Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
This commit is contained in:
597
arch/ia64/mm/init.c
Normal file
597
arch/ia64/mm/init.c
Normal file
@@ -0,0 +1,597 @@
|
||||
/*
|
||||
* Initialize MMU support.
|
||||
*
|
||||
* Copyright (C) 1998-2003 Hewlett-Packard Co
|
||||
* David Mosberger-Tang <davidm@hpl.hp.com>
|
||||
*/
|
||||
#include <linux/config.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/init.h>
|
||||
|
||||
#include <linux/bootmem.h>
|
||||
#include <linux/efi.h>
|
||||
#include <linux/elf.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/mmzone.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/personality.h>
|
||||
#include <linux/reboot.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/swap.h>
|
||||
#include <linux/proc_fs.h>
|
||||
#include <linux/bitops.h>
|
||||
|
||||
#include <asm/a.out.h>
|
||||
#include <asm/dma.h>
|
||||
#include <asm/ia32.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/machvec.h>
|
||||
#include <asm/numa.h>
|
||||
#include <asm/patch.h>
|
||||
#include <asm/pgalloc.h>
|
||||
#include <asm/sal.h>
|
||||
#include <asm/sections.h>
|
||||
#include <asm/system.h>
|
||||
#include <asm/tlb.h>
|
||||
#include <asm/uaccess.h>
|
||||
#include <asm/unistd.h>
|
||||
#include <asm/mca.h>
|
||||
|
||||
DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
|
||||
|
||||
extern void ia64_tlb_init (void);
|
||||
|
||||
unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
|
||||
|
||||
#ifdef CONFIG_VIRTUAL_MEM_MAP
|
||||
unsigned long vmalloc_end = VMALLOC_END_INIT;
|
||||
EXPORT_SYMBOL(vmalloc_end);
|
||||
struct page *vmem_map;
|
||||
EXPORT_SYMBOL(vmem_map);
|
||||
#endif
|
||||
|
||||
static int pgt_cache_water[2] = { 25, 50 };
|
||||
|
||||
struct page *zero_page_memmap_ptr; /* map entry for zero page */
|
||||
EXPORT_SYMBOL(zero_page_memmap_ptr);
|
||||
|
||||
void
|
||||
check_pgt_cache (void)
|
||||
{
|
||||
int low, high;
|
||||
|
||||
low = pgt_cache_water[0];
|
||||
high = pgt_cache_water[1];
|
||||
|
||||
preempt_disable();
|
||||
if (pgtable_cache_size > (u64) high) {
|
||||
do {
|
||||
if (pgd_quicklist)
|
||||
free_page((unsigned long)pgd_alloc_one_fast(NULL));
|
||||
if (pmd_quicklist)
|
||||
free_page((unsigned long)pmd_alloc_one_fast(NULL, 0));
|
||||
} while (pgtable_cache_size > (u64) low);
|
||||
}
|
||||
preempt_enable();
|
||||
}
|
||||
|
||||
void
|
||||
lazy_mmu_prot_update (pte_t pte)
|
||||
{
|
||||
unsigned long addr;
|
||||
struct page *page;
|
||||
|
||||
if (!pte_exec(pte))
|
||||
return; /* not an executable page... */
|
||||
|
||||
page = pte_page(pte);
|
||||
addr = (unsigned long) page_address(page);
|
||||
|
||||
if (test_bit(PG_arch_1, &page->flags))
|
||||
return; /* i-cache is already coherent with d-cache */
|
||||
|
||||
flush_icache_range(addr, addr + PAGE_SIZE);
|
||||
set_bit(PG_arch_1, &page->flags); /* mark page as clean */
|
||||
}
|
||||
|
||||
inline void
|
||||
ia64_set_rbs_bot (void)
|
||||
{
|
||||
unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
|
||||
|
||||
if (stack_size > MAX_USER_STACK_SIZE)
|
||||
stack_size = MAX_USER_STACK_SIZE;
|
||||
current->thread.rbs_bot = STACK_TOP - stack_size;
|
||||
}
|
||||
|
||||
/*
|
||||
* This performs some platform-dependent address space initialization.
|
||||
* On IA-64, we want to setup the VM area for the register backing
|
||||
* store (which grows upwards) and install the gateway page which is
|
||||
* used for signal trampolines, etc.
|
||||
*/
|
||||
void
|
||||
ia64_init_addr_space (void)
|
||||
{
|
||||
struct vm_area_struct *vma;
|
||||
|
||||
ia64_set_rbs_bot();
|
||||
|
||||
/*
|
||||
* If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
|
||||
* the problem. When the process attempts to write to the register backing store
|
||||
* for the first time, it will get a SEGFAULT in this case.
