Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
This commit is contained in:
Linus Torvalds
2005-04-16 15:20:36 -07:00
commit 1da177e4c3
17291 changed files with 6718755 additions and 0 deletions

63
drivers/mmc/Kconfig Normal file
View File

@@ -0,0 +1,63 @@
#
# MMC subsystem configuration
#
menu "MMC/SD Card support"
config MMC
tristate "MMC support"
help
MMC is the "multi-media card" bus protocol.
If you want MMC support, you should say Y here and also
to the specific driver for your MMC interface.
config MMC_DEBUG
bool "MMC debugging"
depends on MMC != n
help
This is an option for use by developers; most people should
say N here. This enables MMC core and driver debugging.
config MMC_BLOCK
tristate "MMC block device driver"
depends on MMC
default y
help
Say Y here to enable the MMC block device driver support.
This provides a block device driver, which you can use to
mount the filesystem. Almost everyone wishing MMC support
should say Y or M here.
config MMC_ARMMMCI
tristate "ARM AMBA Multimedia Card Interface support"
depends on ARM_AMBA && MMC
help
This selects the ARM(R) AMBA(R) PrimeCell Multimedia Card
Interface (PL180 and PL181) support. If you have an ARM(R)
platform with a Multimedia Card slot, say Y or M here.
If unsure, say N.
config MMC_PXA
tristate "Intel PXA255 Multimedia Card Interface support"
depends on ARCH_PXA && MMC
help
This selects the Intel(R) PXA(R) Multimedia card Interface.
If you have a PXA(R) platform with a Multimedia Card slot,
say Y or M here.
If unsure, say N.
config MMC_WBSD
tristate "Winbond W83L51xD SD/MMC Card Interface support"
depends on MMC && ISA
help
This selects the Winbond(R) W83L51xD Secure digital and
Multimedia card Interface.
If you have a machine with a integrated W83L518D or W83L519D
SD/MMC card reader, say Y or M here.
If unsure, say N.
endmenu

22
drivers/mmc/Makefile Normal file
View File

@@ -0,0 +1,22 @@
#
# Makefile for the kernel mmc device drivers.
#
#
# Core
#
obj-$(CONFIG_MMC) += mmc_core.o
#
# Media drivers
#
obj-$(CONFIG_MMC_BLOCK) += mmc_block.o
#
# Host drivers
#
obj-$(CONFIG_MMC_ARMMMCI) += mmci.o
obj-$(CONFIG_MMC_PXA) += pxamci.o
obj-$(CONFIG_MMC_WBSD) += wbsd.o
mmc_core-y := mmc.o mmc_queue.o mmc_sysfs.o

