Linux-2.6.12-rc2

Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
This commit is contained in:
Linus Torvalds
2005-04-16 15:20:36 -07:00
commit 1da177e4c3
17291 changed files with 6718755 additions and 0 deletions

10
arch/ia64/sn/pci/Makefile Normal file
View File

@@ -0,0 +1,10 @@
#
# This file is subject to the terms and conditions of the GNU General Public
# License. See the file "COPYING" in the main directory of this archive
# for more details.
#
# Copyright (C) 2000-2004 Silicon Graphics, Inc. All Rights Reserved.
#
# Makefile for the sn pci general routines.
obj-y := pci_dma.o pcibr/

363
arch/ia64/sn/pci/pci_dma.c Normal file
View File

@@ -0,0 +1,363 @@
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2000,2002-2005 Silicon Graphics, Inc. All rights reserved.
*
* Routines for PCI DMA mapping. See Documentation/DMA-API.txt for
* a description of how these routines should be used.
*/
#include <linux/module.h>
#include <asm/dma.h>
#include <asm/sn/sn_sal.h>
#include "pci/pcibus_provider_defs.h"
#include "pci/pcidev.h"
#include "pci/pcibr_provider.h"
#define SG_ENT_VIRT_ADDRESS(sg) (page_address((sg)->page) + (sg)->offset)
#define SG_ENT_PHYS_ADDRESS(SG) virt_to_phys(SG_ENT_VIRT_ADDRESS(SG))
/**
* sn_dma_supported - test a DMA mask
* @dev: device to test
* @mask: DMA mask to test
*
* Return whether the given PCI device DMA address mask can be supported
* properly. For example, if your device can only drive the low 24-bits
* during PCI bus mastering, then you would pass 0x00ffffff as the mask to
* this function. Of course, SN only supports devices that have 32 or more
* address bits when using the PMU.
*/
int sn_dma_supported(struct device *dev, u64 mask)
{
BUG_ON(dev->bus != &pci_bus_type);
if (mask < 0x7fffffff)
return 0;
return 1;
}
EXPORT_SYMBOL(sn_dma_supported);
/**
* sn_dma_set_mask - set the DMA mask
* @dev: device to set
* @dma_mask: new mask
*
* Set @dev's DMA mask if the hw supports it.
*/
int sn_dma_set_mask(struct device *dev, u64 dma_mask)
{
BUG_ON(dev->bus != &pci_bus_type);
if (!sn_dma_supported(dev, dma_mask))
return 0;
*dev->dma_mask = dma_mask;
return 1;
}
EXPORT_SYMBOL(sn_dma_set_mask);
/**
* sn_dma_alloc_coherent - allocate memory for coherent DMA
* @dev: device to allocate for
* @size: size of the region
* @dma_handle: DMA (bus) address
* @flags: memory allocation flags
*
* dma_alloc_coherent() returns a pointer to a memory region suitable for
* coherent DMA traffic to/from a PCI device. On SN platforms, this means
* that @dma_handle will have the %PCIIO_DMA_CMD flag set.
*
* This interface is usually used for "command" streams (e.g. the command
* queue for a SCSI controller). See Documentation/DMA-API.txt for
* more information.
*/
void *sn_dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t * dma_handle, int flags)
{
void *cpuaddr;
unsigned long phys_addr;
struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(to_pci_dev(dev));
BUG_ON(dev->bus != &pci_bus_type);
/*
* Allocate the memory.
* FIXME: We should be doing alloc_pages_node for the node closest
* to the PCI device.
*/
if (!(cpuaddr = (void *)__get_free_pages(GFP_ATOMIC, get_order(size))))
return NULL;
memset(cpuaddr, 0x0, size);
/* physical addr. of the memory we just got */
phys_addr = __pa(cpuaddr);
/*
* 64 bit address translations should never fail.
* 32 bit translations can fail if there are insufficient mapping
* resources.
*/
*dma_handle = pcibr_dma_map(pcidev_info, phys_addr, size,
SN_PCIDMA_CONSISTENT);
if (!*dma_handle) {
printk(KERN_ERR "%s: out of ATEs\n", __FUNCTION__);
free_pages((unsigned long)cpuaddr, get_order(size));
return NULL;
}
return cpuaddr;
}
EXPORT_SYMBOL(sn_dma_alloc_coherent);
/**
* sn_pci_free_coherent - free memory associated with coherent DMAable region
* @dev: device to free for
* @size: size to free
* @cpu_addr: kernel virtual address to free
* @dma_handle: DMA address associated with this region
*
* Frees the memory allocated by dma_alloc_coherent(), potentially unmapping
* any associated IOMMU mappings.
*/
void sn_dma_free_coherent(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t dma_handle)
{
struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(to_pci_dev(dev));
BUG_ON(dev->bus != &pci_bus_type);
pcibr_dma_unmap(pcidev_info, dma_handle, 0);
free_pages((unsigned long)cpu_addr, get_order(size));
}
EXPORT_SYMBOL(sn_dma_free_coherent);
/**
* sn_dma_map_single - map a single page for DMA
* @dev: device to map for
* @cpu_addr: kernel virtual address of the region to map
* @size: size of the region
* @direction: DMA direction
*
* Map the region pointed to by @cpu_addr for DMA and return the
* DMA address.
*
* We map this to the one step pcibr_dmamap_trans interface rather than
* the two step pcibr_dmamap_alloc/pcibr_dmamap_addr because we have
* no way of saving the dmamap handle from the alloc to later free
