA)
|
||||
return NULL;
|
||||
#endif
|
||||
/* OK. It seems to be RAM. */
|
||||
|
||||
mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
|
||||
if (!mtd)
|
||||
return NULL;
|
||||
|
||||
memset(mtd, 0, sizeof(*mtd));
|
||||
|
||||
map->fldrv = &mapram_chipdrv;
|
||||
mtd->priv = map;
|
||||
mtd->name = map->name;
|
||||
mtd->type = MTD_RAM;
|
||||
mtd->size = map->size;
|
||||
mtd->erase = mapram_erase;
|
||||
mtd->read = mapram_read;
|
||||
mtd->write = mapram_write;
|
||||
mtd->sync = mapram_nop;
|
||||
mtd->flags = MTD_CAP_RAM | MTD_VOLATILE;
|
||||
|
||||
mtd->erasesize = PAGE_SIZE;
|
||||
while(mtd->size & (mtd->erasesize - 1))
|
||||
mtd->erasesize >>= 1;
|
||||
|
||||
__module_get(THIS_MODULE);
|
||||
return mtd;
|
||||
}
|
||||
|
||||
|
||||
static int mapram_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
|
||||
map_copy_from(map, buf, from, len);
|
||||
*retlen = len;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int mapram_write (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
|
||||
map_copy_to(map, to, buf, len);
|
||||
*retlen = len;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int mapram_erase (struct mtd_info *mtd, struct erase_info *instr)
|
||||
{
|
||||
/* Yeah, it's inefficient. Who cares? It's faster than a _real_
|
||||
flash erase. */
|
||||
struct map_info *map = mtd->priv;
|
||||
map_word allff;
|
||||
unsigned long i;
|
||||
|
||||
allff = map_word_ff(map);
|
||||
|
||||
for (i=0; i<instr->len; i += map_bankwidth(map))
|
||||
map_write(map, allff, instr->addr + i);
|
||||
|
||||
instr->state = MTD_ERASE_DONE;
|
||||
|
||||
mtd_erase_callback(instr);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void mapram_nop(struct mtd_info *mtd)
|
||||
{
|
||||
/* Nothing to see here */
|
||||
}
|
||||
|
||||
static int __init map_ram_init(void)
|
||||
{
|
||||
register_mtd_chip_driver(&mapram_chipdrv);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit map_ram_exit(void)
|
||||
{
|
||||
unregister_mtd_chip_driver(&mapram_chipdrv);
|
||||
}
|
||||
|
||||
module_init(map_ram_init);
|
||||
module_exit(map_ram_exit);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
|
||||
MODULE_DESCRIPTION("MTD chip driver for RAM chips");
|
94
drivers/mtd/chips/map_rom.c
Normal file
94
drivers/mtd/chips/map_rom.c
Normal file
@@ -0,0 +1,94 @@
|
||||
/*
|
||||
* Common code to handle map devices which are simple ROM
|
||||
* (C) 2000 Red Hat. GPL'd.