914
drivers/mmc/mmc.c Normal file
View File

@@ -0,0 +1,914 @@
/*
* linux/drivers/mmc/mmc.c
*
* Copyright (C) 2003-2004 Russell King, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/completion.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/pagemap.h>
#include <linux/err.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include <linux/mmc/protocol.h>
#include "mmc.h"
#ifdef CONFIG_MMC_DEBUG
#define DBG(x...) printk(KERN_DEBUG x)
#else
#define DBG(x...) do { } while (0)
#endif
#define CMD_RETRIES 3
/*
* OCR Bit positions to 10s of Vdd mV.
*/
static const unsigned short mmc_ocr_bit_to_vdd[] = {
150, 155, 160, 165, 170, 180, 190, 200,
210, 220, 230, 240, 250, 260, 270, 280,
290, 300, 310, 320, 330, 340, 350, 360
};
static const unsigned int tran_exp[] = {
10000, 100000, 1000000, 10000000,
0, 0, 0, 0
};
static const unsigned char tran_mant[] = {
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
static const unsigned int tacc_exp[] = {
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
};
static const unsigned int tacc_mant[] = {
0, 10, 12, 13, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 70, 80,
};
/**
* mmc_request_done - finish processing an MMC command
* @host: MMC host which completed command
* @mrq: MMC request which completed
*
* MMC drivers should call this function when they have completed
* their processing of a command. This should be called before the
* data part of the command has completed.
*/
void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
{
struct mmc_command *cmd = mrq->cmd;
int err = mrq->cmd->error;
DBG("MMC: req done (%02x): %d: %08x %08x %08x %08x\n", cmd->opcode,
err, cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]);
if (err && cmd->retries) {
cmd->retries--;
cmd->error = 0;
host->ops->request(host, mrq);
} else if (mrq->done) {
mrq->done(mrq);
}
}
EXPORT_SYMBOL(mmc_request_done);
/**
* mmc_start_request - start a command on a host
* @host: MMC host to start command on
* @mrq: MMC request to start
*
* Queue a command on the specified host. We expect the
* caller to be holding the host lock with interrupts disabled.
*/
void
mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
{
DBG("MMC: starting cmd %02x arg %08x flags %08x\n",
mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
WARN_ON(host->card_busy == NULL);
mrq->cmd->error = 0;
mrq->cmd->mrq = mrq;
if (mrq->data) {
mrq->cmd->data = mrq->data;
mrq->data->error = 0;
mrq->data->mrq = mrq;
if (mrq->stop) {
mrq->data->stop = mrq->stop;
mrq->stop->error = 0;
mrq->stop->mrq = mrq;
}
}
host->ops->request(host, mrq);
}
EXPORT_SYMBOL(mmc_start_request);
static void mmc_wait_done(struct mmc_request *mrq)
{
complete(mrq->done_data);
}
int mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
{
DECLARE_COMPLETION(complete);
mrq->done_data = &complete;
mrq->done = mmc_wait_done;
mmc_start_request(host, mrq);
wait_for_completion(&complete);
return 0;
}
EXPORT_SYMBOL(mmc_wait_for_req);
/**
* mmc_wait_for_cmd - start a command and wait for completion
* @host: MMC host to start command
* @cmd: MMC command to start
* @retries: maximum number of retries
*
* Start a new MMC command for a host, and wait for the command
* to complete. Return any error that occurred while the command
* was executing. Do not attempt to parse the response.
*/
int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
{
struct mmc_request mrq;
BUG_ON(host->card_busy == NULL);
memset(&mrq, 0, sizeof(struct mmc_request));
memset(cmd->resp, 0, sizeof(cmd->resp));
cmd->retries = retries;
mrq.cmd = cmd;
cmd->data = NULL;
mmc_wait_for_req(host, &mrq);
return cmd->error;
}
EXPORT_SYMBOL(mmc_wait_for_cmd);
/**
* __mmc_claim_host - exclusively claim a host
* @host: mmc host to claim
* @card: mmc card to claim host for
*
* Claim a host for a set of operations. If a valid card
* is passed and this wasn't the last card selected, select
* the card before returning.
*
* Note: you should use mmc_card_claim_host or mmc_claim_host.
*/
int __mmc_claim_host(struct mmc_host *host, struct mmc_card *card)
{
DECLARE_WAITQUEUE(wait, current);
unsigned long flags;
int err = 0;
add_wait_queue(&host->wq, &wait);
spin_lock_irqsave(&host->lock, flags);
while (1) {
set_current_state(TASK_UNINTERRUPTIBLE);
if (host->card_busy == NULL)
break;
spin_unlock_irqrestore(&host->lock, flags);
schedule();
spin_lock_irqsave(&host->lock, flags);
}
set_current_state(TASK_RUNNING);
host->card_busy = card;
spin_unlock_irqrestore(&host->lock, flags);
remove_wait_queue(&host->wq, &wait);
if (card != (void *)-1 && host->card_selected != card) {
struct mmc_command cmd;
host->card_selected = card;
cmd.opcode = MMC_SELECT_CARD;
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_R1;
err = mmc_wait_for_cmd(host, &cmd, CMD_RETRIES);
}
return err;
}
EXPORT_SYMBOL(__mmc_claim_host);
/**
* mmc_release_host - release a host
* @host: mmc host to release
*
* Release a MMC host, allowing others to claim the host
* for their operations.
*/
void mmc_release_host(struct mmc_host *host)
{
unsigned long flags;
BUG_ON(host->card_busy == NULL);
spin_lock_irqsave(&host->lock, flags);
host->card_busy = NULL;
spin_unlock_irqrestore(&host->lock, flags);
wake_up(&host->wq);
}
EXPORT_SYMBOL(mmc_release_host);
/*
* Ensure that no card is selected.
*/
static void mmc_deselect_cards(struct mmc_host *host)
{
struct mmc_command cmd;
if (host->card_selected) {
host->card_selected = NULL;
cmd.opcode = MMC_SELECT_CARD;
cmd.arg = 0;
cmd.flags = MMC_RSP_NONE;
mmc_wait_for_cmd(host, &cmd, 0);
}
}
static inline void mmc_delay(unsigned int ms)
{
if (ms < HZ / 1000) {
yield();
mdelay(ms);
} else {
msleep_interruptible (ms);
}
}
/*
* Mask off any voltages we don't support and select
* the lowest voltage
*/
static u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
{
int bit;
ocr &= host->ocr_avail;
bit = ffs(ocr);
if (bit) {
bit -= 1;
ocr = 3 << bit;
host->ios.vdd = bit;
host->ops->set_ios(host, &host->ios);
} else {
ocr = 0;
}
return ocr;
}
#define UNSTUFF_BITS(resp,start,size) \
({ \
const int __size = size; \
const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
const int __off = 3 - ((start) / 32); \
const int __shft = (start) & 31; \
u32 __res; \
\
__res = resp[__off] >> __shft; \
if (__size + __shft > 32) \
__res |= resp[__off-1] << ((32 - __shft) % 32); \
__res & __mask; \
})
/*
* Given the decoded CSD structure, decode the raw CID to our CID structure.
*/
static void mmc_decode_cid(struct mmc_card *card)
{
u32 *resp = card->raw_cid;
memset(&card->cid, 0, sizeof(struct mmc_cid));
/*
* The selection of the format here is guesswork based upon
* information people have sent to date.
*/
switch (card->csd.mmca_vsn) {
case 0: /* MMC v1.? */
case 1: /* MMC v1.4 */
card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
card->cid.month = UNSTUFF_BITS(resp, 12, 4);
card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
break;
case 2: /* MMC v2.x ? */
case 3: /* MMC v3.x ? */
card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
card->cid.month = UNSTUFF_BITS(resp, 12, 4);
card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
break;
default:
printk("%s: card has unknown MMCA version %d\n",
card->host->host_name, card->csd.mmca_vsn);
mmc_card_set_bad(card);
break;
}
}
/*
* Given a 128-bit response, decode to our card CSD structure.
*/
static void mmc_decode_csd(struct mmc_card *card)
{
struct mmc_csd *csd = &card->csd;
unsigned int e, m, csd_struct;
u32 *resp = card->raw_csd;
/*
* We only understand CSD structure v1.1 and v2.
* v2 has extra information in bits 15, 11 and 10.
*/
csd_struct = UNSTUFF_BITS(resp, 126, 2);
if (csd_struct != 1 && csd_struct != 2) {
printk("%s: unrecognised CSD structure version %d\n",
card->host->host_name, csd_struct);
mmc_card_set_bad(card);
return;
}
csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
m = UNSTUFF_BITS(resp, 115, 4);
e = UNSTUFF_BITS(resp, 112, 3);
csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
m = UNSTUFF_BITS(resp, 99, 4);
e = UNSTUFF_BITS(resp, 96, 3);
csd->max_dtr = tran_exp[e] * tran_mant[m];
csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
e = UNSTUFF_BITS(resp, 47, 3);
m = UNSTUFF_BITS(resp, 62, 12);
csd->capacity = (1 + m) << (e + 2);
csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
}
/*
* Locate a MMC card on this MMC host given a raw CID.
*/
static struct mmc_card *mmc_find_card(struct mmc_host *host, u32 *raw_cid)
{
struct mmc_card *card;
list_for_each_entry(card, &host->cards, node) {
if (memcmp(card->raw_cid, raw_cid, sizeof(card->raw_cid)) == 0)
return card;
}
return NULL;
}
/*
* Allocate a new MMC card, and assign a unique RCA.
*/
static struct mmc_card *
mmc_alloc_card(struct mmc_host *host, u32 *raw_cid, unsigned int *frca)
{
struct mmc_card *card, *c;
unsigned int rca = *frca;
card = kmalloc(sizeof(struct mmc_card), GFP_KERNEL);
if (!card)
return ERR_PTR(-ENOMEM);
mmc_init_card(card, host);
memcpy(card->raw_cid, raw_cid, sizeof(card->raw_cid));
again:
list_for_each_entry(c, &host->cards, node)
if (c->rca == rca) {
rca++;
goto again;
}
card->rca = rca;
*frca = rca;
return card;
}
/*
* Tell attached cards to go to IDLE state
*/
static void mmc_idle_cards(struct mmc_host *host)
{
struct mmc_command cmd;
cmd.opcode = MMC_GO_IDLE_STATE;
cmd.arg = 0;
cmd.flags = MMC_RSP_NONE;
mmc_wait_for_cmd(host, &cmd, 0);
mmc_delay(1);
}
/*
* Apply power to the MMC stack.
*/
static void mmc_power_up(struct mmc_host *host)
{
int bit = fls(host->ocr_avail) - 1;
host->ios.vdd = bit;
host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
host->ios.power_mode = MMC_POWER_UP;
host->ops->set_ios(host, &host->ios);
mmc_delay(1);
host->ios.clock = host->f_min;
host->ios.power_mode = MMC_POWER_ON;
host->ops->set_ios(host, &host->ios);
mmc_delay(2);
}
static void mmc_power_off(struct mmc_host *host)
{
host->ios.clock = 0;
host->ios.vdd = 0;
host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
host->ios.power_mode = MMC_POWER_OFF;
host->ops->set_ios(host, &host->ios);
}
static int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr)
{
struct mmc_command cmd;
int i, err = 0;
cmd.opcode = MMC_SEND_OP_COND;
cmd.arg = ocr;
cmd.flags = MMC_RSP_R3;
for (i = 100; i; i--) {
err = mmc_wait_for_cmd(host, &cmd, 0);
if (err != MMC_ERR_NONE)
break;
if (cmd.resp[0] & MMC_CARD_BUSY || ocr == 0)
break;
err = MMC_ERR_TIMEOUT;
mmc_delay(10);
}
if (rocr)
*rocr = cmd.resp[0];
return err;
}
/*
* Discover cards by requesting their CID. If this command
* times out, it is not an error; there are no further cards
* to be discovered. Add new cards to the list.
*
* Create a mmc_card entry for each discovered card, assigning
* it an RCA, and save the raw CID for decoding later.
*/
static void mmc_discover_cards(struct mmc_host *host)
{
struct mmc_card *card;
unsigned int first_rca = 1, err;
while (1) {
struct mmc_command cmd;
cmd.opcode = MMC_ALL_SEND_CID;
cmd.arg = 0;
cmd.flags = MMC_RSP_R2;
err = mmc_wait_for_cmd(host, &cmd, CMD_RETRIES);
if (err == MMC_ERR_TIMEOUT) {
err = MMC_ERR_NONE;
break;
}
if (err != MMC_ERR_NONE) {
printk(KERN_ERR "%s: error requesting CID: %d\n",
host->host_name, err);
break;
}
card = mmc_find_card(host, cmd.resp);
if (!card) {
card = mmc_alloc_card(host, cmd.resp, &first_rca);
if (IS_ERR(card)) {
err = PTR_ERR(card);
break;
}
list_add(&card->node, &host->cards);
}
card->state &= ~MMC_STATE_DEAD;
cmd.opcode = MMC_SET_RELATIVE_ADDR;
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_R1;
err = mmc_wait_for_cmd(host, &cmd, CMD_RETRIES);
if (err != MMC_ERR_NONE)
mmc_card_set_dead(card);
}
}
static void mmc_read_csds(struct mmc_host *host)
{
struct mmc_card *card;
list_for_each_entry(card, &host->cards, node) {
struct mmc_command cmd;
int err;
if (card->state & (MMC_STATE_DEAD|MMC_STATE_PRESENT))
continue;
cmd.opcode = MMC_SEND_CSD;
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_R2;
err = mmc_wait_for_cmd(host, &cmd, CMD_RETRIES);
if (err != MMC_ERR_NONE) {
mmc_card_set_dead(card);
continue;
}
memcpy(card->raw_csd, cmd.resp, sizeof(card->raw_csd));
mmc_decode_csd(card);
mmc_decode_cid(card);
}
}
static unsigned int mmc_calculate_clock(struct mmc_host *host)
{
struct mmc_card *card;
unsigned int max_dtr = host->f_max;
list_for_each_entry(card, &host->cards, node)
if (!mmc_card_dead(card) && max_dtr > card->csd.max_dtr)
max_dtr = card->csd.max_dtr;
DBG("MMC: selected %d.%03dMHz transfer rate\n",
max_dtr / 1000000, (max_dtr / 1000) % 1000);
return max_dtr;
}
/*
* Check whether cards we already know about are still present.
* We do this by requesting status, and checking whether a card
* responds.
*
* A request for status does not cause a state change in data
* transfer mode.
*/
static void mmc_check_cards(struct mmc_host *host)
{
struct list_head *l, *n;
mmc_deselect_cards(host);
list_for_each_safe(l, n, &host->cards) {
struct mmc_card *card = mmc_list_to_card(l);
struct mmc_command cmd;
int err;
cmd.opcode = MMC_SEND_STATUS;
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_R1;
err = mmc_wait_for_cmd(host, &cmd, CMD_RETRIES);
if (err == MMC_ERR_NONE)
continue;
mmc_card_set_dead(card);
}
}
static void mmc_setup(struct mmc_host *host)
{
if (host->ios.power_mode != MMC_POWER_ON) {
int err;
u32 ocr;
mmc_power_up(host);
mmc_idle_cards(host);
err = mmc_send_op_cond(host, 0, &ocr);
if (err != MMC_ERR_NONE)
return;
host->ocr = mmc_select_voltage(host, ocr);
/*
* Since we're changing the OCR value, we seem to
* need to tell some cards to go back to the idle
* state. We wait 1ms to give cards time to
* respond.
*/
if (host->ocr)
mmc_idle_cards(host);
} else {
host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
host->ios.clock = host->f_min;
host->ops->set_ios(host, &host->ios);
/*
* We should remember the OCR mask from the existing
* cards, and detect the new cards OCR mask, combine
* the two and re-select the VDD. However, if we do
* change VDD, we should do an idle, and then do a
* full re-initialisation. We would need to notify
* drivers so that they can re-setup the cards as
* well, while keeping their queues at bay.
*
* For the moment, we take the easy way out - if the
* new cards don't like our currently selected VDD,
* they drop off the bus.
*/
}
if (host->ocr == 0)
return;
/*
* Send the selected OCR multiple times... until the cards
* all get the idea that they should be ready for CMD2.
* (My SanDisk card seems to need this.)
*/
mmc_send_op_cond(host, host->ocr, NULL);
mmc_discover_cards(host);
/*
* Ok, now switch to push-pull mode.
*/
host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
host->ops->set_ios(host, &host->ios);
mmc_read_csds(host);
}
/**
* mmc_detect_change - process change of state on a MMC socket
* @host: host which changed state.
*
* All we know is that card(s) have been inserted or removed
* from the socket(s). We don't know which socket or cards.
*/
void mmc_detect_change(struct mmc_host *host)
{
schedule_work(&host->detect);
}
EXPORT_SYMBOL(mmc_detect_change);
static void mmc_rescan(void *data)
{
struct mmc_host *host = data;
struct list_head *l, *n;
mmc_claim_host(host);
if (host->ios.power_mode == MMC_POWER_ON)
mmc_check_cards(host);
mmc_setup(host);
if (!list_empty(&host->cards)) {
/*
* (Re-)calculate the fastest clock rate which the
* attached cards and the host support.
*/
host->ios.clock = mmc_calculate_clock(host);
host->ops->set_ios(host, &host->ios);
}
mmc_release_host(host);
list_for_each_safe(l, n, &host->cards) {
struct mmc_card *card = mmc_list_to_card(l);
/*
* If this is a new and good card, register it.
*/
if (!mmc_card_present(card) && !mmc_card_dead(card)) {
if (mmc_register_card(card))
mmc_card_set_dead(card);
else
mmc_card_set_present(card);
}
/*
* If this card is dead, destroy it.
*/
if (mmc_card_dead(card)) {
list_del(&card->node);
mmc_remove_card(card);
}
}
/*
* If we discover that there are no cards on the
* bus, turn off the clock and power down.
*/
if (list_empty(&host->cards))
mmc_power_off(host);
}
/**
* mmc_alloc_host - initialise the per-host structure.
* @extra: sizeof private data structure
* @dev: pointer to host device model structure
*
* Initialise the per-host structure.
*/
struct mmc_host *mmc_alloc_host(int extra, struct device *dev)
{
struct mmc_host *host;
host = kmalloc(sizeof(struct mmc_host) + extra, GFP_KERNEL);
if (host) {
memset(host, 0, sizeof(struct mmc_host) + extra);
spin_lock_init(&host->lock);
init_waitqueue_head(&host->wq);
INIT_LIST_HEAD(&host->cards);
INIT_WORK(&host->detect, mmc_rescan, host);
host->dev = dev;
/*
* By default, hosts do not support SGIO or large requests.
* They have to set these according to their abilities.
*/
host->max_hw_segs = 1;
host->max_phys_segs = 1;
host->max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
host->max_seg_size = PAGE_CACHE_SIZE;
}
return host;
}
EXPORT_SYMBOL(mmc_alloc_host);
/**
* mmc_add_host - initialise host hardware
* @host: mmc host
*/
int mmc_add_host(struct mmc_host *host)
{
static unsigned int host_num;
snprintf(host->host_name, sizeof(host->host_name),
"mmc%d", host_num++);
mmc_power_off(host);
mmc_detect_change(host);
return 0;
}
EXPORT_SYMBOL(mmc_add_host);
/**
* mmc_remove_host - remove host hardware
* @host: mmc host
*
* Unregister and remove all cards associated with this host,
* and power down the MMC bus.
*/
void mmc_remove_host(struct mmc_host *host)
{
struct list_head *l, *n;
list_for_each_safe(l, n, &host->cards) {
struct mmc_card *card = mmc_list_to_card(l);
mmc_remove_card(card);
}
mmc_power_off(host);
}
EXPORT_SYMBOL(mmc_remove_host);
/**
* mmc_free_host - free the host structure
* @host: mmc host
*
* Free the host once all references to it have been dropped.
*/
void mmc_free_host(struct mmc_host *host)
{
flush_scheduled_work();
kfree(host);
}
EXPORT_SYMBOL(mmc_free_host);
#ifdef CONFIG_PM
/**
* mmc_suspend_host - suspend a host
* @host: mmc host
* @state: suspend mode (PM_SUSPEND_xxx)
*/
int mmc_suspend_host(struct mmc_host *host, u32 state)
{
mmc_claim_host(host);
mmc_deselect_cards(host);
mmc_power_off(host);
mmc_release_host(host);
return 0;
}
EXPORT_SYMBOL(mmc_suspend_host);
/**
* mmc_resume_host - resume a previously suspended host
* @host: mmc host
*/
int mmc_resume_host(struct mmc_host *host)
{
mmc_detect_change(host);
return 0;
}
EXPORT_SYMBOL(mmc_resume_host);
#endif
MODULE_LICENSE("GPL");

16
drivers/mmc/mmc.h Normal file
View File

@@ -0,0 +1,16 @@
/*
* linux/drivers/mmc/mmc.h
*
* Copyright (C) 2003 Russell King, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef _MMC_H
#define _MMC_H
/* core-internal functions */
void mmc_init_card(struct mmc_card *card, struct mmc_host *host);
int mmc_register_card(struct mmc_card *card);
void mmc_remove_card(struct mmc_card *card);
#endif