* (which is pretty much unacceptable).
*
* TODO: simplify our interface;
* figure out how to save dmamap handle so can use two step.
*/
dma_addr_t sn_dma_map_single(struct device *dev, void *cpu_addr, size_t size,
int direction)
{
dma_addr_t dma_addr;
unsigned long phys_addr;
struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(to_pci_dev(dev));
BUG_ON(dev->bus != &pci_bus_type);
phys_addr = __pa(cpu_addr);
dma_addr = pcibr_dma_map(pcidev_info, phys_addr, size, 0);
if (!dma_addr) {
printk(KERN_ERR "%s: out of ATEs\n", __FUNCTION__);
return 0;
}
return dma_addr;
}
EXPORT_SYMBOL(sn_dma_map_single);
/**
* sn_dma_unmap_single - unamp a DMA mapped page
* @dev: device to sync
* @dma_addr: DMA address to sync
* @size: size of region
* @direction: DMA direction
*
* This routine is supposed to sync the DMA region specified
* by @dma_handle into the coherence domain. On SN, we're always cache
* coherent, so we just need to free any ATEs associated with this mapping.
*/
void sn_dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
int direction)
{
struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(to_pci_dev(dev));
BUG_ON(dev->bus != &pci_bus_type);
pcibr_dma_unmap(pcidev_info, dma_addr, direction);
}
EXPORT_SYMBOL(sn_dma_unmap_single);
/**
* sn_dma_unmap_sg - unmap a DMA scatterlist
* @dev: device to unmap
* @sg: scatterlist to unmap
* @nhwentries: number of scatterlist entries
* @direction: DMA direction
*
* Unmap a set of streaming mode DMA translations.
*/
void sn_dma_unmap_sg(struct device *dev, struct scatterlist *sg,
int nhwentries, int direction)
{
int i;
struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(to_pci_dev(dev));
BUG_ON(dev->bus != &pci_bus_type);
for (i = 0; i < nhwentries; i++, sg++) {
pcibr_dma_unmap(pcidev_info, sg->dma_address, direction);
sg->dma_address = (dma_addr_t) NULL;
sg->dma_length = 0;
}
}
EXPORT_SYMBOL(sn_dma_unmap_sg);
/**
* sn_dma_map_sg - map a scatterlist for DMA
* @dev: device to map for
* @sg: scatterlist to map
* @nhwentries: number of entries
* @direction: direction of the DMA transaction
*
* Maps each entry of @sg for DMA.
*/
int sn_dma_map_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
int direction)
{
unsigned long phys_addr;
struct scatterlist *saved_sg = sg;
struct pcidev_info *pcidev_info = SN_PCIDEV_INFO(to_pci_dev(dev));
int i;
BUG_ON(dev->bus != &pci_bus_type);
/*
* Setup a DMA address for each entry in the scatterlist.
*/
for (i = 0; i < nhwentries; i++, sg++) {
phys_addr = SG_ENT_PHYS_ADDRESS(sg);
sg->dma_address = pcibr_dma_map(pcidev_info, phys_addr,
sg->length, 0);
if (!sg->dma_address) {
printk(KERN_ERR "%s: out of ATEs\n", __FUNCTION__);
/*
* Free any successfully allocated entries.
*/
if (i > 0)
sn_dma_unmap_sg(dev, saved_sg, i, direction);
return 0;
}
sg->dma_length = sg->length;
}
return nhwentries;
}
EXPORT_SYMBOL(sn_dma_map_sg);
void sn_dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
size_t size, int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
}
EXPORT_SYMBOL(sn_dma_sync_single_for_cpu);
void sn_dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
size_t size, int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
}
EXPORT_SYMBOL(sn_dma_sync_single_for_device);
void sn_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
int nelems, int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
}
EXPORT_SYMBOL(sn_dma_sync_sg_for_cpu);
void sn_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
int nelems, int direction)
{
BUG_ON(dev->bus != &pci_bus_type);
}
EXPORT_SYMBOL(sn_dma_sync_sg_for_device);
int sn_dma_mapping_error(dma_addr_t dma_addr)
{
return 0;
}
EXPORT_SYMBOL(sn_dma_mapping_error);
char *sn_pci_get_legacy_mem(struct pci_bus *bus)
{
if (!SN_PCIBUS_BUSSOFT(bus))
return ERR_PTR(-ENODEV);
return (char *)(SN_PCIBUS_BUSSOFT(bus)->bs_legacy_mem | __IA64_UNCACHED_OFFSET);
}
int sn_pci_legacy_read(struct pci_bus *bus, u16 port, u32 *val, u8 size)
{
unsigned long addr;
int ret;
if (!SN_PCIBUS_BUSSOFT(bus))
return -ENODEV;
addr = SN_PCIBUS_BUSSOFT(bus)->bs_legacy_io | __IA64_UNCACHED_OFFSET;
addr += port;
ret = ia64_sn_probe_mem(addr, (long)size, (void *)val);
if (ret == 2)
return -EINVAL;
if (ret == 1)
*val = -1;
return size;
}
int sn_pci_legacy_write(struct pci_bus *bus, u16 port, u32 val, u8 size)
{
int ret = size;
unsigned long paddr;
unsigned long *addr;
if (!SN_PCIBUS_BUSSOFT(bus)) {
ret = -ENODEV;
goto out;
}
/* Put the phys addr in uncached space */
paddr = SN_PCIBUS_BUSSOFT(bus)->bs_legacy_io | __IA64_UNCACHED_OFFSET;
paddr += port;
addr = (unsigned long *)paddr;
switch (size) {
case 1:
*(volatile u8 *)(addr) = (u8)(val);
break;
case 2:
*(volatile u16 *)(addr) = (u16)(val);
break;
case 4:
*(volatile u32 *)(addr) = (u32)(val);
break;
default:
ret = -EINVAL;
break;
}
out:
return ret;
}