|
||||
*/
|
||||
vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
|
||||
if (vma) {
|
||||
memset(vma, 0, sizeof(*vma));
|
||||
vma->vm_mm = current->mm;
|
||||
vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
|
||||
vma->vm_end = vma->vm_start + PAGE_SIZE;
|
||||
vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7];
|
||||
vma->vm_flags = VM_DATA_DEFAULT_FLAGS | VM_GROWSUP;
|
||||
down_write(¤t->mm->mmap_sem);
|
||||
if (insert_vm_struct(current->mm, vma)) {
|
||||
up_write(¤t->mm->mmap_sem);
|
||||
kmem_cache_free(vm_area_cachep, vma);
|
||||
return;
|
||||
}
|
||||
up_write(¤t->mm->mmap_sem);
|
||||
}
|
||||
|
||||
/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
|
||||
if (!(current->personality & MMAP_PAGE_ZERO)) {
|
||||
vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
|
||||
if (vma) {
|
||||
memset(vma, 0, sizeof(*vma));
|
||||
vma->vm_mm = current->mm;
|
||||
vma->vm_end = PAGE_SIZE;
|
||||
vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
|
||||
vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
|
||||
down_write(¤t->mm->mmap_sem);
|
||||
if (insert_vm_struct(current->mm, vma)) {
|
||||
up_write(¤t->mm->mmap_sem);
|
||||
kmem_cache_free(vm_area_cachep, vma);
|
||||
return;
|
||||
}
|
||||
up_write(¤t->mm->mmap_sem);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
free_initmem (void)
|
||||
{
|
||||
unsigned long addr, eaddr;
|
||||
|
||||
addr = (unsigned long) ia64_imva(__init_begin);
|
||||
eaddr = (unsigned long) ia64_imva(__init_end);
|
||||
while (addr < eaddr) {
|
||||
ClearPageReserved(virt_to_page(addr));
|
||||
set_page_count(virt_to_page(addr), 1);
|
||||
free_page(addr);
|
||||
++totalram_pages;
|
||||
addr += PAGE_SIZE;
|
||||
}
|
||||
printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
|
||||
(__init_end - __init_begin) >> 10);
|
||||
}
|
||||
|
||||
void
|
||||
free_initrd_mem (unsigned long start, unsigned long end)
|
||||
{
|
||||
struct page *page;
|
||||
/*
|
||||
* EFI uses 4KB pages while the kernel can use 4KB or bigger.
|
||||
* Thus EFI and the kernel may have different page sizes. It is
|
||||
* therefore possible to have the initrd share the same page as
|
||||
* the end of the kernel (given current setup).
|
||||
*
|
||||
* To avoid freeing/using the wrong page (kernel sized) we:
|
||||
* - align up the beginning of initrd
|
||||
* - align down the end of initrd
|
||||
*
|
||||
* | |
|
||||
* |=============| a000
|
||||
* | |
|
||||
* | |
|
||||
* | | 9000
|
||||
* |/////////////|
|
||||
* |/////////////|
|
||||
* |=============| 8000
|
||||
* |///INITRD////|
|
||||
* |/////////////|
|
||||
* |/////////////| 7000
|
||||
* | |
|
||||
* |KKKKKKKKKKKKK|
|
||||
* |=============| 6000
|
||||
* |KKKKKKKKKKKKK|
|
||||
* |KKKKKKKKKKKKK|
|
||||
* K=kernel using 8KB pages
|
||||
*
|
||||
* In this example, we must free page 8000 ONLY. So we must align up
|
||||
* initrd_start and keep initrd_end as is.
|
||||
*/
|
||||
start = PAGE_ALIGN(start);
|
||||
end = end & PAGE_MASK;
|
||||
|
||||
if (start < end)
|
||||
printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
|
||||
|
||||
for (; start < end; start += PAGE_SIZE) {
|
||||
if (!virt_addr_valid(start))
|
||||
continue;
|
||||
page = virt_to_page(start);
|
||||
ClearPageReserved(page);
|
||||
set_page_count(page, 1);
|
||||
free_page(start);
|
||||
++totalram_pages;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* This installs a clean page in the kernel's page table.