509
drivers/mmc/mmc_block.c Normal file
View File

@@ -0,0 +1,509 @@
/*
* Block driver for media (i.e., flash cards)
*
* Copyright 2002 Hewlett-Packard Company
*
* Use consistent with the GNU GPL is permitted,
* provided that this copyright notice is
* preserved in its entirety in all copies and derived works.
*
* HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
* AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
* FITNESS FOR ANY PARTICULAR PURPOSE.
*
* Many thanks to Alessandro Rubini and Jonathan Corbet!
*
* Author: Andrew Christian
* 28 May 2002
*/
#include <linux/moduleparam.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/hdreg.h>
#include <linux/kdev_t.h>
#include <linux/blkdev.h>
#include <linux/devfs_fs_kernel.h>
#include <linux/mmc/card.h>
#include <linux/mmc/protocol.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include "mmc_queue.h"
/*
* max 8 partitions per card
*/
#define MMC_SHIFT 3
static int major;
/*
* There is one mmc_blk_data per slot.
*/
struct mmc_blk_data {
spinlock_t lock;
struct gendisk *disk;
struct mmc_queue queue;
unsigned int usage;
unsigned int block_bits;
};
static DECLARE_MUTEX(open_lock);
static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
{
struct mmc_blk_data *md;
down(&open_lock);
md = disk->private_data;
if (md && md->usage == 0)
md = NULL;
if (md)
md->usage++;
up(&open_lock);
return md;
}
static void mmc_blk_put(struct mmc_blk_data *md)
{
down(&open_lock);
md->usage--;
if (md->usage == 0) {
put_disk(md->disk);
mmc_cleanup_queue(&md->queue);
kfree(md);
}
up(&open_lock);
}
static int mmc_blk_open(struct inode *inode, struct file *filp)
{
struct mmc_blk_data *md;
int ret = -ENXIO;
md = mmc_blk_get(inode->i_bdev->bd_disk);
if (md) {
if (md->usage == 2)
check_disk_change(inode->i_bdev);
ret = 0;
}
return ret;
}
static int mmc_blk_release(struct inode *inode, struct file *filp)
{
struct mmc_blk_data *md = inode->i_bdev->bd_disk->private_data;
mmc_blk_put(md);
return 0;
}
static int
mmc_blk_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg)
{
struct block_device *bdev = inode->i_bdev;
if (cmd == HDIO_GETGEO) {
struct hd_geometry geo;
memset(&geo, 0, sizeof(struct hd_geometry));
geo.cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
geo.heads = 4;
geo.sectors = 16;
geo.start = get_start_sect(bdev);
return copy_to_user((void __user *)arg, &geo, sizeof(geo))
? -EFAULT : 0;
}
return -ENOTTY;
}
static struct block_device_operations mmc_bdops = {
.open = mmc_blk_open,
.release = mmc_blk_release,
.ioctl = mmc_blk_ioctl,
.owner = THIS_MODULE,
};
struct mmc_blk_request {
struct mmc_request mrq;
struct mmc_command cmd;
struct mmc_command stop;
struct mmc_data data;
};
static int mmc_blk_prep_rq(struct mmc_queue *mq, struct request *req)
{
struct mmc_blk_data *md = mq->data;
int stat = BLKPREP_OK;
/*
* If we have no device, we haven't finished initialising.
*/
if (!md || !mq->card) {
printk(KERN_ERR "%s: killing request - no device/host\n",
req->rq_disk->disk_name);
stat = BLKPREP_KILL;
}
return stat;
}
static int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
{
struct mmc_blk_data *md = mq->data;
struct mmc_card *card = md->queue.card;
int ret;
if (mmc_card_claim_host(card))
goto cmd_err;
do {
struct mmc_blk_request brq;
struct mmc_command cmd;
memset(&brq, 0, sizeof(struct mmc_blk_request));
brq.mrq.cmd = &brq.cmd;
brq.mrq.data = &brq.data;
brq.cmd.arg = req->sector << 9;
brq.cmd.flags = MMC_RSP_R1;
brq.data.timeout_ns = card->csd.tacc_ns * 10;
brq.data.timeout_clks = card->csd.tacc_clks * 10;
brq.data.blksz_bits = md->block_bits;
brq.data.blocks = req->nr_sectors >> (md->block_bits - 9);
brq.stop.opcode = MMC_STOP_TRANSMISSION;
brq.stop.arg = 0;
brq.stop.flags = MMC_RSP_R1B;
if (rq_data_dir(req) == READ) {
brq.cmd.opcode = brq.data.blocks > 1 ? MMC_READ_MULTIPLE_BLOCK : MMC_READ_SINGLE_BLOCK;
brq.data.flags |= MMC_DATA_READ;
} else {
brq.cmd.opcode = MMC_WRITE_BLOCK;
brq.cmd.flags = MMC_RSP_R1B;
brq.data.flags |= MMC_DATA_WRITE;
brq.data.blocks = 1;
}
brq.mrq.stop = brq.data.blocks > 1 ? &brq.stop : NULL;
brq.data.sg = mq->sg;
brq.data.sg_len = blk_rq_map_sg(req->q, req, brq.data.sg);
mmc_wait_for_req(card->host, &brq.mrq);
if (brq.cmd.error) {
printk(KERN_ERR "%s: error %d sending read/write command\n",
req->rq_disk->disk_name, brq.cmd.error);
goto cmd_err;
}
if (brq.data.error) {
printk(KERN_ERR "%s: error %d transferring data\n",
req->rq_disk->disk_name, brq.data.error);
goto cmd_err;
}
if (brq.stop.error) {
printk(KERN_ERR "%s: error %d sending stop command\n",
req->rq_disk->disk_name, brq.stop.error);
goto cmd_err;
}
do {
int err;
cmd.opcode = MMC_SEND_STATUS;
cmd.arg = card->rca << 16;
cmd.flags = MMC_RSP_R1;
err = mmc_wait_for_cmd(card->host, &cmd, 5);
if (err) {
printk(KERN_ERR "%s: error %d requesting status\n",
req->rq_disk->disk_name, err);
goto cmd_err;
}
} while (!(cmd.resp[0] & R1_READY_FOR_DATA));
#if 0
if (cmd.resp[0] & ~0x00000900)
printk(KERN_ERR "%s: status = %08x\n",
req->rq_disk->disk_name, cmd.resp[0]);
if (mmc_decode_status(cmd.resp))
goto cmd_err;
#endif
/*
* A block was successfully transferred.
*/
spin_lock_irq(&md->lock);
ret = end_that_request_chunk(req, 1, brq.data.bytes_xfered);
if (!ret) {
/*
* The whole request completed successfully.
*/
add_disk_randomness(req->rq_disk);
blkdev_dequeue_request(req);
end_that_request_last(req);
}
spin_unlock_irq(&md->lock);
} while (ret);
mmc_card_release_host(card);
return 1;
cmd_err:
mmc_card_release_host(card);
/*
* This is a little draconian, but until we get proper
* error handling sorted out here, its the best we can
* do - especially as some hosts have no idea how much
* data was transferred before the error occurred.
*/
spin_lock_irq(&md->lock);
do {
ret = end_that_request_chunk(req, 0,
req->current_nr_sectors << 9);
} while (ret);
add_disk_randomness(req->rq_disk);
blkdev_dequeue_request(req);
end_that_request_last(req);
spin_unlock_irq(&md->lock);
return 0;
}
#define MMC_NUM_MINORS (256 >> MMC_SHIFT)
static unsigned long dev_use[MMC_NUM_MINORS/(8*sizeof(unsigned long))];
static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
{
struct mmc_blk_data *md;
int devidx, ret;
devidx = find_first_zero_bit(dev_use, MMC_NUM_MINORS);
if (devidx >= MMC_NUM_MINORS)
return ERR_PTR(-ENOSPC);
__set_bit(devidx, dev_use);
md = kmalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
if (md) {
memset(md, 0, sizeof(struct mmc_blk_data));
md->disk = alloc_disk(1 << MMC_SHIFT);
if (md->disk == NULL) {
kfree(md);
md = ERR_PTR(-ENOMEM);
goto out;
}
spin_lock_init(&md->lock);
md->usage = 1;
ret = mmc_init_queue(&md->queue, card, &md->lock);
if (ret) {
put_disk(md->disk);
kfree(md);
md = ERR_PTR(ret);
goto out;
}
md->queue.prep_fn = mmc_blk_prep_rq;
md->queue.issue_fn = mmc_blk_issue_rq;
md->queue.data = md;
md->disk->major = major;
md->disk->first_minor = devidx << MMC_SHIFT;
md->disk->fops = &mmc_bdops;
md->disk->private_data = md;
md->disk->queue = md->queue.queue;
md->disk->driverfs_dev = &card->dev;
/*
* As discussed on lkml, GENHD_FL_REMOVABLE should:
*
* - be set for removable media with permanent block devices
* - be unset for removable block devices with permanent media
*
* Since MMC block devices clearly fall under the second
* case, we do not set GENHD_FL_REMOVABLE. Userspace
* should use the block device creation/destruction hotplug
* messages to tell when the card is present.
*/
sprintf(md->disk->disk_name, "mmcblk%d", devidx);
sprintf(md->disk->devfs_name, "mmc/blk%d", devidx);
md->block_bits = card->csd.read_blkbits;
blk_queue_hardsect_size(md->queue.queue, 1 << md->block_bits);
set_capacity(md->disk, card->csd.capacity);
}
out:
return md;
}
static int
mmc_blk_set_blksize(struct mmc_blk_data *md, struct mmc_card *card)
{
struct mmc_command cmd;
int err;
mmc_card_claim_host(card);
cmd.opcode = MMC_SET_BLOCKLEN;
cmd.arg = 1 << card->csd.read_blkbits;
cmd.flags = MMC_RSP_R1;
err = mmc_wait_for_cmd(card->host, &cmd, 5);
mmc_card_release_host(card);
if (err) {
printk(KERN_ERR "%s: unable to set block size to %d: %d\n",
md->disk->disk_name, cmd.arg, err);
return -EINVAL;
}
return 0;
}
static int mmc_blk_probe(struct mmc_card *card)
{
struct mmc_blk_data *md;
int err;
if (card->csd.cmdclass & ~0x1ff)
return -ENODEV;
if (card->csd.read_blkbits < 9) {
printk(KERN_WARNING "%s: read blocksize too small (%u)\n",
mmc_card_id(card), 1 << card->csd.read_blkbits);
return -ENODEV;
}
md = mmc_blk_alloc(card);
if (IS_ERR(md))
return PTR_ERR(md);
err = mmc_blk_set_blksize(md, card);
if (err)
goto out;
printk(KERN_INFO "%s: %s %s %dKiB\n",
md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
(card->csd.capacity << card->csd.read_blkbits) / 1024);
mmc_set_drvdata(card, md);
add_disk(md->disk);
return 0;
out:
mmc_blk_put(md);
return err;
}
static void mmc_blk_remove(struct mmc_card *card)
{
struct mmc_blk_data *md = mmc_get_drvdata(card);
if (md) {
int devidx;
del_gendisk(md->disk);
/*
* I think this is needed.
*/
md->disk->queue = NULL;
devidx = md->disk->first_minor >> MMC_SHIFT;
__clear_bit(devidx, dev_use);
mmc_blk_put(md);
}
mmc_set_drvdata(card, NULL);
}
#ifdef CONFIG_PM
static int mmc_blk_suspend(struct mmc_card *card, pm_message_t state)
{
struct mmc_blk_data *md = mmc_get_drvdata(card);
if (md) {
mmc_queue_suspend(&md->queue);
}
return 0;
}
static int mmc_blk_resume(struct mmc_card *card)
{
struct mmc_blk_data *md = mmc_get_drvdata(card);
if (md) {
mmc_blk_set_blksize(md, card);
mmc_queue_resume(&md->queue);
}
return 0;
}
#else
#define mmc_blk_suspend NULL
#define mmc_blk_resume NULL
#endif
static struct mmc_driver mmc_driver = {
.drv = {
.name = "mmcblk",
},
.probe = mmc_blk_probe,
.remove = mmc_blk_remove,
.suspend = mmc_blk_suspend,
.resume = mmc_blk_resume,
};
static int __init mmc_blk_init(void)
{
int res = -ENOMEM;
res = register_blkdev(major, "mmc");
if (res < 0) {
printk(KERN_WARNING "Unable to get major %d for MMC media: %d\n",
major, res);
goto out;
}
if (major == 0)
major = res;
devfs_mk_dir("mmc");
return mmc_register_driver(&mmc_driver);
out:
return res;
}
static void __exit mmc_blk_exit(void)
{
mmc_unregister_driver(&mmc_driver);
devfs_remove("mmc");
unregister_blkdev(major, "mmc");
}
module_init(mmc_blk_init);
module_exit(mmc_blk_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
module_param(major, int, 0444);
MODULE_PARM_DESC(major, "specify the major device number for MMC block driver");