View File

@@ -0,0 +1,11 @@
#
# This file is subject to the terms and conditions of the GNU General Public
# License. See the file "COPYING" in the main directory of this archive
# for more details.
#
# Copyright (C) 2002-2004 Silicon Graphics, Inc. All Rights Reserved.
#
# Makefile for the sn2 io routines.
obj-y += pcibr_dma.o pcibr_reg.o \
pcibr_ate.o pcibr_provider.o

View File

@@ -0,0 +1,188 @@
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2001-2004 Silicon Graphics, Inc. All rights reserved.
*/
#include <linux/types.h>
#include <asm/sn/sn_sal.h>
#include "pci/pcibus_provider_defs.h"
#include "pci/pcidev.h"
#include "pci/pcibr_provider.h"
int pcibr_invalidate_ate = 0; /* by default don't invalidate ATE on free */
/*
* mark_ate: Mark the ate as either free or inuse.
*/
static void mark_ate(struct ate_resource *ate_resource, int start, int number,
uint64_t value)
{
uint64_t *ate = ate_resource->ate;
int index;
int length = 0;
for (index = start; length < number; index++, length++)
ate[index] = value;
}
/*
* find_free_ate: Find the first free ate index starting from the given
* index for the desired consequtive count.
*/
static int find_free_ate(struct ate_resource *ate_resource, int start,
int count)
{
uint64_t *ate = ate_resource->ate;
int index;
int start_free;
for (index = start; index < ate_resource->num_ate;) {
if (!ate[index]) {
int i;
int free;
free = 0;
start_free = index; /* Found start free ate */
for (i = start_free; i < ate_resource->num_ate; i++) {
if (!ate[i]) { /* This is free */
if (++free == count)
return start_free;
} else {
index = i + 1;
break;
}
}
} else
index++; /* Try next ate */
}
return -1;
}
/*
* free_ate_resource: Free the requested number of ATEs.
*/
static inline void free_ate_resource(struct ate_resource *ate_resource,
int start)
{
mark_ate(ate_resource, start, ate_resource->ate[start], 0);
if ((ate_resource->lowest_free_index > start) ||
(ate_resource->lowest_free_index < 0))
ate_resource->lowest_free_index = start;
}
/*
* alloc_ate_resource: Allocate the requested number of ATEs.
*/
static inline int alloc_ate_resource(struct ate_resource *ate_resource,
int ate_needed)
{
int start_index;
/*
* Check for ate exhaustion.
*/
if (ate_resource->lowest_free_index < 0)
return -1;
/*
* Find the required number of free consequtive ates.
*/
start_index =
find_free_ate(ate_resource, ate_resource->lowest_free_index,
ate_needed);
if (start_index >= 0)
mark_ate(ate_resource, start_index, ate_needed, ate_needed);
ate_resource->lowest_free_index =
find_free_ate(ate_resource, ate_resource->lowest_free_index, 1);
return start_index;
}
/*
* Allocate "count" contiguous Bridge Address Translation Entries
* on the specified bridge to be used for PCI to XTALK mappings.
* Indices in rm map range from 1..num_entries. Indicies returned
* to caller range from 0..num_entries-1.
*
* Return the start index on success, -1 on failure.
*/
int pcibr_ate_alloc(struct pcibus_info *pcibus_info, int count)
{
int status = 0;
uint64_t flag;
flag = pcibr_lock(pcibus_info);
status = alloc_ate_resource(&pcibus_info->pbi_int_ate_resource, count);
if (status < 0) {
/* Failed to allocate */
pcibr_unlock(pcibus_info, flag);
return -1;
}
pcibr_unlock(pcibus_info, flag);
return status;
}
/*
* Setup an Address Translation Entry as specified. Use either the Bridge
* internal maps or the external map RAM, as appropriate.
*/
static inline uint64_t *pcibr_ate_addr(struct pcibus_info *pcibus_info,
int ate_index)
{
if (ate_index < pcibus_info->pbi_int_ate_size) {
return pcireg_int_ate_addr(pcibus_info, ate_index);
}
panic("pcibr_ate_addr: invalid ate_index 0x%x", ate_index);
}
/*
* Update the ate.
*/
void inline
ate_write(struct pcibus_info *pcibus_info, int ate_index, int count,
volatile uint64_t ate)
{
while (count-- > 0) {
if (ate_index < pcibus_info->pbi_int_ate_size) {
pcireg_int_ate_set(pcibus_info, ate_index, ate);
} else {
panic("ate_write: invalid ate_index 0x%x", ate_index);
}
ate_index++;
ate += IOPGSIZE;
}
pcireg_tflush_get(pcibus_info); /* wait until Bridge PIO complete */
}
void pcibr_ate_free(struct pcibus_info *pcibus_info, int index)
{
volatile uint64_t ate;
int count;
uint64_t flags;
if (pcibr_invalidate_ate) {
/* For debugging purposes, clear the valid bit in the ATE */
ate = *pcibr_ate_addr(pcibus_info, index);
count = pcibus_info->pbi_int_ate_resource.ate[index];
ate_write(pcibus_info, index, count, (ate & ~PCI32_ATE_V));
}
flags = pcibr_lock(pcibus_info);
free_ate_resource(&pcibus_info->pbi_int_ate_resource, index);
pcibr_unlock(pcibus_info, flags);
}