|
||||
*/
|
||||
struct page *
|
||||
put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
|
||||
{
|
||||
pgd_t *pgd;
|
||||
pud_t *pud;
|
||||
pmd_t *pmd;
|
||||
pte_t *pte;
|
||||
|
||||
if (!PageReserved(page))
|
||||
printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
|
||||
page_address(page));
|
||||
|
||||
pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
|
||||
|
||||
spin_lock(&init_mm.page_table_lock);
|
||||
{
|
||||
pud = pud_alloc(&init_mm, pgd, address);
|
||||
if (!pud)
|
||||
goto out;
|
||||
|
||||
pmd = pmd_alloc(&init_mm, pud, address);
|
||||
if (!pmd)
|
||||
goto out;
|
||||
pte = pte_alloc_map(&init_mm, pmd, address);
|
||||
if (!pte)
|
||||
goto out;
|
||||
if (!pte_none(*pte)) {
|
||||
pte_unmap(pte);
|
||||
goto out;
|
||||
}
|
||||
set_pte(pte, mk_pte(page, pgprot));
|
||||
pte_unmap(pte);
|
||||
}
|
||||
out: spin_unlock(&init_mm.page_table_lock);
|
||||
/* no need for flush_tlb */
|
||||
return page;
|
||||
}
|
||||
|
||||
static void
|
||||
setup_gate (void)
|
||||
{
|
||||
struct page *page;
|
||||
|
||||
/*
|
||||
* Map the gate page twice: once read-only to export the ELF headers etc. and once
|
||||
* execute-only page to enable privilege-promotion via "epc":
|
||||
*/
|
||||
page = virt_to_page(ia64_imva(__start_gate_section));
|
||||
put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
|
||||
#ifdef HAVE_BUGGY_SEGREL
|
||||
page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
|
||||
put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
|
||||
#else
|
||||
put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
|
||||
#endif
|
||||
ia64_patch_gate();
|
||||
}
|
||||
|
||||
void __devinit
|
||||
ia64_mmu_init (void *my_cpu_data)
|
||||
{
|
||||
unsigned long psr, pta, impl_va_bits;
|
||||
extern void __devinit tlb_init (void);
|
||||
|
||||
#ifdef CONFIG_DISABLE_VHPT
|
||||
# define VHPT_ENABLE_BIT 0
|
||||
#else
|
||||
# define VHPT_ENABLE_BIT 1
|
||||
#endif
|
||||
|
||||
/* Pin mapping for percpu area into TLB */
|
||||
psr = ia64_clear_ic();
|
||||
ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR,
|
||||
pte_val(pfn_pte(__pa(my_cpu_data) >> PAGE_SHIFT, PAGE_KERNEL)),
|
||||
PERCPU_PAGE_SHIFT);
|
||||
|
||||
ia64_set_psr(psr);
|
||||
ia64_srlz_i();
|
||||
|
||||
/*
|
||||
* Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
|
||||
* address space. The IA-64 architecture guarantees that at least 50 bits of
|
||||
* virtual address space are implemented but if we pick a large enough page size
|
||||
* (e.g., 64KB), the mapped address space is big enough that it will overlap with
|
||||
* VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
|
||||
* IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
|
||||
* problem in practice. Alternatively, we could truncate the top of the mapped
|
||||
* address space to not permit mappings that would overlap with the VMLPT.
|
||||
* --davidm 00/12/06
|
||||
*/
|
||||
# define pte_bits 3
|
||||
# define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
|
||||
/*
|
||||
* The virtual page table has to cover the entire implemented address space within
|
||||
* a region even though not all of this space may be mappable. The reason for
|
||||
* this is that the Access bit and Dirty bit fault handlers perform
|
||||
* non-speculative accesses to the virtual page table, so the address range of the
|
||||
* virtual page table itself needs to be covered by virtual page table.
|
||||
*/
|
||||
# define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
|
||||
# define POW2(n) (1ULL << (n))
|
||||
|
||||
impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
|
||||
|
||||
if (impl_va_bits < 51 || impl_va_bits > 61)
|
||||
panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
|
||||
|
||||
/* place the VMLPT at the end of each page-table mapped region: */
|
||||
pta = POW2(61) - POW2(vmlpt_bits);
|
||||
|
||||
if (POW2(mapped_space_bits) >= pta)
|
||||
panic("mm/init: overlap between virtually mapped linear page table and "
|
||||
"mapped kernel space!");
|
||||
/*
|
||||
* Set the (virtually mapped linear) page table address. Bit
|
||||
* 8 selects between the short and long format, bits 2-7 the
|
||||
* size of the table, and bit 0 whether the VHPT walker is
|
||||
* enabled.