238
drivers/mmc/mmc_queue.c Normal file
View File

@@ -0,0 +1,238 @@
/*
* linux/drivers/mmc/mmc_queue.c
*
* Copyright (C) 2003 Russell King, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/module.h>
#include <linux/blkdev.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include "mmc_queue.h"
#define MMC_QUEUE_EXIT (1 << 0)
#define MMC_QUEUE_SUSPENDED (1 << 1)
/*
* Prepare a MMC request. Essentially, this means passing the
* preparation off to the media driver. The media driver will
* create a mmc_io_request in req->special.
*/
static int mmc_prep_request(struct request_queue *q, struct request *req)
{
struct mmc_queue *mq = q->queuedata;
int ret = BLKPREP_KILL;
if (req->flags & REQ_SPECIAL) {
/*
* Special commands already have the command
* blocks already setup in req->special.
*/
BUG_ON(!req->special);
ret = BLKPREP_OK;
} else if (req->flags & (REQ_CMD | REQ_BLOCK_PC)) {
/*
* Block I/O requests need translating according
* to the protocol.
*/
ret = mq->prep_fn(mq, req);
} else {
/*
* Everything else is invalid.
*/
blk_dump_rq_flags(req, "MMC bad request");
}
if (ret == BLKPREP_OK)
req->flags |= REQ_DONTPREP;
return ret;
}
static int mmc_queue_thread(void *d)
{
struct mmc_queue *mq = d;
struct request_queue *q = mq->queue;
DECLARE_WAITQUEUE(wait, current);
/*
* Set iothread to ensure that we aren't put to sleep by
* the process freezing. We handle suspension ourselves.
*/
current->flags |= PF_MEMALLOC|PF_NOFREEZE;
daemonize("mmcqd");
complete(&mq->thread_complete);
down(&mq->thread_sem);
add_wait_queue(&mq->thread_wq, &wait);
do {
struct request *req = NULL;
spin_lock_irq(q->queue_lock);
set_current_state(TASK_INTERRUPTIBLE);
if (!blk_queue_plugged(q))
mq->req = req = elv_next_request(q);
spin_unlock_irq(q->queue_lock);
if (!req) {
if (mq->flags & MMC_QUEUE_EXIT)
break;
up(&mq->thread_sem);
schedule();
down(&mq->thread_sem);
continue;
}
set_current_state(TASK_RUNNING);
mq->issue_fn(mq, req);
} while (1);
remove_wait_queue(&mq->thread_wq, &wait);
up(&mq->thread_sem);
complete_and_exit(&mq->thread_complete, 0);
return 0;
}
/*
* Generic MMC request handler. This is called for any queue on a
* particular host. When the host is not busy, we look for a request
* on any queue on this host, and attempt to issue it. This may
* not be the queue we were asked to process.
*/
static void mmc_request(request_queue_t *q)
{
struct mmc_queue *mq = q->queuedata;
if (!mq->req)
wake_up(&mq->thread_wq);
}
/**
* mmc_init_queue - initialise a queue structure.
* @mq: mmc queue
* @card: mmc card to attach this queue
* @lock: queue lock
*
* Initialise a MMC card request queue.
*/
int mmc_init_queue(struct mmc_queue *mq, struct mmc_card *card, spinlock_t *lock)
{
struct mmc_host *host = card->host;
u64 limit = BLK_BOUNCE_HIGH;
int ret;
if (host->dev->dma_mask && *host->dev->dma_mask)
limit = *host->dev->dma_mask;
mq->card = card;
mq->queue = blk_init_queue(mmc_request, lock);
if (!mq->queue)
return -ENOMEM;
blk_queue_prep_rq(mq->queue, mmc_prep_request);
blk_queue_bounce_limit(mq->queue, limit);
blk_queue_max_sectors(mq->queue, host->max_sectors);
blk_queue_max_phys_segments(mq->queue, host->max_phys_segs);
blk_queue_max_hw_segments(mq->queue, host->max_hw_segs);
blk_queue_max_segment_size(mq->queue, host->max_seg_size);
mq->queue->queuedata = mq;
mq->req = NULL;
mq->sg = kmalloc(sizeof(struct scatterlist) * host->max_phys_segs,
GFP_KERNEL);
if (!mq->sg) {
ret = -ENOMEM;
goto cleanup;
}
init_completion(&mq->thread_complete);
init_waitqueue_head(&mq->thread_wq);
init_MUTEX(&mq->thread_sem);
ret = kernel_thread(mmc_queue_thread, mq, CLONE_KERNEL);
if (ret >= 0) {
wait_for_completion(&mq->thread_complete);
init_completion(&mq->thread_complete);
ret = 0;
goto out;
}
cleanup:
kfree(mq->sg);
mq->sg = NULL;
blk_cleanup_queue(mq->queue);
out:
return ret;
}
EXPORT_SYMBOL(mmc_init_queue);
void mmc_cleanup_queue(struct mmc_queue *mq)
{
mq->flags |= MMC_QUEUE_EXIT;
wake_up(&mq->thread_wq);
wait_for_completion(&mq->thread_complete);
kfree(mq->sg);
mq->sg = NULL;
blk_cleanup_queue(mq->queue);
mq->card = NULL;
}
EXPORT_SYMBOL(mmc_cleanup_queue);
/**
* mmc_queue_suspend - suspend a MMC request queue
* @mq: MMC queue to suspend
*
* Stop the block request queue, and wait for our thread to
* complete any outstanding requests. This ensures that we
* won't suspend while a request is being processed.
*/
void mmc_queue_suspend(struct mmc_queue *mq)
{
request_queue_t *q = mq->queue;
unsigned long flags;
if (!(mq->flags & MMC_QUEUE_SUSPENDED)) {
mq->flags |= MMC_QUEUE_SUSPENDED;
spin_lock_irqsave(q->queue_lock, flags);
blk_stop_queue(q);
spin_unlock_irqrestore(q->queue_lock, flags);
down(&mq->thread_sem);
}
}
EXPORT_SYMBOL(mmc_queue_suspend);
/**
* mmc_queue_resume - resume a previously suspended MMC request queue
* @mq: MMC queue to resume
*/
void mmc_queue_resume(struct mmc_queue *mq)
{
request_queue_t *q = mq->queue;
unsigned long flags;
if (mq->flags & MMC_QUEUE_SUSPENDED) {
mq->flags &= ~MMC_QUEUE_SUSPENDED;
up(&mq->thread_sem);
spin_lock_irqsave(q->queue_lock, flags);
blk_start_queue(q);
spin_unlock_irqrestore(q->queue_lock, flags);
}
}
EXPORT_SYMBOL(mmc_queue_resume);

33
drivers/mmc/mmc_queue.h Normal file
View File

@@ -0,0 +1,33 @@
#ifndef MMC_QUEUE_H
#define MMC_QUEUE_H
struct request;
struct task_struct;
struct mmc_queue {
struct mmc_card *card;
struct completion thread_complete;
wait_queue_head_t thread_wq;
struct semaphore thread_sem;
unsigned int flags;
struct request *req;
int (*prep_fn)(struct mmc_queue *, struct request *);
int (*issue_fn)(struct mmc_queue *, struct request *);
void *data;
struct request_queue *queue;
struct scatterlist *sg;
};
struct mmc_io_request {
struct request *rq;
int num;
struct mmc_command selcmd; /* mmc_queue private */
struct mmc_command cmd[4]; /* max 4 commands */
};
extern int mmc_init_queue(struct mmc_queue *, struct mmc_card *, spinlock_t *);
extern void mmc_cleanup_queue(struct mmc_queue *);
extern void mmc_queue_suspend(struct mmc_queue *);
extern void mmc_queue_resume(struct mmc_queue *);
#endif

238
drivers/mmc/mmc_sysfs.c Normal file
View File

@@ -0,0 +1,238 @@
/*
* linux/drivers/mmc/mmc_sysfs.c
*
* Copyright (C) 2003 Russell King, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* MMC sysfs/driver model support.
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/mmc/card.h>
#include <linux/mmc/host.h>
#include "mmc.h"
#define dev_to_mmc_card(d) container_of(d, struct mmc_card, dev)
#define to_mmc_driver(d) container_of(d, struct mmc_driver, drv)
#define MMC_ATTR(name, fmt, args...) \
static ssize_t mmc_##name##_show (struct device *dev, char *buf) \
{ \
struct mmc_card *card = dev_to_mmc_card(dev); \
return sprintf(buf, fmt, args); \
}
MMC_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
card->raw_cid[2], card->raw_cid[3]);
MMC_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
card->raw_csd[2], card->raw_csd[3]);
MMC_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
MMC_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
MMC_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
MMC_ATTR(manfid, "0x%06x\n", card->cid.manfid);
MMC_ATTR(name, "%s\n", card->cid.prod_name);
MMC_ATTR(oemid, "0x%04x\n", card->cid.oemid);
MMC_ATTR(serial, "0x%08x\n", card->cid.serial);
#define MMC_ATTR_RO(name) __ATTR(name, S_IRUGO, mmc_##name##_show, NULL)
static struct device_attribute mmc_dev_attrs[] = {
MMC_ATTR_RO(cid),
MMC_ATTR_RO(csd),
MMC_ATTR_RO(date),
MMC_ATTR_RO(fwrev),
MMC_ATTR_RO(hwrev),
MMC_ATTR_RO(manfid),
MMC_ATTR_RO(name),
MMC_ATTR_RO(oemid),
MMC_ATTR_RO(serial),
__ATTR_NULL
};
static void mmc_release_card(struct device *dev)
{
struct mmc_card *card = dev_to_mmc_card(dev);
kfree(card);
}
/*
* This currently matches any MMC driver to any MMC card - drivers
* themselves make the decision whether to drive this card in their
* probe method. However, we force "bad" cards to fail.
*/
static int mmc_bus_match(struct device *dev, struct device_driver *drv)
{
struct mmc_card *card = dev_to_mmc_card(dev);
return !mmc_card_bad(card);
}
static int
mmc_bus_hotplug(struct device *dev, char **envp, int num_envp, char *buf,
int buf_size)
{
struct mmc_card *card = dev_to_mmc_card(dev);
char ccc[13];
int i = 0;
#define add_env(fmt,val) \
({ \
int len, ret = -ENOMEM; \
if (i < num_envp) { \
envp[i++] = buf; \
len = snprintf(buf, buf_size, fmt, val) + 1; \
buf_size -= len; \
buf += len; \
if (buf_size >= 0) \
ret = 0; \
} \
ret; \
})
for (i = 0; i < 12; i++)
ccc[i] = card->csd.cmdclass & (1 << i) ? '1' : '0';
ccc[12] = '\0';
i = 0;
add_env("MMC_CCC=%s", ccc);
add_env("MMC_MANFID=%06x", card->cid.manfid);
add_env("MMC_NAME=%s", mmc_card_name(card));
add_env("MMC_OEMID=%04x", card->cid.oemid);
return 0;
}
static int mmc_bus_suspend(struct device *dev, pm_message_t state)
{
struct mmc_driver *drv = to_mmc_driver(dev->driver);
struct mmc_card *card = dev_to_mmc_card(dev);
int ret = 0;
if (dev->driver && drv->suspend)
ret = drv->suspend(card, state);
return ret;
}
static int mmc_bus_resume(struct device *dev)
{
struct mmc_driver *drv = to_mmc_driver(dev->driver);
struct mmc_card *card = dev_to_mmc_card(dev);
int ret = 0;
if (dev->driver && drv->resume)
ret = drv->resume(card);
return ret;
}
static struct bus_type mmc_bus_type = {
.name = "mmc",
.dev_attrs = mmc_dev_attrs,
.match = mmc_bus_match,
.hotplug = mmc_bus_hotplug,
.suspend = mmc_bus_suspend,
.resume = mmc_bus_resume,
};
static int mmc_drv_probe(struct device *dev)
{
struct mmc_driver *drv = to_mmc_driver(dev->driver);
struct mmc_card *card = dev_to_mmc_card(dev);
return drv->probe(card);
}
static int mmc_drv_remove(struct device *dev)
{
struct mmc_driver *drv = to_mmc_driver(dev->driver);
struct mmc_card *card = dev_to_mmc_card(dev);
drv->remove(card);
return 0;
}
/**
* mmc_register_driver - register a media driver
* @drv: MMC media driver
*/
int mmc_register_driver(struct mmc_driver *drv)
{
drv->drv.bus = &mmc_bus_type;
drv->drv.probe = mmc_drv_probe;
drv->drv.remove = mmc_drv_remove;
return driver_register(&drv->drv);
}
EXPORT_SYMBOL(mmc_register_driver);
/**
* mmc_unregister_driver - unregister a media driver
* @drv: MMC media driver
*/
void mmc_unregister_driver(struct mmc_driver *drv)
{
drv->drv.bus = &mmc_bus_type;
driver_unregister(&drv->drv);
}
EXPORT_SYMBOL(mmc_unregister_driver);
/*
* Internal function. Initialise a MMC card structure.
*/
void mmc_init_card(struct mmc_card *card, struct mmc_host *host)
{
memset(card, 0, sizeof(struct mmc_card));
card->host = host;
device_initialize(&card->dev);
card->dev.parent = card->host->dev;
card->dev.bus = &mmc_bus_type;
card->dev.release = mmc_release_card;
}
/*
* Internal function. Register a new MMC card with the driver model.
*/
int mmc_register_card(struct mmc_card *card)
{
snprintf(card->dev.bus_id, sizeof(card->dev.bus_id),
"%s:%04x", card->host->host_name, card->rca);
return device_add(&card->dev);
}
/*
* Internal function. Unregister a new MMC card with the
* driver model, and (eventually) free it.
*/
void mmc_remove_card(struct mmc_card *card)
{
if (mmc_card_present(card))
device_del(&card->dev);
put_device(&card->dev);
}
static int __init mmc_init(void)
{
return bus_register(&mmc_bus_type);
}
static void __exit mmc_exit(void)
{
bus_unregister(&mmc_bus_type);
}
module_init(mmc_init);
module_exit(mmc_exit);