View File

@@ -0,0 +1,379 @@
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2001-2004 Silicon Graphics, Inc. All rights reserved.
*/
#include <linux/types.h>
#include <linux/pci.h>
#include <asm/sn/sn_sal.h>
#include <asm/sn/geo.h>
#include "xtalk/xwidgetdev.h"
#include "xtalk/hubdev.h"
#include "pci/pcibus_provider_defs.h"
#include "pci/pcidev.h"
#include "pci/tiocp.h"
#include "pci/pic.h"
#include "pci/pcibr_provider.h"
#include "pci/tiocp.h"
#include "tio.h"
#include <asm/sn/addrs.h>
extern int sn_ioif_inited;
/* =====================================================================
* DMA MANAGEMENT
*
* The Bridge ASIC provides three methods of doing DMA: via a "direct map"
* register available in 32-bit PCI space (which selects a contiguous 2G
* address space on some other widget), via "direct" addressing via 64-bit
* PCI space (all destination information comes from the PCI address,
* including transfer attributes), and via a "mapped" region that allows
* a bunch of different small mappings to be established with the PMU.
*
* For efficiency, we most prefer to use the 32bit direct mapping facility,
* since it requires no resource allocations. The advantage of using the
* PMU over the 64-bit direct is that single-cycle PCI addressing can be
* used; the advantage of using 64-bit direct over PMU addressing is that
* we do not have to allocate entries in the PMU.
*/
static uint64_t
pcibr_dmamap_ate32(struct pcidev_info *info,
uint64_t paddr, size_t req_size, uint64_t flags)
{
struct pcidev_info *pcidev_info = info->pdi_host_pcidev_info;
struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info->
pdi_pcibus_info;
uint8_t internal_device = (PCI_SLOT(pcidev_info->pdi_host_pcidev_info->
pdi_linux_pcidev->devfn)) - 1;
int ate_count;
int ate_index;
uint64_t ate_flags = flags | PCI32_ATE_V;
uint64_t ate;
uint64_t pci_addr;
uint64_t xio_addr;
uint64_t offset;
/* PIC in PCI-X mode does not supports 32bit PageMap mode */
if (IS_PIC_SOFT(pcibus_info) && IS_PCIX(pcibus_info)) {
return 0;
}
/* Calculate the number of ATEs needed. */
if (!(MINIMAL_ATE_FLAG(paddr, req_size))) {
ate_count = IOPG((IOPGSIZE - 1) /* worst case start offset */
+req_size /* max mapping bytes */
- 1) + 1; /* round UP */
} else { /* assume requested target is page aligned */
ate_count = IOPG(req_size /* max mapping bytes */
- 1) + 1; /* round UP */
}
/* Get the number of ATEs required. */
ate_index = pcibr_ate_alloc(pcibus_info, ate_count);
if (ate_index < 0)
return 0;
/* In PCI-X mode, Prefetch not supported */
if (IS_PCIX(pcibus_info))
ate_flags &= ~(PCI32_ATE_PREF);
xio_addr =
IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) :
PHYS_TO_TIODMA(paddr);
offset = IOPGOFF(xio_addr);
ate = ate_flags | (xio_addr - offset);
/* If PIC, put the targetid in the ATE */
if (IS_PIC_SOFT(pcibus_info)) {
ate |= (pcibus_info->pbi_hub_xid << PIC_ATE_TARGETID_SHFT);
}
ate_write(pcibus_info, ate_index, ate_count, ate);
/*
* Set up the DMA mapped Address.
*/
pci_addr = PCI32_MAPPED_BASE + offset + IOPGSIZE * ate_index;
/*
* If swap was set in device in pcibr_endian_set()
* we need to turn swapping on.
*/
if (pcibus_info->pbi_devreg[internal_device] & PCIBR_DEV_SWAP_DIR)
ATE_SWAP_ON(pci_addr);
return pci_addr;
}
static uint64_t
pcibr_dmatrans_direct64(struct pcidev_info * info, uint64_t paddr,
uint64_t dma_attributes)
{
struct pcibus_info *pcibus_info = (struct pcibus_info *)
((info->pdi_host_pcidev_info)->pdi_pcibus_info);
uint64_t pci_addr;
/* Translate to Crosstalk View of Physical Address */
pci_addr = (IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) :
PHYS_TO_TIODMA(paddr)) | dma_attributes;
/* Handle Bus mode */
if (IS_PCIX(pcibus_info))
pci_addr &= ~PCI64_ATTR_PREF;
/* Handle Bridge Chipset differences */
if (IS_PIC_SOFT(pcibus_info)) {
pci_addr |=
((uint64_t) pcibus_info->
pbi_hub_xid << PIC_PCI64_ATTR_TARG_SHFT);
} else
pci_addr |= TIOCP_PCI64_CMDTYPE_MEM;
/* If PCI mode, func zero uses VCHAN0, every other func uses VCHAN1 */
if (!IS_PCIX(pcibus_info) && PCI_FUNC(info->pdi_linux_pcidev->devfn))
pci_addr |= PCI64_ATTR_VIRTUAL;
return pci_addr;
}
static uint64_t
pcibr_dmatrans_direct32(struct pcidev_info * info,
uint64_t paddr, size_t req_size, uint64_t flags)
{
struct pcidev_info *pcidev_info = info->pdi_host_pcidev_info;
struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info->
pdi_pcibus_info;
uint64_t xio_addr;
uint64_t xio_base;
uint64_t offset;
uint64_t endoff;
if (IS_PCIX(pcibus_info)) {
return 0;
}
xio_addr = IS_PIC_SOFT(pcibus_info) ? PHYS_TO_DMA(paddr) :
PHYS_TO_TIODMA(paddr);
xio_base = pcibus_info->pbi_dir_xbase;
offset = xio_addr - xio_base;
endoff = req_size + offset;
if ((req_size > (1ULL << 31)) || /* Too Big */
(xio_addr < xio_base) || /* Out of range for mappings */
(endoff > (1ULL << 31))) { /* Too Big */
return 0;
}
return PCI32_DIRECT_BASE | offset;
}
/*
* Wrapper routine for free'ing DMA maps