|
||||
* $Id: map_rom.c,v 1.23 2005/01/05 18:05:12 dwmw2 Exp $
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/byteorder.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/map.h>
|
||||
#include <linux/mtd/compatmac.h>
|
||||
|
||||
static int maprom_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
|
||||
static int maprom_write (struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
|
||||
static void maprom_nop (struct mtd_info *);
|
||||
static struct mtd_info *map_rom_probe(struct map_info *map);
|
||||
|
||||
static struct mtd_chip_driver maprom_chipdrv = {
|
||||
.probe = map_rom_probe,
|
||||
.name = "map_rom",
|
||||
.module = THIS_MODULE
|
||||
};
|
||||
|
||||
static struct mtd_info *map_rom_probe(struct map_info *map)
|
||||
{
|
||||
struct mtd_info *mtd;
|
||||
|
||||
mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
|
||||
if (!mtd)
|
||||
return NULL;
|
||||
|
||||
memset(mtd, 0, sizeof(*mtd));
|
||||
|
||||
map->fldrv = &maprom_chipdrv;
|
||||
mtd->priv = map;
|
||||
mtd->name = map->name;
|
||||
mtd->type = MTD_ROM;
|
||||
mtd->size = map->size;
|
||||
mtd->read = maprom_read;
|
||||
mtd->write = maprom_write;
|
||||
mtd->sync = maprom_nop;
|
||||
mtd->flags = MTD_CAP_ROM;
|
||||
mtd->erasesize = 131072;
|
||||
while(mtd->size & (mtd->erasesize - 1))
|
||||
mtd->erasesize >>= 1;
|
||||
|
||||
__module_get(THIS_MODULE);
|
||||
return mtd;
|
||||
}
|
||||
|
||||
|
||||
static int maprom_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
|
||||
map_copy_from(map, buf, from, len);
|
||||
*retlen = len;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void maprom_nop(struct mtd_info *mtd)
|
||||
{
|
||||
/* Nothing to see here */
|
||||
}
|
||||
|
||||
static int maprom_write (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf)
|
||||
{
|
||||
printk(KERN_NOTICE "maprom_write called\n");
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
static int __init map_rom_init(void)
|
||||
{
|
||||
register_mtd_chip_driver(&maprom_chipdrv);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit map_rom_exit(void)
|
||||
{
|
||||
unregister_mtd_chip_driver(&maprom_chipdrv);
|
||||
}
|
||||
|
||||
module_init(map_rom_init);
|
||||
module_exit(map_rom_exit);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
|
||||
MODULE_DESCRIPTION("MTD chip driver for ROM chips");
|
596
drivers/mtd/chips/sharp.c
Normal file
596
drivers/mtd/chips/sharp.c
Normal file
@@ -0,0 +1,596 @@
|
||||
/*
|
||||
* MTD chip driver for pre-CFI Sharp flash chips
|
||||
*
|
||||
* Copyright 2000,2001 David A. Schleef <ds@schleef.org>
|
||||
* 2000,2001 Lineo, Inc.
|
||||
*
|
||||
* $Id: sharp.c,v 1.14 2004/08/09 13:19:43 dwmw2 Exp $
|
||||
*
|
||||
* Devices supported:
|
||||
* LH28F016SCT Symmetrical block flash memory, 2Mx8
|
||||
* LH28F008SCT Symmetrical block flash memory, 1Mx8
|
||||
*
|
||||
* Documentation:
|
||||
* http://www.sharpmeg.com/datasheets/memic/flashcmp/
|
||||
* http://www.sharpmeg.com/datasheets/memic/flashcmp/01symf/16m/016sctl9.pdf
|
||||
* 016sctl9.pdf
|
||||
*
|
||||
* Limitations:
|
||||
* This driver only supports 4x1 arrangement of chips.
|
||||