680
drivers/mmc/mmci.c Normal file
View File

@@ -0,0 +1,680 @@
/*
* linux/drivers/mmc/mmci.c - ARM PrimeCell MMCI PL180/1 driver
*
* Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/highmem.h>
#include <linux/mmc/host.h>
#include <linux/mmc/protocol.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/scatterlist.h>
#include <asm/hardware/amba.h>
#include <asm/hardware/clock.h>
#include <asm/mach/mmc.h>
#include "mmci.h"
#define DRIVER_NAME "mmci-pl18x"
#ifdef CONFIG_MMC_DEBUG
#define DBG(host,fmt,args...) \
pr_debug("%s: %s: " fmt, host->mmc->host_name, __func__ , args)
#else
#define DBG(host,fmt,args...) do { } while (0)
#endif
static unsigned int fmax = 515633;
static void
mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
{
writel(0, host->base + MMCICOMMAND);
host->mrq = NULL;
host->cmd = NULL;
if (mrq->data)
mrq->data->bytes_xfered = host->data_xfered;
/*
* Need to drop the host lock here; mmc_request_done may call
* back into the driver...
*/
spin_unlock(&host->lock);
mmc_request_done(host->mmc, mrq);
spin_lock(&host->lock);
}
static void mmci_stop_data(struct mmci_host *host)
{
writel(0, host->base + MMCIDATACTRL);
writel(0, host->base + MMCIMASK1);
host->data = NULL;
}
static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
{
unsigned int datactrl, timeout, irqmask;
void __iomem *base;
DBG(host, "blksz %04x blks %04x flags %08x\n",
1 << data->blksz_bits, data->blocks, data->flags);
host->data = data;
host->size = data->blocks << data->blksz_bits;
host->data_xfered = 0;
mmci_init_sg(host, data);
timeout = data->timeout_clks +
((unsigned long long)data->timeout_ns * host->cclk) /
1000000000ULL;
base = host->base;
writel(timeout, base + MMCIDATATIMER);
writel(host->size, base + MMCIDATALENGTH);
datactrl = MCI_DPSM_ENABLE | data->blksz_bits << 4;
if (data->flags & MMC_DATA_READ) {
datactrl |= MCI_DPSM_DIRECTION;
irqmask = MCI_RXFIFOHALFFULLMASK;
} else {
/*
* We don't actually need to include "FIFO empty" here
* since its implicit in "FIFO half empty".
*/
irqmask = MCI_TXFIFOHALFEMPTYMASK;
}
writel(datactrl, base + MMCIDATACTRL);
writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
writel(irqmask, base + MMCIMASK1);
}
static void
mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
{
void __iomem *base = host->base;
DBG(host, "op %02x arg %08x flags %08x\n",
cmd->opcode, cmd->arg, cmd->flags);
if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
writel(0, base + MMCICOMMAND);
udelay(1);
}
c |= cmd->opcode | MCI_CPSM_ENABLE;
switch (cmd->flags & MMC_RSP_MASK) {
case MMC_RSP_NONE:
default:
break;
case MMC_RSP_LONG:
c |= MCI_CPSM_LONGRSP;
case MMC_RSP_SHORT:
c |= MCI_CPSM_RESPONSE;
break;
}
if (/*interrupt*/0)
c |= MCI_CPSM_INTERRUPT;
host->cmd = cmd;
writel(cmd->arg, base + MMCIARGUMENT);
writel(c, base + MMCICOMMAND);
}
static void
mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
unsigned int status)
{
if (status & MCI_DATABLOCKEND) {
host->data_xfered += 1 << data->blksz_bits;
}
if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
if (status & MCI_DATACRCFAIL)
data->error = MMC_ERR_BADCRC;
else if (status & MCI_DATATIMEOUT)
data->error = MMC_ERR_TIMEOUT;
else if (status & (MCI_TXUNDERRUN|MCI_RXOVERRUN))
data->error = MMC_ERR_FIFO;
status |= MCI_DATAEND;
}
if (status & MCI_DATAEND) {
mmci_stop_data(host);
if (!data->stop) {
mmci_request_end(host, data->mrq);
} else {
mmci_start_command(host, data->stop, 0);
}
}
}
static void
mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
unsigned int status)
{
void __iomem *base = host->base;
host->cmd = NULL;
cmd->resp[0] = readl(base + MMCIRESPONSE0);
cmd->resp[1] = readl(base + MMCIRESPONSE1);
cmd->resp[2] = readl(base + MMCIRESPONSE2);
cmd->resp[3] = readl(base + MMCIRESPONSE3);
if (status & MCI_CMDTIMEOUT) {
cmd->error = MMC_ERR_TIMEOUT;
} else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
cmd->error = MMC_ERR_BADCRC;
}
if (!cmd->data || cmd->error != MMC_ERR_NONE) {
mmci_request_end(host, cmd->mrq);
} else if (!(cmd->data->flags & MMC_DATA_READ)) {
mmci_start_data(host, cmd->data);
}
}
static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
{
void __iomem *base = host->base;
char *ptr = buffer;
u32 status;
do {
int count = host->size - (readl(base + MMCIFIFOCNT) << 2);
if (count > remain)
count = remain;
if (count <= 0)
break;
readsl(base + MMCIFIFO, ptr, count >> 2);
ptr += count;
remain -= count;
if (remain == 0)
break;
status = readl(base + MMCISTATUS);
} while (status & MCI_RXDATAAVLBL);
return ptr - buffer;
}
static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
{
void __iomem *base = host->base;
char *ptr = buffer;
do {
unsigned int count, maxcnt;
maxcnt = status & MCI_TXFIFOEMPTY ? MCI_FIFOSIZE : MCI_FIFOHALFSIZE;
count = min(remain, maxcnt);
writesl(base + MMCIFIFO, ptr, count >> 2);
ptr += count;
remain -= count;
if (remain == 0)
break;
status = readl(base + MMCISTATUS);
} while (status & MCI_TXFIFOHALFEMPTY);
return ptr - buffer;
}
/*
* PIO data transfer IRQ handler.
*/
static irqreturn_t mmci_pio_irq(int irq, void *dev_id, struct pt_regs *regs)
{
struct mmci_host *host = dev_id;
void __iomem *base = host->base;
u32 status;
status = readl(base + MMCISTATUS);
DBG(host, "irq1 %08x\n", status);
do {
unsigned long flags;
unsigned int remain, len;
char *buffer;
/*
* For write, we only need to test the half-empty flag
* here - if the FIFO is completely empty, then by
* definition it is more than half empty.
*
* For read, check for data available.
*/
if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
break;
/*
* Map the current scatter buffer.
*/
buffer = mmci_kmap_atomic(host, &flags) + host->sg_off;
remain = host->sg_ptr->length - host->sg_off;
len = 0;
if (status & MCI_RXACTIVE)
len = mmci_pio_read(host, buffer, remain);
if (status & MCI_TXACTIVE)
len = mmci_pio_write(host, buffer, remain, status);
/*
* Unmap the buffer.
*/
mmci_kunmap_atomic(host, &flags);
host->sg_off += len;
host->size -= len;
remain -= len;
if (remain)
break;
if (!mmci_next_sg(host))
break;
status = readl(base + MMCISTATUS);
} while (1);
/*
* If we're nearing the end of the read, switch to
* "any data available" mode.
*/
if (status & MCI_RXACTIVE && host->size < MCI_FIFOSIZE)
writel(MCI_RXDATAAVLBLMASK, base + MMCIMASK1);
/*
* If we run out of data, disable the data IRQs; this
* prevents a race where the FIFO becomes empty before
* the chip itself has disabled the data path, and
* stops us racing with our data end IRQ.
*/
if (host->size == 0) {
writel(0, base + MMCIMASK1);
writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
}
return IRQ_HANDLED;
}
/*
* Handle completion of command and data transfers.
*/
static irqreturn_t mmci_irq(int irq, void *dev_id, struct pt_regs *regs)
{
struct mmci_host *host = dev_id;
u32 status;
int ret = 0;
spin_lock(&host->lock);
do {
struct mmc_command *cmd;
struct mmc_data *data;
status = readl(host->base + MMCISTATUS);
status &= readl(host->base + MMCIMASK0);
writel(status, host->base + MMCICLEAR);
DBG(host, "irq0 %08x\n", status);
data = host->data;
if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_TXUNDERRUN|
MCI_RXOVERRUN|MCI_DATAEND|MCI_DATABLOCKEND) && data)
mmci_data_irq(host, data, status);
cmd = host->cmd;
if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
mmci_cmd_irq(host, cmd, status);
ret = 1;
} while (status);
spin_unlock(&host->lock);
return IRQ_RETVAL(ret);
}
static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct mmci_host *host = mmc_priv(mmc);
WARN_ON(host->mrq != NULL);
spin_lock_irq(&host->lock);
host->mrq = mrq;
if (mrq->data && mrq->data->flags & MMC_DATA_READ)
mmci_start_data(host, mrq->data);
mmci_start_command(host, mrq->cmd, 0);
spin_unlock_irq(&host->lock);
}
static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct mmci_host *host = mmc_priv(mmc);
u32 clk = 0, pwr = 0;
DBG(host, "clock %uHz busmode %u powermode %u Vdd %u\n",
ios->clock, ios->bus_mode, ios->power_mode, ios->vdd);
if (ios->clock) {
if (ios->clock >= host->mclk) {
clk = MCI_CLK_BYPASS;
host->cclk = host->mclk;
} else {
clk = host->mclk / (2 * ios->clock) - 1;
if (clk > 256)
clk = 255;
host->cclk = host->mclk / (2 * (clk + 1));
}
clk |= MCI_CLK_ENABLE;
}
if (host->plat->translate_vdd)
pwr |= host->plat->translate_vdd(mmc_dev(mmc), ios->vdd);
switch (ios->power_mode) {
case MMC_POWER_OFF:
break;
case MMC_POWER_UP:
pwr |= MCI_PWR_UP;
break;
case MMC_POWER_ON:
pwr |= MCI_PWR_ON;
break;
}
if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
pwr |= MCI_ROD;
writel(clk, host->base + MMCICLOCK);
if (host->pwr != pwr) {
host->pwr = pwr;
writel(pwr, host->base + MMCIPOWER);
}
}
static struct mmc_host_ops mmci_ops = {
.request = mmci_request,
.set_ios = mmci_set_ios,
};
static void mmci_check_status(unsigned long data)
{
struct mmci_host *host = (struct mmci_host *)data;
unsigned int status;
status = host->plat->status(mmc_dev(host->mmc));
if (status ^ host->oldstat)
mmc_detect_change(host->mmc);
host->oldstat = status;
mod_timer(&host->timer, jiffies + HZ);
}
static int mmci_probe(struct amba_device *dev, void *id)
{
struct mmc_platform_data *plat = dev->dev.platform_data;
struct mmci_host *host;
struct mmc_host *mmc;
int ret;
/* must have platform data */
if (!plat) {
ret = -EINVAL;
goto out;
}
ret = amba_request_regions(dev, DRIVER_NAME);
if (ret)
goto out;
mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
if (!mmc) {
ret = -ENOMEM;
goto rel_regions;
}
host = mmc_priv(mmc);
host->clk = clk_get(&dev->dev, "MCLK");
if (IS_ERR(host->clk)) {
ret = PTR_ERR(host->clk);
host->clk = NULL;
goto host_free;
}
ret = clk_use(host->clk);
if (ret)
goto clk_free;
ret = clk_enable(host->clk);
if (ret)
goto clk_unuse;
host->plat = plat;
host->mclk = clk_get_rate(host->clk);
host->mmc = mmc;
host->base = ioremap(dev->res.start, SZ_4K);
if (!host->base) {
ret = -ENOMEM;
goto clk_disable;
}
mmc->ops = &mmci_ops;
mmc->f_min = (host->mclk + 511) / 512;
mmc->f_max = min(host->mclk, fmax);
mmc->ocr_avail = plat->ocr_mask;
/*
* We can do SGIO
*/
mmc->max_hw_segs = 16;
mmc->max_phys_segs = NR_SG;
/*
* Since we only have a 16-bit data length register, we must
* ensure that we don't exceed 2^16-1 bytes in a single request.
* Choose 64 (512-byte) sectors as the limit.
*/
mmc->max_sectors = 64;
/*
* Set the maximum segment size. Since we aren't doing DMA
* (yet) we are only limited by the data length register.
*/
mmc->max_seg_size = mmc->max_sectors << 9;
spin_lock_init(&host->lock);
writel(0, host->base + MMCIMASK0);
writel(0, host->base + MMCIMASK1);
writel(0xfff, host->base + MMCICLEAR);
ret = request_irq(dev->irq[0], mmci_irq, SA_SHIRQ, DRIVER_NAME " (cmd)", host);
if (ret)
goto unmap;
ret = request_irq(dev->irq[1], mmci_pio_irq, SA_SHIRQ, DRIVER_NAME " (pio)", host);
if (ret)
goto irq0_free;
writel(MCI_IRQENABLE, host->base + MMCIMASK0);
amba_set_drvdata(dev, mmc);
mmc_add_host(mmc);
printk(KERN_INFO "%s: MMCI rev %x cfg %02x at 0x%08lx irq %d,%d\n",
mmc->host_name, amba_rev(dev), amba_config(dev),
dev->res.start, dev->irq[0], dev->irq[1]);
init_timer(&host->timer);
host->timer.data = (unsigned long)host;
host->timer.function = mmci_check_status;
host->timer.expires = jiffies + HZ;
add_timer(&host->timer);
return 0;
irq0_free:
free_irq(dev->irq[0], host);
unmap:
iounmap(host->base);
clk_disable:
clk_disable(host->clk);
clk_unuse:
clk_unuse(host->clk);
clk_free:
clk_put(host->clk);
host_free:
mmc_free_host(mmc);
rel_regions:
amba_release_regions(dev);
out:
return ret;
}
static int mmci_remove(struct amba_device *dev)
{
struct mmc_host *mmc = amba_get_drvdata(dev);
amba_set_drvdata(dev, NULL);
if (mmc) {
struct mmci_host *host = mmc_priv(mmc);
del_timer_sync(&host->timer);
mmc_remove_host(mmc);
writel(0, host->base + MMCIMASK0);
writel(0, host->base + MMCIMASK1);
writel(0, host->base + MMCICOMMAND);
writel(0, host->base + MMCIDATACTRL);
free_irq(dev->irq[0], host);
free_irq(dev->irq[1], host);
iounmap(host->base);
clk_disable(host->clk);
clk_unuse(host->clk);
clk_put(host->clk);
mmc_free_host(mmc);
amba_release_regions(dev);
}
return 0;
}
#ifdef CONFIG_PM
static int mmci_suspend(struct amba_device *dev, u32 state)
{
struct mmc_host *mmc = amba_get_drvdata(dev);
int ret = 0;
if (mmc) {
struct mmci_host *host = mmc_priv(mmc);
ret = mmc_suspend_host(mmc, state);
if (ret == 0)
writel(0, host->base + MMCIMASK0);
}
return ret;
}
static int mmci_resume(struct amba_device *dev)
{
struct mmc_host *mmc = amba_get_drvdata(dev);
int ret = 0;
if (mmc) {
struct mmci_host *host = mmc_priv(mmc);
writel(MCI_IRQENABLE, host->base + MMCIMASK0);
ret = mmc_resume_host(mmc);
}
return ret;
}
#else
#define mmci_suspend NULL
#define mmci_resume NULL
#endif
static struct amba_id mmci_ids[] = {
{
.id = 0x00041180,
.mask = 0x000fffff,
},
{
.id = 0x00041181,
.mask = 0x000fffff,
},
{ 0, 0 },
};
static struct amba_driver mmci_driver = {
.drv = {
.name = DRIVER_NAME,
},
.probe = mmci_probe,
.remove = mmci_remove,
.suspend = mmci_suspend,
.resume = mmci_resume,
.id_table = mmci_ids,
};
static int __init mmci_init(void)
{
return amba_driver_register(&mmci_driver);
}
static void __exit mmci_exit(void)
{
amba_driver_unregister(&mmci_driver);
}
module_init(mmci_init);
module_exit(mmci_exit);
module_param(fmax, uint, 0444);
MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
MODULE_LICENSE("GPL");