* DMA mappings for Direct 64 and 32 do not have any DMA maps.
*/
void
pcibr_dma_unmap(struct pcidev_info *pcidev_info, dma_addr_t dma_handle,
int direction)
{
struct pcibus_info *pcibus_info = (struct pcibus_info *)pcidev_info->
pdi_pcibus_info;
if (IS_PCI32_MAPPED(dma_handle)) {
int ate_index;
ate_index =
IOPG((ATE_SWAP_OFF(dma_handle) - PCI32_MAPPED_BASE));
pcibr_ate_free(pcibus_info, ate_index);
}
}
/*
* On SN systems there is a race condition between a PIO read response and
* DMA's. In rare cases, the read response may beat the DMA, causing the
* driver to think that data in memory is complete and meaningful. This code
* eliminates that race. This routine is called by the PIO read routines
* after doing the read. For PIC this routine then forces a fake interrupt
* on another line, which is logically associated with the slot that the PIO
* is addressed to. It then spins while watching the memory location that
* the interrupt is targetted to. When the interrupt response arrives, we
* are sure that the DMA has landed in memory and it is safe for the driver
* to proceed. For TIOCP use the Device(x) Write Request Buffer Flush
* Bridge register since it ensures the data has entered the coherence domain,
* unlike the PIC Device(x) Write Request Buffer Flush register.
*/
void sn_dma_flush(uint64_t addr)
{
nasid_t nasid;
int is_tio;
int wid_num;
int i, j;
int bwin;
uint64_t flags;
struct hubdev_info *hubinfo;
volatile struct sn_flush_device_list *p;
struct sn_flush_nasid_entry *flush_nasid_list;
if (!sn_ioif_inited)
return;
nasid = NASID_GET(addr);
if (-1 == nasid_to_cnodeid(nasid))
return;
hubinfo = (NODEPDA(nasid_to_cnodeid(nasid)))->pdinfo;
if (!hubinfo) {
BUG();
}
is_tio = (nasid & 1);
if (is_tio) {
wid_num = TIO_SWIN_WIDGETNUM(addr);
bwin = TIO_BWIN_WINDOWNUM(addr);
} else {
wid_num = SWIN_WIDGETNUM(addr);
bwin = BWIN_WINDOWNUM(addr);
}
flush_nasid_list = &hubinfo->hdi_flush_nasid_list;
if (flush_nasid_list->widget_p == NULL)
return;
if (bwin > 0) {
uint64_t itte = flush_nasid_list->iio_itte[bwin];
if (is_tio) {
wid_num = (itte >> TIO_ITTE_WIDGET_SHIFT) &
TIO_ITTE_WIDGET_MASK;
} else {
wid_num = (itte >> IIO_ITTE_WIDGET_SHIFT) &
IIO_ITTE_WIDGET_MASK;
}
}
if (flush_nasid_list->widget_p == NULL)
return;
if (flush_nasid_list->widget_p[wid_num] == NULL)
return;
p = &flush_nasid_list->widget_p[wid_num][0];
/* find a matching BAR */
for (i = 0; i < DEV_PER_WIDGET; i++) {
for (j = 0; j < PCI_ROM_RESOURCE; j++) {
if (p->sfdl_bar_list[j].start == 0)
break;
if (addr >= p->sfdl_bar_list[j].start
&& addr <= p->sfdl_bar_list[j].end)
break;
}
if (j < PCI_ROM_RESOURCE && p->sfdl_bar_list[j].start != 0)
break;
p++;
}
/* if no matching BAR, return without doing anything. */
if (i == DEV_PER_WIDGET)
return;
/*
* For TIOCP use the Device(x) Write Request Buffer Flush Bridge
* register since it ensures the data has entered the coherence
* domain, unlike PIC
*/
if (is_tio) {
uint32_t tio_id = REMOTE_HUB_L(nasid, TIO_NODE_ID);
uint32_t revnum = XWIDGET_PART_REV_NUM(tio_id);
/* TIOCP BRINGUP WAR (PV907516): Don't write buffer flush reg */
if ((1 << XWIDGET_PART_REV_NUM_REV(revnum)) & PV907516) {
return;
} else {
pcireg_wrb_flush_get(p->sfdl_pcibus_info,
(p->sfdl_slot - 1));
}
} else {
spin_lock_irqsave(&((struct sn_flush_device_list *)p)->
sfdl_flush_lock, flags);
p->sfdl_flush_value = 0;
/* force an interrupt. */
*(volatile uint32_t *)(p->sfdl_force_int_addr) = 1;
/* wait for the interrupt to come back. */
while (*(p->sfdl_flush_addr) != 0x10f) ;
/* okay, everything is synched up. */
spin_unlock_irqrestore((spinlock_t *)&p->sfdl_flush_lock, flags);
}
return;
}
/*
* Wrapper DMA interface. Called from pci_dma.c routines.
*/
uint64_t
pcibr_dma_map(struct pcidev_info * pcidev_info, unsigned long phys_addr,
size_t size, unsigned int flags)
{
dma_addr_t dma_handle;
struct pci_dev *pcidev = pcidev_info->pdi_linux_pcidev;
if (flags & SN_PCIDMA_CONSISTENT) {
/* sn_pci_alloc_consistent interfaces */
if (pcidev->dev.coherent_dma_mask == ~0UL) {
dma_handle =
pcibr_dmatrans_direct64(pcidev_info, phys_addr,
PCI64_ATTR_BAR);
} else {
dma_handle =
(dma_addr_t) pcibr_dmamap_ate32(pcidev_info,
phys_addr, size,
PCI32_ATE_BAR);
}
} else {
/* map_sg/map_single interfaces */
/* SN cannot support DMA addresses smaller than 32 bits. */
if (pcidev->dma_mask < 0x7fffffff) {
return 0;
}
if (pcidev->dma_mask == ~0UL) {
/*
* Handle the most common case: 64 bit cards. This
* call should always succeed.
*/
dma_handle =
pcibr_dmatrans_direct64(pcidev_info, phys_addr,
PCI64_ATTR_PREF);
} else {
/* Handle 32-63 bit cards via direct mapping */
dma_handle =
pcibr_dmatrans_direct32(pcidev_info, phys_addr,
size, 0);
if (!dma_handle) {
/*
* It is a 32 bit card and we cannot do direct mapping,
* so we use an ATE.
*/
dma_handle =
pcibr_dmamap_ate32(pcidev_info, phys_addr,
size, PCI32_ATE_PREF);
}
}
}
return dma_handle;
}
EXPORT_SYMBOL(sn_dma_flush);