* Not tested on anything but PowerPC.
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/mtd/map.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/cfi.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/init.h>
|
||||
|
||||
#define CMD_RESET 0xffffffff
|
||||
#define CMD_READ_ID 0x90909090
|
||||
#define CMD_READ_STATUS 0x70707070
|
||||
#define CMD_CLEAR_STATUS 0x50505050
|
||||
#define CMD_BLOCK_ERASE_1 0x20202020
|
||||
#define CMD_BLOCK_ERASE_2 0xd0d0d0d0
|
||||
#define CMD_BYTE_WRITE 0x40404040
|
||||
#define CMD_SUSPEND 0xb0b0b0b0
|
||||
#define CMD_RESUME 0xd0d0d0d0
|
||||
#define CMD_SET_BLOCK_LOCK_1 0x60606060
|
||||
#define CMD_SET_BLOCK_LOCK_2 0x01010101
|
||||
#define CMD_SET_MASTER_LOCK_1 0x60606060
|
||||
#define CMD_SET_MASTER_LOCK_2 0xf1f1f1f1
|
||||
#define CMD_CLEAR_BLOCK_LOCKS_1 0x60606060
|
||||
#define CMD_CLEAR_BLOCK_LOCKS_2 0xd0d0d0d0
|
||||
|
||||
#define SR_READY 0x80808080 // 1 = ready
|
||||
#define SR_ERASE_SUSPEND 0x40404040 // 1 = block erase suspended
|
||||
#define SR_ERROR_ERASE 0x20202020 // 1 = error in block erase or clear lock bits
|
||||
#define SR_ERROR_WRITE 0x10101010 // 1 = error in byte write or set lock bit
|
||||
#define SR_VPP 0x08080808 // 1 = Vpp is low
|
||||
#define SR_WRITE_SUSPEND 0x04040404 // 1 = byte write suspended
|
||||
#define SR_PROTECT 0x02020202 // 1 = lock bit set
|
||||
#define SR_RESERVED 0x01010101
|
||||
|
||||
#define SR_ERRORS (SR_ERROR_ERASE|SR_ERROR_WRITE|SR_VPP|SR_PROTECT)
|
||||
|
||||
/* Configuration options */
|
||||
|
||||
#undef AUTOUNLOCK /* automatically unlocks blocks before erasing */
|
||||
|
||||
struct mtd_info *sharp_probe(struct map_info *);
|
||||
|
||||
static int sharp_probe_map(struct map_info *map,struct mtd_info *mtd);
|
||||
|
||||
static int sharp_read(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf);
|
||||
static int sharp_write(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, const u_char *buf);
|
||||
static int sharp_erase(struct mtd_info *mtd, struct erase_info *instr);
|
||||
static void sharp_sync(struct mtd_info *mtd);
|
||||
static int sharp_suspend(struct mtd_info *mtd);
|
||||
static void sharp_resume(struct mtd_info *mtd);
|
||||
static void sharp_destroy(struct mtd_info *mtd);
|
||||
|
||||
static int sharp_write_oneword(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr, __u32 datum);
|
||||
static int sharp_erase_oneblock(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr);
|
||||
#ifdef AUTOUNLOCK
|
||||
static void sharp_unlock_oneblock(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr);
|
||||
#endif
|
||||
|
||||
|
||||
struct sharp_info{
|
||||
struct flchip *chip;
|
||||
int bogus;
|
||||
int chipshift;
|
||||
int numchips;
|
||||
struct flchip chips[1];
|
||||
};
|
||||
|
||||
struct mtd_info *sharp_probe(struct map_info *map);
|
||||
static void sharp_destroy(struct mtd_info *mtd);
|
||||
|
||||
static struct mtd_chip_driver sharp_chipdrv = {
|
||||
.probe = sharp_probe,
|
||||
.destroy = sharp_destroy,
|
||||
.name = "sharp",
|
||||
.module = THIS_MODULE
|
||||
};
|
||||
|
||||
|
||||
struct mtd_info *sharp_probe(struct map_info *map)
|
||||
{
|
||||