|
||||
*/
|
||||
ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
|
||||
|
||||
ia64_tlb_init();
|
||||
|
||||
#ifdef CONFIG_HUGETLB_PAGE
|
||||
ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
|
||||
ia64_srlz_d();
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef CONFIG_VIRTUAL_MEM_MAP
|
||||
|
||||
int
|
||||
create_mem_map_page_table (u64 start, u64 end, void *arg)
|
||||
{
|
||||
unsigned long address, start_page, end_page;
|
||||
struct page *map_start, *map_end;
|
||||
int node;
|
||||
pgd_t *pgd;
|
||||
pud_t *pud;
|
||||
pmd_t *pmd;
|
||||
pte_t *pte;
|
||||
|
||||
map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
|
||||
map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
|
||||
|
||||
start_page = (unsigned long) map_start & PAGE_MASK;
|
||||
end_page = PAGE_ALIGN((unsigned long) map_end);
|
||||
node = paddr_to_nid(__pa(start));
|
||||
|
||||
for (address = start_page; address < end_page; address += PAGE_SIZE) {
|
||||
pgd = pgd_offset_k(address);
|
||||
if (pgd_none(*pgd))
|
||||
pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
|
||||
pud = pud_offset(pgd, address);
|
||||
|
||||
if (pud_none(*pud))
|
||||
pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
|
||||
pmd = pmd_offset(pud, address);
|
||||
|
||||
if (pmd_none(*pmd))
|
||||
pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
|
||||
pte = pte_offset_kernel(pmd, address);
|
||||
|
||||
if (pte_none(*pte))
|
||||
set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
|
||||
PAGE_KERNEL));
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
struct memmap_init_callback_data {
|
||||
struct page *start;
|
||||
struct page *end;
|
||||
int nid;
|
||||
unsigned long zone;
|
||||
};
|
||||
|
||||
static int
|
||||
virtual_memmap_init (u64 start, u64 end, void *arg)
|
||||
{
|
||||
struct memmap_init_callback_data *args;
|
||||
struct page *map_start, *map_end;
|
||||
|
||||
args = (struct memmap_init_callback_data *) arg;
|
||||
map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
|
||||
map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
|
||||
|
||||
if (map_start < args->start)
|
||||
map_start = args->start;
|
||||
if (map_end > args->end)
|
||||
map_end = args->end;
|
||||
|
||||
/*
|
||||
* We have to initialize "out of bounds" struct page elements that fit completely
|
||||
* on the same pages that were allocated for the "in bounds" elements because they
|
||||
* may be referenced later (and found to be "reserved").
|
||||
*/
|
||||
map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
|
||||
map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
|
||||
/ sizeof(struct page));
|
||||
|
||||
if (map_start < map_end)
|
||||
memmap_init_zone((unsigned long)(map_end - map_start),
|
||||
args->nid, args->zone, page_to_pfn(map_start));
|
||||
return 0;
|
||||
}
|
||||
|
||||
void
|
||||
memmap_init (unsigned long size, int nid, unsigned long zone,
|
||||
unsigned long start_pfn)
|
||||
{
|
||||
if (!vmem_map)
|
||||
memmap_init_zone(size, nid, zone, start_pfn);
|
||||
else {
|
||||
struct page *start;
|
||||
struct memmap_init_callback_data args;
|
||||
|
||||
start = pfn_to_page(start_pfn);
|
||||
args.start = start;
|
||||
args.end = start + size;
|
||||
args.nid = nid;
|
||||
args.zone = zone;
|
||||
|
||||
efi_memmap_walk(virtual_memmap_init, &args);
|
||||
}
|
||||
}
|
||||
|
||||
int
|
||||
ia64_pfn_valid (unsigned long pfn)
|
||||
{
|
||||
char byte;
|
||||
struct page *pg = pfn_to_page(pfn);
|
||||
|
||||
return (__get_user(byte, (char __user *) pg) == 0)
|
||||
&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
|
||||
|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
|
||||
}
|
||||
EXPORT_SYMBOL(ia64_pfn_valid);
|
||||
|
||||
int
|
||||
find_largest_hole (u64 start, u64 end, void *arg)
|
||||
{
|
||||
u64 *max_gap = arg;
|
||||
|
||||
static u64 last_end = PAGE_OFFSET;
|
||||
|
||||
/* NOTE: this algorithm assumes efi memmap table is ordered */
|
||||
|
||||
if (*max_gap < (start - last_end))
|
||||
*max_gap = start - last_end;
|
||||
last_end = end;
|
||||
return 0;
|
||||
}
|
||||
#endif /* CONFIG_VIRTUAL_MEM_MAP */
|
||||
|
||||
static int
|
||||
count_reserved_pages (u64 start, u64 end, void *arg)
|
||||
{
|
||||
unsigned long num_reserved = 0;
|
||||
unsigned long *count = arg;
|
||||
|
||||
for (; start < end; start += PAGE_SIZE)
|
||||
if (PageReserved(virt_to_page(start)))
|
||||
++num_reserved;
|
||||
*count += num_reserved;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Boot command-line option "nolwsys" can be used to disable the use of any light-weight
|
||||
* system call handler. When this option is in effect, all fsyscalls will end up bubbling
|
||||
* down into the kernel and calling the normal (heavy-weight) syscall handler. This is
|
||||
* useful for performance testing, but conceivably could also come in handy for debugging
|
||||
* purposes.