View File

@@ -0,0 +1,170 @@
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2001-2004 Silicon Graphics, Inc. All rights reserved.
*/
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <asm/sn/sn_sal.h>
#include "xtalk/xwidgetdev.h"
#include <asm/sn/geo.h>
#include "xtalk/hubdev.h"
#include "pci/pcibus_provider_defs.h"
#include "pci/pcidev.h"
#include "pci/pcibr_provider.h"
#include <asm/sn/addrs.h>
static int sal_pcibr_error_interrupt(struct pcibus_info *soft)
{
struct ia64_sal_retval ret_stuff;
uint64_t busnum;
int segment;
ret_stuff.status = 0;
ret_stuff.v0 = 0;
segment = 0;
busnum = soft->pbi_buscommon.bs_persist_busnum;
SAL_CALL_NOLOCK(ret_stuff,
(u64) SN_SAL_IOIF_ERROR_INTERRUPT,
(u64) segment, (u64) busnum, 0, 0, 0, 0, 0);
return (int)ret_stuff.v0;
}
/*
* PCI Bridge Error interrupt handler. Gets invoked whenever a PCI
* bridge sends an error interrupt.
*/
static irqreturn_t
pcibr_error_intr_handler(int irq, void *arg, struct pt_regs *regs)
{
struct pcibus_info *soft = (struct pcibus_info *)arg;
if (sal_pcibr_error_interrupt(soft) < 0) {
panic("pcibr_error_intr_handler(): Fatal Bridge Error");
}
return IRQ_HANDLED;
}
void *
pcibr_bus_fixup(struct pcibus_bussoft *prom_bussoft)
{
int nasid, cnode, j;
struct hubdev_info *hubdev_info;
struct pcibus_info *soft;
struct sn_flush_device_list *sn_flush_device_list;
if (! IS_PCI_BRIDGE_ASIC(prom_bussoft->bs_asic_type)) {
return NULL;
}
/*
* Allocate kernel bus soft and copy from prom.
*/
soft = kmalloc(sizeof(struct pcibus_info), GFP_KERNEL);
if (!soft) {
return NULL;
}
memcpy(soft, prom_bussoft, sizeof(struct pcibus_info));
soft->pbi_buscommon.bs_base =
(((u64) soft->pbi_buscommon.
bs_base << 4) >> 4) | __IA64_UNCACHED_OFFSET;
spin_lock_init(&soft->pbi_lock);
/*
* register the bridge's error interrupt handler
*/
if (request_irq(SGI_PCIBR_ERROR, (void *)pcibr_error_intr_handler,
SA_SHIRQ, "PCIBR error", (void *)(soft))) {
printk(KERN_WARNING
"pcibr cannot allocate interrupt for error handler\n");
}
/*
* Update the Bridge with the "kernel" pagesize
*/
if (PAGE_SIZE < 16384) {
pcireg_control_bit_clr(soft, PCIBR_CTRL_PAGE_SIZE);
} else {
pcireg_control_bit_set(soft, PCIBR_CTRL_PAGE_SIZE);
}
nasid = NASID_GET(soft->pbi_buscommon.bs_base);
cnode = nasid_to_cnodeid(nasid);
hubdev_info = (struct hubdev_info *)(NODEPDA(cnode)->pdinfo);
if (hubdev_info->hdi_flush_nasid_list.widget_p) {
sn_flush_device_list = hubdev_info->hdi_flush_nasid_list.
widget_p[(int)soft->pbi_buscommon.bs_xid];
if (sn_flush_device_list) {
for (j = 0; j < DEV_PER_WIDGET;
j++, sn_flush_device_list++) {
if (sn_flush_device_list->sfdl_slot == -1)
continue;
if (sn_flush_device_list->
sfdl_persistent_busnum ==
soft->pbi_buscommon.bs_persist_busnum)
sn_flush_device_list->sfdl_pcibus_info =
soft;
}
}
}
/* Setup the PMU ATE map */
soft->pbi_int_ate_resource.lowest_free_index = 0;
soft->pbi_int_ate_resource.ate =
kmalloc(soft->pbi_int_ate_size * sizeof(uint64_t), GFP_KERNEL);
memset(soft->pbi_int_ate_resource.ate, 0,
(soft->pbi_int_ate_size * sizeof(uint64_t)));
return soft;
}
void pcibr_force_interrupt(struct sn_irq_info *sn_irq_info)
{
struct pcidev_info *pcidev_info;
struct pcibus_info *pcibus_info;
int bit = sn_irq_info->irq_int_bit;
pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
if (pcidev_info) {
pcibus_info =
(struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
pdi_pcibus_info;
pcireg_force_intr_set(pcibus_info, bit);
}
}
void pcibr_change_devices_irq(struct sn_irq_info *sn_irq_info)
{
struct pcidev_info *pcidev_info;
struct pcibus_info *pcibus_info;
int bit = sn_irq_info->irq_int_bit;
uint64_t xtalk_addr = sn_irq_info->irq_xtalkaddr;
pcidev_info = (struct pcidev_info *)sn_irq_info->irq_pciioinfo;
if (pcidev_info) {
pcibus_info =
(struct pcibus_info *)pcidev_info->pdi_host_pcidev_info->
pdi_pcibus_info;
/* Disable the device's IRQ */
pcireg_intr_enable_bit_clr(pcibus_info, bit);
/* Change the device's IRQ */
pcireg_intr_addr_addr_set(pcibus_info, bit, xtalk_addr);
/* Re-enable the device's IRQ */
pcireg_intr_enable_bit_set(pcibus_info, bit);
pcibr_force_interrupt(sn_irq_info);
}
}