struct mtd_info *mtd = NULL;
|
||||
struct sharp_info *sharp = NULL;
|
||||
int width;
|
||||
|
||||
mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
|
||||
if(!mtd)
|
||||
return NULL;
|
||||
|
||||
sharp = kmalloc(sizeof(*sharp), GFP_KERNEL);
|
||||
if(!sharp) {
|
||||
kfree(mtd);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
memset(mtd, 0, sizeof(*mtd));
|
||||
|
||||
width = sharp_probe_map(map,mtd);
|
||||
if(!width){
|
||||
kfree(mtd);
|
||||
kfree(sharp);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
mtd->priv = map;
|
||||
mtd->type = MTD_NORFLASH;
|
||||
mtd->erase = sharp_erase;
|
||||
mtd->read = sharp_read;
|
||||
mtd->write = sharp_write;
|
||||
mtd->sync = sharp_sync;
|
||||
mtd->suspend = sharp_suspend;
|
||||
mtd->resume = sharp_resume;
|
||||
mtd->flags = MTD_CAP_NORFLASH;
|
||||
mtd->name = map->name;
|
||||
|
||||
memset(sharp, 0, sizeof(*sharp));
|
||||
sharp->chipshift = 23;
|
||||
sharp->numchips = 1;
|
||||
sharp->chips[0].start = 0;
|
||||
sharp->chips[0].state = FL_READY;
|
||||
sharp->chips[0].mutex = &sharp->chips[0]._spinlock;
|
||||
sharp->chips[0].word_write_time = 0;
|
||||
init_waitqueue_head(&sharp->chips[0].wq);
|
||||
spin_lock_init(&sharp->chips[0]._spinlock);
|
||||
|
||||
map->fldrv = &sharp_chipdrv;
|
||||
map->fldrv_priv = sharp;
|
||||
|
||||
__module_get(THIS_MODULE);
|
||||
return mtd;
|
||||
}
|
||||
|
||||
static int sharp_probe_map(struct map_info *map,struct mtd_info *mtd)
|
||||
{
|
||||
unsigned long tmp;
|
||||
unsigned long base = 0;
|
||||
u32 read0, read4;
|
||||
int width = 4;
|
||||
|
||||
tmp = map_read32(map, base+0);
|
||||
|
||||
map_write32(map, CMD_READ_ID, base+0);
|
||||
|
||||
read0=map_read32(map, base+0);
|
||||
read4=map_read32(map, base+4);
|
||||
if(read0 == 0x89898989){
|
||||
printk("Looks like sharp flash\n");
|
||||
switch(read4){
|
||||
case 0xaaaaaaaa:
|
||||
case 0xa0a0a0a0:
|
||||
/* aa - LH28F016SCT-L95 2Mx8, 32 64k blocks*/
|
||||
/* a0 - LH28F016SCT-Z4 2Mx8, 32 64k blocks*/
|
||||
mtd->erasesize = 0x10000 * width;
|
||||
mtd->size = 0x200000 * width;
|
||||
return width;
|
||||
case 0xa6a6a6a6:
|
||||
/* a6 - LH28F008SCT-L12 1Mx8, 16 64k blocks*/
|
||||
/* a6 - LH28F008SCR-L85 1Mx8, 16 64k blocks*/
|
||||
mtd->erasesize = 0x10000 * width;
|
||||
mtd->size = 0x100000 * width;
|
||||
return width;
|
||||
#if 0
|
||||
case 0x00000000: /* unknown */
|
||||
/* XX - LH28F004SCT 512kx8, 8 64k blocks*/
|
||||
mtd->erasesize = 0x10000 * width;
|
||||
mtd->size = 0x80000 * width;
|
||||
return width;
|
||||
#endif
|
||||
default:
|
||||
printk("Sort-of looks like sharp flash, 0x%08x 0x%08x\n",
|
||||
read0,read4);
|
||||
}
|
||||
}else if((map_read32(map, base+0) == CMD_READ_ID)){
|
||||
/* RAM, probably */
|
||||
printk("Looks like RAM\n");
|
||||
map_write32(map, tmp, base+0);
|
||||
}else{
|
||||
printk("Doesn't look like sharp flash, 0x%08x 0x%08x\n",
|
||||
read0,read4);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* This function returns with the chip->mutex lock held. */
|
||||
static int sharp_wait(struct map_info *map, struct flchip *chip)
|
||||
{
|
||||
__u16 status;
|
||||