|
||||
*/
|
||||
|
||||
static int nolwsys;
|
||||
|
||||
static int __init
|
||||
nolwsys_setup (char *s)
|
||||
{
|
||||
nolwsys = 1;
|
||||
return 1;
|
||||
}
|
||||
|
||||
__setup("nolwsys", nolwsys_setup);
|
||||
|
||||
void
|
||||
mem_init (void)
|
||||
{
|
||||
long reserved_pages, codesize, datasize, initsize;
|
||||
unsigned long num_pgt_pages;
|
||||
pg_data_t *pgdat;
|
||||
int i;
|
||||
static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
|
||||
|
||||
#ifdef CONFIG_PCI
|
||||
/*
|
||||
* This needs to be called _after_ the command line has been parsed but _before_
|
||||
* any drivers that may need the PCI DMA interface are initialized or bootmem has
|
||||
* been freed.
|
||||
*/
|
||||
platform_dma_init();
|
||||
#endif
|
||||
|
||||
#ifndef CONFIG_DISCONTIGMEM
|
||||
if (!mem_map)
|
||||
BUG();
|
||||
max_mapnr = max_low_pfn;
|
||||
#endif
|
||||
|
||||
high_memory = __va(max_low_pfn * PAGE_SIZE);
|
||||
|
||||
kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
|
||||
kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
|
||||
kclist_add(&kcore_kernel, _stext, _end - _stext);
|
||||
|
||||
for_each_pgdat(pgdat)
|
||||
totalram_pages += free_all_bootmem_node(pgdat);
|
||||
|
||||
reserved_pages = 0;
|
||||
efi_memmap_walk(count_reserved_pages, &reserved_pages);
|
||||
|
||||
codesize = (unsigned long) _etext - (unsigned long) _stext;
|
||||
datasize = (unsigned long) _edata - (unsigned long) _etext;
|
||||
initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
|
||||
|
||||
printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
|
||||
"%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
|
||||
num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
|
||||
reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
|
||||
|
||||
/*
|
||||
* Allow for enough (cached) page table pages so that we can map the entire memory
|
||||
* at least once. Each task also needs a couple of page tables pages, so add in a
|
||||
* fudge factor for that (don't use "threads-max" here; that would be wrong!).
|
||||
* Don't allow the cache to be more than 10% of total memory, though.
|
||||
*/
|
||||
# define NUM_TASKS 500 /* typical number of tasks */
|
||||
num_pgt_pages = nr_free_pages() / PTRS_PER_PGD + NUM_TASKS;
|
||||
if (num_pgt_pages > nr_free_pages() / 10)
|
||||
num_pgt_pages = nr_free_pages() / 10;
|
||||
if (num_pgt_pages > (u64) pgt_cache_water[1])
|
||||
pgt_cache_water[1] = num_pgt_pages;
|
||||
|
||||
/*
|
||||
* For fsyscall entrpoints with no light-weight handler, use the ordinary
|
||||
* (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
|
||||
* code can tell them apart.
|
||||
*/
|
||||
for (i = 0; i < NR_syscalls; ++i) {
|
||||
extern unsigned long fsyscall_table[NR_syscalls];
|
||||
extern unsigned long sys_call_table[NR_syscalls];
|
||||
|
||||
if (!fsyscall_table[i] || nolwsys)
|
||||
fsyscall_table[i] = sys_call_table[i] | 1;
|
||||
}
|
||||
setup_gate();
|
||||
|
||||
#ifdef CONFIG_IA32_SUPPORT
|
||||
ia32_mem_init();
|
||||
#endif
|
||||
}
|
Reference in New Issue
Block a user