View File

@@ -0,0 +1,282 @@
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 2004 Silicon Graphics, Inc. All rights reserved.
*/
#include <linux/types.h>
#include <linux/interrupt.h>
#include "pci/pcibus_provider_defs.h"
#include "pci/pcidev.h"
#include "pci/tiocp.h"
#include "pci/pic.h"
#include "pci/pcibr_provider.h"
union br_ptr {
struct tiocp tio;
struct pic pic;
};
/*
* Control Register Access -- Read/Write 0000_0020
*/
void pcireg_control_bit_clr(struct pcibus_info *pcibus_info, uint64_t bits)
{
union br_ptr *ptr = (union br_ptr *)pcibus_info->pbi_buscommon.bs_base;
if (pcibus_info) {
switch (pcibus_info->pbi_bridge_type) {
case PCIBR_BRIDGETYPE_TIOCP:
ptr->tio.cp_control &= ~bits;
break;
case PCIBR_BRIDGETYPE_PIC:
ptr->pic.p_wid_control &= ~bits;
break;
default:
panic
("pcireg_control_bit_clr: unknown bridgetype bridge 0x%p",
(void *)ptr);
}
}
}
void pcireg_control_bit_set(struct pcibus_info *pcibus_info, uint64_t bits)
{
union br_ptr *ptr = (union br_ptr *)pcibus_info->pbi_buscommon.bs_base;
if (pcibus_info) {
switch (pcibus_info->pbi_bridge_type) {
case PCIBR_BRIDGETYPE_TIOCP:
ptr->tio.cp_control |= bits;
break;
case PCIBR_BRIDGETYPE_PIC:
ptr->pic.p_wid_control |= bits;
break;
default:
panic
("pcireg_control_bit_set: unknown bridgetype bridge 0x%p",
(void *)ptr);
}
}
}
/*
* PCI/PCIX Target Flush Register Access -- Read Only 0000_0050
*/
uint64_t pcireg_tflush_get(struct pcibus_info *pcibus_info)
{
union br_ptr *ptr = (union br_ptr *)pcibus_info->pbi_buscommon.bs_base;
uint64_t ret = 0;
if (pcibus_info) {
switch (pcibus_info->pbi_bridge_type) {
case PCIBR_BRIDGETYPE_TIOCP:
ret = ptr->tio.cp_tflush;
break;
case PCIBR_BRIDGETYPE_PIC:
ret = ptr->pic.p_wid_tflush;
break;
default:
panic
("pcireg_tflush_get: unknown bridgetype bridge 0x%p",
(void *)ptr);
}
}
/* Read of the Target Flush should always return zero */
if (ret != 0)
panic("pcireg_tflush_get:Target Flush failed\n");
return ret;
}
/*
* Interrupt Status Register Access -- Read Only 0000_0100
*/
uint64_t pcireg_intr_status_get(struct pcibus_info * pcibus_info)
{
union br_ptr *ptr = (union br_ptr *)pcibus_info->pbi_buscommon.bs_base;
uint64_t ret = 0;
if (pcibus_info) {
switch (pcibus_info->pbi_bridge_type) {
case PCIBR_BRIDGETYPE_TIOCP:
ret = ptr->tio.cp_int_status;
break;
case PCIBR_BRIDGETYPE_PIC:
ret = ptr->pic.p_int_status;
break;
default:
panic
("pcireg_intr_status_get: unknown bridgetype bridge 0x%p",
(void *)ptr);
}
}
return ret;
}
/*
* Interrupt Enable Register Access -- Read/Write 0000_0108
*/
void pcireg_intr_enable_bit_clr(struct pcibus_info *pcibus_info, uint64_t bits)
{
union br_ptr *ptr = (union br_ptr *)pcibus_info->pbi_buscommon.bs_base;
if (pcibus_info) {
switch (pcibus_info->pbi_bridge_type) {
case PCIBR_BRIDGETYPE_TIOCP:
ptr->tio.cp_int_enable &= ~bits;
break;
case PCIBR_BRIDGETYPE_PIC:
ptr->pic.p_int_enable &= ~bits;
break;
default:
panic
("pcireg_intr_enable_bit_clr: unknown bridgetype bridge 0x%p",
(void *)ptr);
}
}
}
void pcireg_intr_enable_bit_set(struct pcibus_info *pcibus_info, uint64_t bits)
{
union br_ptr *ptr = (union br_ptr *)pcibus_info->pbi_buscommon.bs_base;
if (pcibus_info) {