unsigned long timeo = jiffies + HZ;
|
||||
DECLARE_WAITQUEUE(wait, current);
|
||||
int adr = 0;
|
||||
|
||||
retry:
|
||||
spin_lock_bh(chip->mutex);
|
||||
|
||||
switch(chip->state){
|
||||
case FL_READY:
|
||||
map_write32(map,CMD_READ_STATUS,adr);
|
||||
chip->state = FL_STATUS;
|
||||
case FL_STATUS:
|
||||
status = map_read32(map,adr);
|
||||
//printk("status=%08x\n",status);
|
||||
|
||||
udelay(100);
|
||||
if((status & SR_READY)!=SR_READY){
|
||||
//printk(".status=%08x\n",status);
|
||||
udelay(100);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
printk("Waiting for chip\n");
|
||||
|
||||
set_current_state(TASK_INTERRUPTIBLE);
|
||||
add_wait_queue(&chip->wq, &wait);
|
||||
|
||||
spin_unlock_bh(chip->mutex);
|
||||
|
||||
schedule();
|
||||
remove_wait_queue(&chip->wq, &wait);
|
||||
|
||||
if(signal_pending(current))
|
||||
return -EINTR;
|
||||
|
||||
timeo = jiffies + HZ;
|
||||
|
||||
goto retry;
|
||||
}
|
||||
|
||||
map_write32(map,CMD_RESET, adr);
|
||||
|
||||
chip->state = FL_READY;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void sharp_release(struct flchip *chip)
|
||||
{
|
||||
wake_up(&chip->wq);
|
||||
spin_unlock_bh(chip->mutex);
|
||||
}
|
||||
|
||||
static int sharp_read(struct mtd_info *mtd, loff_t from, size_t len,
|
||||
size_t *retlen, u_char *buf)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
struct sharp_info *sharp = map->fldrv_priv;
|
||||
int chipnum;
|
||||
int ret = 0;
|
||||
int ofs = 0;
|
||||
|
||||
chipnum = (from >> sharp->chipshift);
|
||||
ofs = from & ((1 << sharp->chipshift)-1);
|
||||
|
||||
*retlen = 0;
|
||||
|
||||
while(len){
|
||||
unsigned long thislen;
|
||||
|
||||
if(chipnum>=sharp->numchips)
|
||||
break;
|
||||
|
||||
thislen = len;
|
||||
if(ofs+thislen >= (1<<sharp->chipshift))
|
||||
thislen = (1<<sharp->chipshift) - ofs;
|
||||
|
||||
ret = sharp_wait(map,&sharp->chips[chipnum]);
|
||||
if(ret<0)
|
||||
break;
|
||||
|
||||
map_copy_from(map,buf,ofs,thislen);
|
||||
|
||||
sharp_release(&sharp->chips[chipnum]);
|
||||
|
||||
*retlen += thislen;
|
||||
len -= thislen;
|
||||
buf += thislen;
|
||||
|
||||
ofs = 0;
|
||||
chipnum++;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int sharp_write(struct mtd_info *mtd, loff_t to, size_t len,
|
||||
size_t *retlen, const u_char *buf)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
struct sharp_info *sharp = map->fldrv_priv;
|
||||
int ret = 0;
|
||||
int i,j;
|
||||
int chipnum;
|
||||
unsigned long ofs;
|
||||
union { u32 l; unsigned char uc[4]; } tbuf;
|
||||
|
||||
*retlen = 0;
|
||||
|
||||
while(len){
|
||||
tbuf.l = 0xffffffff;
|
||||
chipnum = to >> sharp->chipshift;
|
||||
ofs = to & ((1<<sharp->chipshift)-1);
|
||||
|
||||
j=0;
|
||||
for(i=ofs&3;i<4 && len;i++){
|
||||
tbuf.uc[i] = *buf;
|
||||
buf++;
|
||||
to++;
|
||||
len--;
|
||||
j++;
|
||||
}
|
||||
sharp_write_oneword(map, &sharp->chips[chipnum], ofs&~3, tbuf.l);
|
||||
if(ret<0)
|
||||
return ret;
|
||||
(*retlen)+=j;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int sharp_write_oneword(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr, __u32 datum)
|
||||
{
|
||||
int ret;
|
||||