179
drivers/mmc/mmci.h Normal file
View File

@@ -0,0 +1,179 @@
/*
* linux/drivers/mmc/mmci.h - ARM PrimeCell MMCI PL180/1 driver
*
* Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define MMCIPOWER 0x000
#define MCI_PWR_OFF 0x00
#define MCI_PWR_UP 0x02
#define MCI_PWR_ON 0x03
#define MCI_OD (1 << 6)
#define MCI_ROD (1 << 7)
#define MMCICLOCK 0x004
#define MCI_CLK_ENABLE (1 << 8)
#define MCI_CLK_PWRSAVE (1 << 9)
#define MCI_CLK_BYPASS (1 << 10)
#define MMCIARGUMENT 0x008
#define MMCICOMMAND 0x00c
#define MCI_CPSM_RESPONSE (1 << 6)
#define MCI_CPSM_LONGRSP (1 << 7)
#define MCI_CPSM_INTERRUPT (1 << 8)
#define MCI_CPSM_PENDING (1 << 9)
#define MCI_CPSM_ENABLE (1 << 10)
#define MMCIRESPCMD 0x010
#define MMCIRESPONSE0 0x014
#define MMCIRESPONSE1 0x018
#define MMCIRESPONSE2 0x01c
#define MMCIRESPONSE3 0x020
#define MMCIDATATIMER 0x024
#define MMCIDATALENGTH 0x028
#define MMCIDATACTRL 0x02c
#define MCI_DPSM_ENABLE (1 << 0)
#define MCI_DPSM_DIRECTION (1 << 1)
#define MCI_DPSM_MODE (1 << 2)
#define MCI_DPSM_DMAENABLE (1 << 3)
#define MMCIDATACNT 0x030
#define MMCISTATUS 0x034
#define MCI_CMDCRCFAIL (1 << 0)
#define MCI_DATACRCFAIL (1 << 1)
#define MCI_CMDTIMEOUT (1 << 2)
#define MCI_DATATIMEOUT (1 << 3)
#define MCI_TXUNDERRUN (1 << 4)
#define MCI_RXOVERRUN (1 << 5)
#define MCI_CMDRESPEND (1 << 6)
#define MCI_CMDSENT (1 << 7)
#define MCI_DATAEND (1 << 8)
#define MCI_DATABLOCKEND (1 << 10)
#define MCI_CMDACTIVE (1 << 11)
#define MCI_TXACTIVE (1 << 12)
#define MCI_RXACTIVE (1 << 13)
#define MCI_TXFIFOHALFEMPTY (1 << 14)
#define MCI_RXFIFOHALFFULL (1 << 15)
#define MCI_TXFIFOFULL (1 << 16)
#define MCI_RXFIFOFULL (1 << 17)
#define MCI_TXFIFOEMPTY (1 << 18)
#define MCI_RXFIFOEMPTY (1 << 19)
#define MCI_TXDATAAVLBL (1 << 20)
#define MCI_RXDATAAVLBL (1 << 21)
#define MMCICLEAR 0x038
#define MCI_CMDCRCFAILCLR (1 << 0)
#define MCI_DATACRCFAILCLR (1 << 1)
#define MCI_CMDTIMEOUTCLR (1 << 2)
#define MCI_DATATIMEOUTCLR (1 << 3)
#define MCI_TXUNDERRUNCLR (1 << 4)
#define MCI_RXOVERRUNCLR (1 << 5)
#define MCI_CMDRESPENDCLR (1 << 6)
#define MCI_CMDSENTCLR (1 << 7)
#define MCI_DATAENDCLR (1 << 8)
#define MCI_DATABLOCKENDCLR (1 << 10)
#define MMCIMASK0 0x03c
#define MCI_CMDCRCFAILMASK (1 << 0)
#define MCI_DATACRCFAILMASK (1 << 1)
#define MCI_CMDTIMEOUTMASK (1 << 2)
#define MCI_DATATIMEOUTMASK (1 << 3)
#define MCI_TXUNDERRUNMASK (1 << 4)
#define MCI_RXOVERRUNMASK (1 << 5)
#define MCI_CMDRESPENDMASK (1 << 6)
#define MCI_CMDSENTMASK (1 << 7)
#define MCI_DATAENDMASK (1 << 8)
#define MCI_DATABLOCKENDMASK (1 << 10)
#define MCI_CMDACTIVEMASK (1 << 11)
#define MCI_TXACTIVEMASK (1 << 12)
#define MCI_RXACTIVEMASK (1 << 13)
#define MCI_TXFIFOHALFEMPTYMASK (1 << 14)
#define MCI_RXFIFOHALFFULLMASK (1 << 15)
#define MCI_TXFIFOFULLMASK (1 << 16)
#define MCI_RXFIFOFULLMASK (1 << 17)
#define MCI_TXFIFOEMPTYMASK (1 << 18)
#define MCI_RXFIFOEMPTYMASK (1 << 19)
#define MCI_TXDATAAVLBLMASK (1 << 20)
#define MCI_RXDATAAVLBLMASK (1 << 21)
#define MMCIMASK1 0x040
#define MMCIFIFOCNT 0x048
#define MMCIFIFO 0x080 /* to 0x0bc */
#define MCI_IRQENABLE \
(MCI_CMDCRCFAILMASK|MCI_DATACRCFAILMASK|MCI_CMDTIMEOUTMASK| \
MCI_DATATIMEOUTMASK|MCI_TXUNDERRUNMASK|MCI_RXOVERRUNMASK| \
MCI_CMDRESPENDMASK|MCI_CMDSENTMASK|MCI_DATABLOCKENDMASK)
/*
* The size of the FIFO in bytes.
*/
#define MCI_FIFOSIZE (16*4)
#define MCI_FIFOHALFSIZE (MCI_FIFOSIZE / 2)
#define NR_SG 16
struct clk;
struct mmci_host {
void __iomem *base;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_data *data;
struct mmc_host *mmc;
struct clk *clk;
unsigned int data_xfered;
spinlock_t lock;
unsigned int mclk;
unsigned int cclk;
u32 pwr;
struct mmc_platform_data *plat;
struct timer_list timer;
unsigned int oldstat;
unsigned int sg_len;
/* pio stuff */
struct scatterlist *sg_ptr;
unsigned int sg_off;
unsigned int size;
};
static inline void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
{
/*
* Ideally, we want the higher levels to pass us a scatter list.
*/
host->sg_len = data->sg_len;
host->sg_ptr = data->sg;
host->sg_off = 0;
}
static inline int mmci_next_sg(struct mmci_host *host)
{
host->sg_ptr++;
host->sg_off = 0;
return --host->sg_len;
}
static inline char *mmci_kmap_atomic(struct mmci_host *host, unsigned long *flags)
{
struct scatterlist *sg = host->sg_ptr;
local_irq_save(*flags);
return kmap_atomic(sg->page, KM_BIO_SRC_IRQ) + sg->offset;
}
static inline void mmci_kunmap_atomic(struct mmci_host *host, unsigned long *flags)
{
kunmap_atomic(host->sg_ptr->page, KM_BIO_SRC_IRQ);
local_irq_restore(*flags);
}