switch (pcibus_info->pbi_bridge_type) {
case PCIBR_BRIDGETYPE_TIOCP:
ptr->tio.cp_int_enable |= bits;
break;
case PCIBR_BRIDGETYPE_PIC:
ptr->pic.p_int_enable |= bits;
break;
default:
panic
("pcireg_intr_enable_bit_set: unknown bridgetype bridge 0x%p",
(void *)ptr);
}
}
}
/*
* Intr Host Address Register (int_addr) -- Read/Write 0000_0130 - 0000_0168
*/
void pcireg_intr_addr_addr_set(struct pcibus_info *pcibus_info, int int_n,
uint64_t addr)
{
union br_ptr *ptr = (union br_ptr *)pcibus_info->pbi_buscommon.bs_base;
if (pcibus_info) {
switch (pcibus_info->pbi_bridge_type) {
case PCIBR_BRIDGETYPE_TIOCP:
ptr->tio.cp_int_addr[int_n] &= ~TIOCP_HOST_INTR_ADDR;
ptr->tio.cp_int_addr[int_n] |=
(addr & TIOCP_HOST_INTR_ADDR);
break;
case PCIBR_BRIDGETYPE_PIC:
ptr->pic.p_int_addr[int_n] &= ~PIC_HOST_INTR_ADDR;
ptr->pic.p_int_addr[int_n] |=
(addr & PIC_HOST_INTR_ADDR);
break;
default:
panic
("pcireg_intr_addr_addr_get: unknown bridgetype bridge 0x%p",
(void *)ptr);
}
}
}
/*
* Force Interrupt Register Access -- Write Only 0000_01C0 - 0000_01F8
*/
void pcireg_force_intr_set(struct pcibus_info *pcibus_info, int int_n)
{
union br_ptr *ptr = (union br_ptr *)pcibus_info->pbi_buscommon.bs_base;
if (pcibus_info) {
switch (pcibus_info->pbi_bridge_type) {
case PCIBR_BRIDGETYPE_TIOCP:
ptr->tio.cp_force_pin[int_n] = 1;
break;
case PCIBR_BRIDGETYPE_PIC:
ptr->pic.p_force_pin[int_n] = 1;
break;
default:
panic
("pcireg_force_intr_set: unknown bridgetype bridge 0x%p",
(void *)ptr);
}
}
}
/*
* Device(x) Write Buffer Flush Reg Access -- Read Only 0000_0240 - 0000_0258
*/
uint64_t pcireg_wrb_flush_get(struct pcibus_info *pcibus_info, int device)
{
union br_ptr *ptr = (union br_ptr *)pcibus_info->pbi_buscommon.bs_base;
uint64_t ret = 0;
if (pcibus_info) {
switch (pcibus_info->pbi_bridge_type) {
case PCIBR_BRIDGETYPE_TIOCP:
ret = ptr->tio.cp_wr_req_buf[device];
break;
case PCIBR_BRIDGETYPE_PIC:
ret = ptr->pic.p_wr_req_buf[device];
break;
default:
panic("pcireg_wrb_flush_get: unknown bridgetype bridge 0x%p", (void *)ptr);
}
}
/* Read of the Write Buffer Flush should always return zero */
return ret;
}
void pcireg_int_ate_set(struct pcibus_info *pcibus_info, int ate_index,
uint64_t val)
{
union br_ptr *ptr = (union br_ptr *)pcibus_info->pbi_buscommon.bs_base;
if (pcibus_info) {
switch (pcibus_info->pbi_bridge_type) {
case PCIBR_BRIDGETYPE_TIOCP:
ptr->tio.cp_int_ate_ram[ate_index] = (uint64_t) val;
break;
case PCIBR_BRIDGETYPE_PIC:
ptr->pic.p_int_ate_ram[ate_index] = (uint64_t) val;
break;
default:
panic
("pcireg_int_ate_set: unknown bridgetype bridge 0x%p",
(void *)ptr);
}
}
}
uint64_t *pcireg_int_ate_addr(struct pcibus_info *pcibus_info, int ate_index)
{
union br_ptr *ptr = (union br_ptr *)pcibus_info->pbi_buscommon.bs_base;
uint64_t *ret = (uint64_t *) 0;
if (pcibus_info) {
switch (pcibus_info->pbi_bridge_type) {
case PCIBR_BRIDGETYPE_TIOCP:
ret =
(uint64_t *) & (ptr->tio.cp_int_ate_ram[ate_index]);
break;
case PCIBR_BRIDGETYPE_PIC:
ret =
(uint64_t *) & (ptr->pic.p_int_ate_ram[ate_index]);
break;
default:
panic
("pcireg_int_ate_addr: unknown bridgetype bridge 0x%p",
(void *)ptr);
}
}
return ret;
}