int timeo;
|
||||
int try;
|
||||
int i;
|
||||
int status = 0;
|
||||
|
||||
ret = sharp_wait(map,chip);
|
||||
|
||||
for(try=0;try<10;try++){
|
||||
map_write32(map,CMD_BYTE_WRITE,adr);
|
||||
/* cpu_to_le32 -> hack to fix the writel be->le conversion */
|
||||
map_write32(map,cpu_to_le32(datum),adr);
|
||||
|
||||
chip->state = FL_WRITING;
|
||||
|
||||
timeo = jiffies + (HZ/2);
|
||||
|
||||
map_write32(map,CMD_READ_STATUS,adr);
|
||||
for(i=0;i<100;i++){
|
||||
status = map_read32(map,adr);
|
||||
if((status & SR_READY)==SR_READY)
|
||||
break;
|
||||
}
|
||||
if(i==100){
|
||||
printk("sharp: timed out writing\n");
|
||||
}
|
||||
|
||||
if(!(status&SR_ERRORS))
|
||||
break;
|
||||
|
||||
printk("sharp: error writing byte at addr=%08lx status=%08x\n",adr,status);
|
||||
|
||||
map_write32(map,CMD_CLEAR_STATUS,adr);
|
||||
}
|
||||
map_write32(map,CMD_RESET,adr);
|
||||
chip->state = FL_READY;
|
||||
|
||||
wake_up(&chip->wq);
|
||||
spin_unlock_bh(chip->mutex);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int sharp_erase(struct mtd_info *mtd, struct erase_info *instr)
|
||||
{
|
||||
struct map_info *map = mtd->priv;
|
||||
struct sharp_info *sharp = map->fldrv_priv;
|
||||
unsigned long adr,len;
|
||||
int chipnum, ret=0;
|
||||
|
||||
//printk("sharp_erase()\n");
|
||||
if(instr->addr & (mtd->erasesize - 1))
|
||||
return -EINVAL;
|
||||
if(instr->len & (mtd->erasesize - 1))
|
||||
return -EINVAL;
|
||||
if(instr->len + instr->addr > mtd->size)
|
||||
return -EINVAL;
|
||||
|
||||
chipnum = instr->addr >> sharp->chipshift;
|
||||
adr = instr->addr & ((1<<sharp->chipshift)-1);
|
||||
len = instr->len;
|
||||
|
||||
while(len){
|
||||
ret = sharp_erase_oneblock(map, &sharp->chips[chipnum], adr);
|
||||
if(ret)return ret;
|
||||
|
||||
adr += mtd->erasesize;
|
||||
len -= mtd->erasesize;
|
||||
if(adr >> sharp->chipshift){
|
||||
adr = 0;
|
||||
chipnum++;
|
||||
if(chipnum>=sharp->numchips)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
instr->state = MTD_ERASE_DONE;
|
||||
mtd_erase_callback(instr);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int sharp_do_wait_for_ready(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr)
|
||||
{
|
||||
int ret;
|
||||
unsigned long timeo;
|
||||
int status;
|
||||
DECLARE_WAITQUEUE(wait, current);
|
||||
|
||||
map_write32(map,CMD_READ_STATUS,adr);
|
||||
status = map_read32(map,adr);
|
||||
|
||||
timeo = jiffies + HZ;
|
||||
|
||||
while(time_before(jiffies, timeo)){
|
||||
map_write32(map,CMD_READ_STATUS,adr);
|
||||
status = map_read32(map,adr);
|
||||
if((status & SR_READY)==SR_READY){
|
||||
ret = 0;
|
||||
goto out;
|
||||
}
|
||||
set_current_state(TASK_INTERRUPTIBLE);
|
||||
add_wait_queue(&chip->wq, &wait);
|
||||
|
||||
//spin_unlock_bh(chip->mutex);
|
||||
|
||||
schedule_timeout(1);
|
||||
schedule();
|
||||
remove_wait_queue(&chip->wq, &wait);
|
||||
|
||||
//spin_lock_bh(chip->mutex);
|
||||
|
||||
if (signal_pending(current)){
|
||||
ret = -EINTR;
|
||||
goto out;
|
||||
}
|
||||
|
||||
}
|
||||
ret = -ETIME;
|
||||
out:
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int sharp_erase_oneblock(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr)