610
drivers/mmc/pxamci.c Normal file
View File

@@ -0,0 +1,610 @@
/*
* linux/drivers/mmc/pxa.c - PXA MMCI driver
*
* Copyright (C) 2003 Russell King, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This hardware is really sick:
* - No way to clear interrupts.
* - Have to turn off the clock whenever we touch the device.
* - Doesn't tell you how many data blocks were transferred.
* Yuck!
*
* 1 and 3 byte data transfers not supported
* max block length up to 1023
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/mmc/host.h>
#include <linux/mmc/protocol.h>
#include <asm/dma.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/scatterlist.h>
#include <asm/sizes.h>
#include <asm/arch/pxa-regs.h>
#include <asm/arch/mmc.h>
#include "pxamci.h"
#ifdef CONFIG_MMC_DEBUG
#define DBG(x...) printk(KERN_DEBUG x)
#else
#define DBG(x...) do { } while (0)
#endif
#define DRIVER_NAME "pxa2xx-mci"
#define NR_SG 1
struct pxamci_host {
struct mmc_host *mmc;
spinlock_t lock;
struct resource *res;
void __iomem *base;
int irq;
int dma;
unsigned int clkrt;
unsigned int cmdat;
unsigned int imask;
unsigned int power_mode;
struct pxamci_platform_data *pdata;
struct mmc_request *mrq;
struct mmc_command *cmd;
struct mmc_data *data;
dma_addr_t sg_dma;
struct pxa_dma_desc *sg_cpu;
unsigned int dma_len;
unsigned int dma_dir;
};
static inline unsigned int ns_to_clocks(unsigned int ns)
{
return (ns * (CLOCKRATE / 1000000) + 999) / 1000;
}
static void pxamci_stop_clock(struct pxamci_host *host)
{
if (readl(host->base + MMC_STAT) & STAT_CLK_EN) {
unsigned long timeout = 10000;
unsigned int v;
writel(STOP_CLOCK, host->base + MMC_STRPCL);
do {
v = readl(host->base + MMC_STAT);
if (!(v & STAT_CLK_EN))
break;
udelay(1);
} while (timeout--);
if (v & STAT_CLK_EN)
dev_err(mmc_dev(host->mmc), "unable to stop clock\n");
}
}
static void pxamci_enable_irq(struct pxamci_host *host, unsigned int mask)
{
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->imask &= ~mask;
writel(host->imask, host->base + MMC_I_MASK);
spin_unlock_irqrestore(&host->lock, flags);
}
static void pxamci_disable_irq(struct pxamci_host *host, unsigned int mask)
{
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->imask |= mask;
writel(host->imask, host->base + MMC_I_MASK);
spin_unlock_irqrestore(&host->lock, flags);
}
static void pxamci_setup_data(struct pxamci_host *host, struct mmc_data *data)
{
unsigned int nob = data->blocks;
unsigned int timeout;
u32 dcmd;
int i;
host->data = data;
if (data->flags & MMC_DATA_STREAM)
nob = 0xffff;
writel(nob, host->base + MMC_NOB);
writel(1 << data->blksz_bits, host->base + MMC_BLKLEN);
timeout = ns_to_clocks(data->timeout_ns) + data->timeout_clks;
writel((timeout + 255) / 256, host->base + MMC_RDTO);
if (data->flags & MMC_DATA_READ) {
host->dma_dir = DMA_FROM_DEVICE;
dcmd = DCMD_INCTRGADDR | DCMD_FLOWTRG;
DRCMRTXMMC = 0;
DRCMRRXMMC = host->dma | DRCMR_MAPVLD;
} else {
host->dma_dir = DMA_TO_DEVICE;
dcmd = DCMD_INCSRCADDR | DCMD_FLOWSRC;
DRCMRRXMMC = 0;
DRCMRTXMMC = host->dma | DRCMR_MAPVLD;
}
dcmd |= DCMD_BURST32 | DCMD_WIDTH1;
host->dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
host->dma_dir);
for (i = 0; i < host->dma_len; i++) {
if (data->flags & MMC_DATA_READ) {
host->sg_cpu[i].dsadr = host->res->start + MMC_RXFIFO;
host->sg_cpu[i].dtadr = sg_dma_address(&data->sg[i]);
} else {
host->sg_cpu[i].dsadr = sg_dma_address(&data->sg[i]);
host->sg_cpu[i].dtadr = host->res->start + MMC_TXFIFO;
}
host->sg_cpu[i].dcmd = dcmd | sg_dma_len(&data->sg[i]);
host->sg_cpu[i].ddadr = host->sg_dma + (i + 1) *
sizeof(struct pxa_dma_desc);
}
host->sg_cpu[host->dma_len - 1].ddadr = DDADR_STOP;
wmb();
DDADR(host->dma) = host->sg_dma;
DCSR(host->dma) = DCSR_RUN;
}
static void pxamci_start_cmd(struct pxamci_host *host, struct mmc_command *cmd, unsigned int cmdat)
{
WARN_ON(host->cmd != NULL);
host->cmd = cmd;
if (cmd->flags & MMC_RSP_BUSY)
cmdat |= CMDAT_BUSY;
switch (cmd->flags & (MMC_RSP_MASK | MMC_RSP_CRC)) {
case MMC_RSP_SHORT | MMC_RSP_CRC:
cmdat |= CMDAT_RESP_SHORT;
break;
case MMC_RSP_SHORT:
cmdat |= CMDAT_RESP_R3;
break;
case MMC_RSP_LONG | MMC_RSP_CRC:
cmdat |= CMDAT_RESP_R2;
break;
default:
break;
}
writel(cmd->opcode, host->base + MMC_CMD);
writel(cmd->arg >> 16, host->base + MMC_ARGH);
writel(cmd->arg & 0xffff, host->base + MMC_ARGL);
writel(cmdat, host->base + MMC_CMDAT);
writel(host->clkrt, host->base + MMC_CLKRT);
writel(START_CLOCK, host->base + MMC_STRPCL);
pxamci_enable_irq(host, END_CMD_RES);
}
static void pxamci_finish_request(struct pxamci_host *host, struct mmc_request *mrq)
{
DBG("PXAMCI: request done\n");
host->mrq = NULL;
host->cmd = NULL;
host->data = NULL;
mmc_request_done(host->mmc, mrq);
}
static int pxamci_cmd_done(struct pxamci_host *host, unsigned int stat)
{
struct mmc_command *cmd = host->cmd;
int i;
u32 v;
if (!cmd)
return 0;
host->cmd = NULL;
/*
* Did I mention this is Sick. We always need to
* discard the upper 8 bits of the first 16-bit word.
*/
v = readl(host->base + MMC_RES) & 0xffff;
for (i = 0; i < 4; i++) {
u32 w1 = readl(host->base + MMC_RES) & 0xffff;
u32 w2 = readl(host->base + MMC_RES) & 0xffff;
cmd->resp[i] = v << 24 | w1 << 8 | w2 >> 8;
v = w2;
}
if (stat & STAT_TIME_OUT_RESPONSE) {
cmd->error = MMC_ERR_TIMEOUT;
} else if (stat & STAT_RES_CRC_ERR && cmd->flags & MMC_RSP_CRC) {
#ifdef CONFIG_PXA27x
/*
* workaround for erratum #42:
* Intel PXA27x Family Processor Specification Update Rev 001
*/
if (cmd->opcode == MMC_ALL_SEND_CID ||
cmd->opcode == MMC_SEND_CSD ||
cmd->opcode == MMC_SEND_CID) {
/* a bogus CRC error can appear if the msb of
the 15 byte response is a one */
if ((cmd->resp[0] & 0x80000000) == 0)
cmd->error = MMC_ERR_BADCRC;
} else {
DBG("ignoring CRC from command %d - *risky*\n",cmd->opcode);
}
#else
cmd->error = MMC_ERR_BADCRC;
#endif
}
pxamci_disable_irq(host, END_CMD_RES);
if (host->data && cmd->error == MMC_ERR_NONE) {
pxamci_enable_irq(host, DATA_TRAN_DONE);
} else {
pxamci_finish_request(host, host->mrq);
}
return 1;
}
static int pxamci_data_done(struct pxamci_host *host, unsigned int stat)
{
struct mmc_data *data = host->data;
if (!data)
return 0;
DCSR(host->dma) = 0;
dma_unmap_sg(mmc_dev(host->mmc), data->sg, host->dma_len,
host->dma_dir);
if (stat & STAT_READ_TIME_OUT)
data->error = MMC_ERR_TIMEOUT;
else if (stat & (STAT_CRC_READ_ERROR|STAT_CRC_WRITE_ERROR))
data->error = MMC_ERR_BADCRC;
/*
* There appears to be a hardware design bug here. There seems to
* be no way to find out how much data was transferred to the card.
* This means that if there was an error on any block, we mark all
* data blocks as being in error.
*/
if (data->error == MMC_ERR_NONE)
data->bytes_xfered = data->blocks << data->blksz_bits;
else
data->bytes_xfered = 0;
pxamci_disable_irq(host, DATA_TRAN_DONE);
host->data = NULL;
if (host->mrq->stop && data->error == MMC_ERR_NONE) {
pxamci_stop_clock(host);
pxamci_start_cmd(host, host->mrq->stop, 0);
} else {
pxamci_finish_request(host, host->mrq);
}
return 1;
}
static irqreturn_t pxamci_irq(int irq, void *devid, struct pt_regs *regs)
{
struct pxamci_host *host = devid;
unsigned int ireg;
int handled = 0;
ireg = readl(host->base + MMC_I_REG);
DBG("PXAMCI: irq %08x\n", ireg);
if (ireg) {
unsigned stat = readl(host->base + MMC_STAT);
DBG("PXAMCI: stat %08x\n", stat);
if (ireg & END_CMD_RES)
handled |= pxamci_cmd_done(host, stat);
if (ireg & DATA_TRAN_DONE)
handled |= pxamci_data_done(host, stat);
}
return IRQ_RETVAL(handled);
}
static void pxamci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct pxamci_host *host = mmc_priv(mmc);
unsigned int cmdat;
WARN_ON(host->mrq != NULL);
host->mrq = mrq;
pxamci_stop_clock(host);
cmdat = host->cmdat;
host->cmdat &= ~CMDAT_INIT;
if (mrq->data) {
pxamci_setup_data(host, mrq->data);
cmdat &= ~CMDAT_BUSY;
cmdat |= CMDAT_DATAEN | CMDAT_DMAEN;
if (mrq->data->flags & MMC_DATA_WRITE)
cmdat |= CMDAT_WRITE;
if (mrq->data->flags & MMC_DATA_STREAM)
cmdat |= CMDAT_STREAM;
}
pxamci_start_cmd(host, mrq->cmd, cmdat);
}
static void pxamci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct pxamci_host *host = mmc_priv(mmc);
DBG("pxamci_set_ios: clock %u power %u vdd %u.%02u\n",
ios->clock, ios->power_mode, ios->vdd / 100,
ios->vdd % 100);
if (ios->clock) {
unsigned int clk = CLOCKRATE / ios->clock;
if (CLOCKRATE / clk > ios->clock)
clk <<= 1;
host->clkrt = fls(clk) - 1;
pxa_set_cken(CKEN12_MMC, 1);
/*
* we write clkrt on the next command
*/
} else {
pxamci_stop_clock(host);
pxa_set_cken(CKEN12_MMC, 0);
}
if (host->power_mode != ios->power_mode) {
host->power_mode = ios->power_mode;
if (host->pdata && host->pdata->setpower)
host->pdata->setpower(mmc->dev, ios->vdd);
if (ios->power_mode == MMC_POWER_ON)
host->cmdat |= CMDAT_INIT;
}
DBG("pxamci_set_ios: clkrt = %x cmdat = %x\n",
host->clkrt, host->cmdat);
}
static struct mmc_host_ops pxamci_ops = {
.request = pxamci_request,
.set_ios = pxamci_set_ios,
};
static void pxamci_dma_irq(int dma, void *devid, struct pt_regs *regs)
{
printk(KERN_ERR "DMA%d: IRQ???\n", dma);
DCSR(dma) = DCSR_STARTINTR|DCSR_ENDINTR|DCSR_BUSERR;
}
static irqreturn_t pxamci_detect_irq(int irq, void *devid, struct pt_regs *regs)
{
mmc_detect_change(devid);
return IRQ_HANDLED;
}
static int pxamci_probe(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct mmc_host *mmc;
struct pxamci_host *host = NULL;
struct resource *r;
int ret, irq;
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
irq = platform_get_irq(pdev, 0);
if (!r || irq == NO_IRQ)
return -ENXIO;
r = request_mem_region(r->start, SZ_4K, DRIVER_NAME);
if (!r)
return -EBUSY;
mmc = mmc_alloc_host(sizeof(struct pxamci_host), dev);
if (!mmc) {
ret = -ENOMEM;
goto out;
}
mmc->ops = &pxamci_ops;
mmc->f_min = CLOCKRATE_MIN;
mmc->f_max = CLOCKRATE_MAX;
/*
* We can do SG-DMA, but we don't because we never know how much
* data we successfully wrote to the card.
*/
mmc->max_phys_segs = NR_SG;
/*
* Our hardware DMA can handle a maximum of one page per SG entry.
*/
mmc->max_seg_size = PAGE_SIZE;
host = mmc_priv(mmc);
host->mmc = mmc;
host->dma = -1;
host->pdata = pdev->dev.platform_data;
mmc->ocr_avail = host->pdata ?
host->pdata->ocr_mask :
MMC_VDD_32_33|MMC_VDD_33_34;
host->sg_cpu = dma_alloc_coherent(dev, PAGE_SIZE, &host->sg_dma, GFP_KERNEL);
if (!host->sg_cpu) {
ret = -ENOMEM;
goto out;
}
spin_lock_init(&host->lock);
host->res = r;
host->irq = irq;
host->imask = MMC_I_MASK_ALL;
host->base = ioremap(r->start, SZ_4K);
if (!host->base) {
ret = -ENOMEM;
goto out;
}
/*
* Ensure that the host controller is shut down, and setup
* with our defaults.
*/
pxamci_stop_clock(host);
writel(0, host->base + MMC_SPI);
writel(64, host->base + MMC_RESTO);
writel(host->imask, host->base + MMC_I_MASK);
host->dma = pxa_request_dma(DRIVER_NAME, DMA_PRIO_LOW,
pxamci_dma_irq, host);
if (host->dma < 0) {
ret = -EBUSY;
goto out;
}
ret = request_irq(host->irq, pxamci_irq, 0, DRIVER_NAME, host);
if (ret)
goto out;
dev_set_drvdata(dev, mmc);
if (host->pdata && host->pdata->init)
host->pdata->init(dev, pxamci_detect_irq, mmc);
mmc_add_host(mmc);
return 0;
out:
if (host) {
if (host->dma >= 0)
pxa_free_dma(host->dma);
if (host->base)
iounmap(host->base);
if (host->sg_cpu)
dma_free_coherent(dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
}
if (mmc)
mmc_free_host(mmc);
release_resource(r);
return ret;
}
static int pxamci_remove(struct device *dev)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
dev_set_drvdata(dev, NULL);
if (mmc) {
struct pxamci_host *host = mmc_priv(mmc);
if (host->pdata && host->pdata->exit)
host->pdata->exit(dev, mmc);
mmc_remove_host(mmc);
pxamci_stop_clock(host);
writel(TXFIFO_WR_REQ|RXFIFO_RD_REQ|CLK_IS_OFF|STOP_CMD|
END_CMD_RES|PRG_DONE|DATA_TRAN_DONE,
host->base + MMC_I_MASK);
DRCMRRXMMC = 0;
DRCMRTXMMC = 0;
free_irq(host->irq, host);
pxa_free_dma(host->dma);
iounmap(host->base);
dma_free_coherent(dev, PAGE_SIZE, host->sg_cpu, host->sg_dma);
release_resource(host->res);
mmc_free_host(mmc);
}
return 0;
}
#ifdef CONFIG_PM
static int pxamci_suspend(struct device *dev, u32 state, u32 level)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
int ret = 0;
if (mmc && level == SUSPEND_DISABLE)
ret = mmc_suspend_host(mmc, state);
return ret;
}
static int pxamci_resume(struct device *dev, u32 level)
{
struct mmc_host *mmc = dev_get_drvdata(dev);
int ret = 0;
if (mmc && level == RESUME_ENABLE)
ret = mmc_resume_host(mmc);
return ret;
}
#else
#define pxamci_suspend NULL
#define pxamci_resume NULL
#endif
static struct device_driver pxamci_driver = {
.name = DRIVER_NAME,
.bus = &platform_bus_type,
.probe = pxamci_probe,
.remove = pxamci_remove,
.suspend = pxamci_suspend,
.resume = pxamci_resume,
};
static int __init pxamci_init(void)
{
return driver_register(&pxamci_driver);
}
static void __exit pxamci_exit(void)
{
driver_unregister(&pxamci_driver);
}
module_init(pxamci_init);
module_exit(pxamci_exit);
MODULE_DESCRIPTION("PXA Multimedia Card Interface Driver");
MODULE_LICENSE("GPL");