|
||||
{
|
||||
int ret;
|
||||
//int timeo;
|
||||
int status;
|
||||
//int i;
|
||||
|
||||
//printk("sharp_erase_oneblock()\n");
|
||||
|
||||
#ifdef AUTOUNLOCK
|
||||
/* This seems like a good place to do an unlock */
|
||||
sharp_unlock_oneblock(map,chip,adr);
|
||||
#endif
|
||||
|
||||
map_write32(map,CMD_BLOCK_ERASE_1,adr);
|
||||
map_write32(map,CMD_BLOCK_ERASE_2,adr);
|
||||
|
||||
chip->state = FL_ERASING;
|
||||
|
||||
ret = sharp_do_wait_for_ready(map,chip,adr);
|
||||
if(ret<0)return ret;
|
||||
|
||||
map_write32(map,CMD_READ_STATUS,adr);
|
||||
status = map_read32(map,adr);
|
||||
|
||||
if(!(status&SR_ERRORS)){
|
||||
map_write32(map,CMD_RESET,adr);
|
||||
chip->state = FL_READY;
|
||||
//spin_unlock_bh(chip->mutex);
|
||||
return 0;
|
||||
}
|
||||
|
||||
printk("sharp: error erasing block at addr=%08lx status=%08x\n",adr,status);
|
||||
map_write32(map,CMD_CLEAR_STATUS,adr);
|
||||
|
||||
//spin_unlock_bh(chip->mutex);
|
||||
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
#ifdef AUTOUNLOCK
|
||||
static void sharp_unlock_oneblock(struct map_info *map, struct flchip *chip,
|
||||
unsigned long adr)
|
||||
{
|
||||
int i;
|
||||
int status;
|
||||
|
||||
map_write32(map,CMD_CLEAR_BLOCK_LOCKS_1,adr);
|
||||
map_write32(map,CMD_CLEAR_BLOCK_LOCKS_2,adr);
|
||||
|
||||
udelay(100);
|
||||
|
||||
status = map_read32(map,adr);
|
||||
printk("status=%08x\n",status);
|
||||
|
||||
for(i=0;i<1000;i++){
|
||||
//map_write32(map,CMD_READ_STATUS,adr);
|
||||
status = map_read32(map,adr);
|
||||
if((status & SR_READY)==SR_READY)
|
||||
break;
|
||||
udelay(100);
|
||||
}
|
||||
if(i==1000){
|
||||
printk("sharp: timed out unlocking block\n");
|
||||
}
|
||||
|
||||
if(!(status&SR_ERRORS)){
|
||||
map_write32(map,CMD_RESET,adr);
|
||||
chip->state = FL_READY;
|
||||
return;
|
||||
}
|
||||
|
||||
printk("sharp: error unlocking block at addr=%08lx status=%08x\n",adr,status);
|
||||
map_write32(map,CMD_CLEAR_STATUS,adr);
|
||||
}
|
||||
#endif
|
||||
|
||||
static void sharp_sync(struct mtd_info *mtd)
|
||||
{
|
||||
//printk("sharp_sync()\n");
|
||||
}
|
||||
|
||||
static int sharp_suspend(struct mtd_info *mtd)
|
||||
{
|
||||
printk("sharp_suspend()\n");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
static void sharp_resume(struct mtd_info *mtd)
|
||||
{
|
||||
printk("sharp_resume()\n");
|
||||
|
||||
}
|
||||
|
||||
static void sharp_destroy(struct mtd_info *mtd)
|
||||
{
|
||||
printk("sharp_destroy()\n");
|
||||
|
||||
}
|
||||
|
||||
int __init sharp_probe_init(void)
|
||||
{
|
||||
printk("MTD Sharp chip driver <ds@lineo.com>\n");
|
||||
|
||||
register_mtd_chip_driver(&sharp_chipdrv);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit sharp_probe_exit(void)
|
||||
{
|
||||
unregister_mtd_chip_driver(&sharp_chipdrv);
|
||||
}
|
||||
|
||||
module_init(sharp_probe_init);
|
||||
module_exit(sharp_probe_exit);
|
||||
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_AUTHOR("David Schleef <ds@schleef.org>");
|
||||
MODULE_DESCRIPTION("Old MTD chip driver for pre-CFI Sharp flash chips");
|
Reference in New Issue
Block a user