124
drivers/mmc/pxamci.h Normal file
View File

@@ -0,0 +1,124 @@
#undef MMC_STRPCL
#undef MMC_STAT
#undef MMC_CLKRT
#undef MMC_SPI
#undef MMC_CMDAT
#undef MMC_RESTO
#undef MMC_RDTO
#undef MMC_BLKLEN
#undef MMC_NOB
#undef MMC_PRTBUF
#undef MMC_I_MASK
#undef END_CMD_RES
#undef PRG_DONE
#undef DATA_TRAN_DONE
#undef MMC_I_REG
#undef MMC_CMD
#undef MMC_ARGH
#undef MMC_ARGL
#undef MMC_RES
#undef MMC_RXFIFO
#undef MMC_TXFIFO
#define MMC_STRPCL 0x0000
#define STOP_CLOCK (1 << 0)
#define START_CLOCK (2 << 0)
#define MMC_STAT 0x0004
#define STAT_END_CMD_RES (1 << 13)
#define STAT_PRG_DONE (1 << 12)
#define STAT_DATA_TRAN_DONE (1 << 11)
#define STAT_CLK_EN (1 << 8)
#define STAT_RECV_FIFO_FULL (1 << 7)
#define STAT_XMIT_FIFO_EMPTY (1 << 6)
#define STAT_RES_CRC_ERR (1 << 5)
#define STAT_SPI_READ_ERROR_TOKEN (1 << 4)
#define STAT_CRC_READ_ERROR (1 << 3)
#define STAT_CRC_WRITE_ERROR (1 << 2)
#define STAT_TIME_OUT_RESPONSE (1 << 1)
#define STAT_READ_TIME_OUT (1 << 0)
#define MMC_CLKRT 0x0008 /* 3 bit */
#define MMC_SPI 0x000c
#define SPI_CS_ADDRESS (1 << 3)
#define SPI_CS_EN (1 << 2)
#define CRC_ON (1 << 1)
#define SPI_EN (1 << 0)
#define MMC_CMDAT 0x0010
#define CMDAT_DMAEN (1 << 7)
#define CMDAT_INIT (1 << 6)
#define CMDAT_BUSY (1 << 5)
#define CMDAT_STREAM (1 << 4) /* 1 = stream */
#define CMDAT_WRITE (1 << 3) /* 1 = write */
#define CMDAT_DATAEN (1 << 2)
#define CMDAT_RESP_NONE (0 << 0)
#define CMDAT_RESP_SHORT (1 << 0)
#define CMDAT_RESP_R2 (2 << 0)
#define CMDAT_RESP_R3 (3 << 0)
#define MMC_RESTO 0x0014 /* 7 bit */
#define MMC_RDTO 0x0018 /* 16 bit */
#define MMC_BLKLEN 0x001c /* 10 bit */
#define MMC_NOB 0x0020 /* 16 bit */
#define MMC_PRTBUF 0x0024
#define BUF_PART_FULL (1 << 0)
#define MMC_I_MASK 0x0028
/*PXA27x MMC interrupts*/
#define SDIO_SUSPEND_ACK (1 << 12)
#define SDIO_INT (1 << 11)
#define RD_STALLED (1 << 10)
#define RES_ERR (1 << 9)
#define DAT_ERR (1 << 8)
#define TINT (1 << 7)
/*PXA2xx MMC interrupts*/
#define TXFIFO_WR_REQ (1 << 6)
#define RXFIFO_RD_REQ (1 << 5)
#define CLK_IS_OFF (1 << 4)
#define STOP_CMD (1 << 3)
#define END_CMD_RES (1 << 2)
#define PRG_DONE (1 << 1)
#define DATA_TRAN_DONE (1 << 0)
#ifdef CONFIG_PXA27x
#define MMC_I_MASK_ALL 0x00001fff
#else
#define MMC_I_MASK_ALL 0x0000007f
#endif
#define MMC_I_REG 0x002c
/* same as MMC_I_MASK */
#define MMC_CMD 0x0030
#define MMC_ARGH 0x0034 /* 16 bit */
#define MMC_ARGL 0x0038 /* 16 bit */
#define MMC_RES 0x003c /* 16 bit */
#define MMC_RXFIFO 0x0040 /* 8 bit */
#define MMC_TXFIFO 0x0044 /* 8 bit */
/*
* The base MMC clock rate
*/
#ifdef CONFIG_PXA27x
#define CLOCKRATE_MIN 304688
#define CLOCKRATE_MAX 19500000
#else
#define CLOCKRATE_MIN 312500
#define CLOCKRATE_MAX 20000000
#endif
#define CLOCKRATE CLOCKRATE_MAX

1651
drivers/mmc/wbsd.c Normal file

File diff suppressed because it is too large Load Diff

178
drivers/mmc/wbsd.h Normal file
View File

@@ -0,0 +1,178 @@
/*
* linux/drivers/mmc/wbsd.h - Winbond W83L51xD SD/MMC driver
*
* Copyright (C) 2004-2005 Pierre Ossman, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
const int config_ports[] = { 0x2E, 0x4E };
const int unlock_codes[] = { 0x83, 0x87 };
const int valid_ids[] = {
0x7112,
};
#define LOCK_CODE 0xAA
#define WBSD_CONF_SWRST 0x02
#define WBSD_CONF_DEVICE 0x07
#define WBSD_CONF_ID_HI 0x20
#define WBSD_CONF_ID_LO 0x21
#define WBSD_CONF_POWER 0x22
#define WBSD_CONF_PME 0x23
#define WBSD_CONF_PMES 0x24
#define WBSD_CONF_ENABLE 0x30
#define WBSD_CONF_PORT_HI 0x60
#define WBSD_CONF_PORT_LO 0x61
#define WBSD_CONF_IRQ 0x70
#define WBSD_CONF_DRQ 0x74
#define WBSD_CONF_PINS 0xF0
#define DEVICE_SD 0x03
#define WBSD_CMDR 0x00
#define WBSD_DFR 0x01
#define WBSD_EIR 0x02
#define WBSD_ISR 0x03
#define WBSD_FSR 0x04
#define WBSD_IDXR 0x05
#define WBSD_DATAR 0x06
#define WBSD_CSR 0x07
#define WBSD_EINT_CARD 0x40
#define WBSD_EINT_FIFO_THRE 0x20
#define WBSD_EINT_CCRC 0x10
#define WBSD_EINT_TIMEOUT 0x08
#define WBSD_EINT_PROGEND 0x04
#define WBSD_EINT_CRC 0x02
#define WBSD_EINT_TC 0x01
#define WBSD_INT_PENDING 0x80
#define WBSD_INT_CARD 0x40
#define WBSD_INT_FIFO_THRE 0x20
#define WBSD_INT_CRC 0x10
#define WBSD_INT_TIMEOUT 0x08
#define WBSD_INT_PROGEND 0x04
#define WBSD_INT_BUSYEND 0x02
#define WBSD_INT_TC 0x01
#define WBSD_FIFO_EMPTY 0x80
#define WBSD_FIFO_FULL 0x40
#define WBSD_FIFO_EMTHRE 0x20
#define WBSD_FIFO_FUTHRE 0x10
#define WBSD_FIFO_SZMASK 0x0F
#define WBSD_MSLED 0x20
#define WBSD_POWER_N 0x10
#define WBSD_WRPT 0x04
#define WBSD_CARDPRESENT 0x01
#define WBSD_IDX_CLK 0x01
#define WBSD_IDX_PBSMSB 0x02
#define WBSD_IDX_TAAC 0x03
#define WBSD_IDX_NSAC 0x04
#define WBSD_IDX_PBSLSB 0x05
#define WBSD_IDX_SETUP 0x06
#define WBSD_IDX_DMA 0x07
#define WBSD_IDX_FIFOEN 0x08
#define WBSD_IDX_STATUS 0x10
#define WBSD_IDX_RSPLEN 0x1E
#define WBSD_IDX_RESP0 0x1F
#define WBSD_IDX_RESP1 0x20
#define WBSD_IDX_RESP2 0x21
#define WBSD_IDX_RESP3 0x22
#define WBSD_IDX_RESP4 0x23
#define WBSD_IDX_RESP5 0x24
#define WBSD_IDX_RESP6 0x25
#define WBSD_IDX_RESP7 0x26
#define WBSD_IDX_RESP8 0x27
#define WBSD_IDX_RESP9 0x28
#define WBSD_IDX_RESP10 0x29
#define WBSD_IDX_RESP11 0x2A
#define WBSD_IDX_RESP12 0x2B
#define WBSD_IDX_RESP13 0x2C
#define WBSD_IDX_RESP14 0x2D
#define WBSD_IDX_RESP15 0x2E
#define WBSD_IDX_RESP16 0x2F
#define WBSD_IDX_CRCSTATUS 0x30
#define WBSD_IDX_ISR 0x3F
#define WBSD_CLK_375K 0x00
#define WBSD_CLK_12M 0x01
#define WBSD_CLK_16M 0x02
#define WBSD_CLK_24M 0x03
#define WBSD_DAT3_H 0x08
#define WBSD_FIFO_RESET 0x04
#define WBSD_SOFT_RESET 0x02
#define WBSD_INC_INDEX 0x01
#define WBSD_DMA_SINGLE 0x02
#define WBSD_DMA_ENABLE 0x01
#define WBSD_FIFOEN_EMPTY 0x20
#define WBSD_FIFOEN_FULL 0x10
#define WBSD_FIFO_THREMASK 0x0F
#define WBSD_BLOCK_READ 0x80
#define WBSD_BLOCK_WRITE 0x40
#define WBSD_BUSY 0x20
#define WBSD_CARDTRAFFIC 0x04
#define WBSD_SENDCMD 0x02
#define WBSD_RECVRES 0x01
#define WBSD_RSP_SHORT 0x00
#define WBSD_RSP_LONG 0x01
#define WBSD_CRC_MASK 0x1F
#define WBSD_CRC_OK 0x05 /* S010E (00101) */
#define WBSD_CRC_FAIL 0x0B /* S101E (01011) */
struct wbsd_host
{
struct mmc_host* mmc; /* MMC structure */
spinlock_t lock; /* Mutex */
struct mmc_request* mrq; /* Current request */
u8 isr; /* Accumulated ISR */
struct scatterlist* cur_sg; /* Current SG entry */
unsigned int num_sg; /* Number of entries left */
void* mapped_sg; /* vaddr of mapped sg */
unsigned int offset; /* Offset into current entry */
unsigned int remain; /* Data left in curren entry */
int size; /* Total size of transfer */
char* dma_buffer; /* ISA DMA buffer */
dma_addr_t dma_addr; /* Physical address for same */
int firsterr; /* See fifo functions */
u8 clk; /* Current clock speed */
int config; /* Config port */
u8 unlock_code; /* Code to unlock config */
int chip_id; /* ID of controller */
int base; /* I/O port base */
int irq; /* Interrupt */
int dma; /* DMA channel */
struct tasklet_struct card_tasklet; /* Tasklet structures */
struct tasklet_struct fifo_tasklet;
struct tasklet_struct crc_tasklet;
struct tasklet_struct timeout_tasklet;
struct tasklet_struct finish_tasklet;
struct tasklet_struct block_tasklet;
};